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ABSTRACT 
 

Software-defined radio (SDR) architectures typically 
include general-purpose CPUs (GPPs), digital signal 
processing (DSP) ASSPs and FPGAs that process different 
waveforms, functions, and algorithms. GPPs typically 
handle network protocol processing and management 
functions. Historically, DSPs handled transceiver baseband 
processing and encoding, while FPGAs provided high-
performance IF up/down conversion and preconditioning 
functions. Now FPGAs, when used with embedded soft-
core processors, have absorbed the DSP baseband 
processing and some GPP functionality as well, providing a 
smaller, lower power solution. However, meeting the 
baseband performance requirements requires aggressive use 
of hardware acceleration. In this paper, we discuss an 
efficient methodology for hardware acceleration of SDR 
waveforms, the creation and use of hardware acceleration 
units, and a tool that automates the flow. The Altera® 
Nios® II C-to-Hardware (C2H) Acceleration Compiler is a 
coprocessor generation tool that converts performance-
critical ANSI C functions into hardware accelerator 
modules with direct memory access. Results are presented 
showing performance gains of 13–73X over software only, 
offering a promising solution for rapid development of 
high-performance SDR systems. 
 
 

1. INTRODUCTION 
 

In the past, FPGAs were used as a convenient interconnect 
layer between chips in a system. In SDRs, FPGAs are now 
being used as programmable up/down intermediate 
frequency and signal processing hardware that boost 
performance while providing lower cost and lower power. 
Typical implementations of SDR modems include a GPP, 
DSP, and FPGA. Today’s latest generation FPGAs can also 
be used to offload the GPP or DSP with application-specific 
hardware acceleration units. Soft-core microprocessors can 
easily extend their functionality with custom logic and 
hardware acceleration coprocessors added to the system. 
Furthermore, by using general-purpose routing resources 

available in the FPGA, these hardware acceleration units 
can run in parallel to further enhance the total computational 
throughput of the system. 

Three different methods for hardware acceleration of 
SDR waveforms have been previously discussed at this 
conference: custom instructions, arithmetic coprocessing 
units, and application-specific instruction-set processors [3]. 
In this paper, we will focus on arithmetic coprocessing units 
and the automated design flow made possible by Altera’s 
Nios II C2H Compiler. This compiler provides a pure-
software design flow, automatically moving user-specified 
performance-critical functions from software running on the 
FPGA processor into pipelined, optimized hardware 
accelerators. These accelerators have direct access to the 
processor’s memory subsystem and can sustain extremely 
high bandwidth through parallel transactions to an arbitrary 
number of buffers. 

Sections 2 and 3 provide background information on 
SDR and system architecture. An efficient methodology for 
developing hardware coprocessors using a slave-side 
arbitration interconnect is discussed in Sections 4 and 5. In 
Sections 6 and 7, the automation of this flow with the Nios 
II C2H Compiler is discussed, followed by optimization 
strategies in Section 8, user test results in Section 9 and the 
summary in Section 10.  
 

2. SOFTWARE-DEFINED RADIO 
 
The concept behind SDR is that more waveform processing 
can be implemented in reprogrammable digital hardware so 
a single platform can be used for multiple waveforms. With 
the proliferation of wireless standards, future wireless 
devices will need to support multiple air interfaces and 
modulation formats. SDR technology enables such 
functionality in wireless devices by using a reconfigurable 
hardware platform across multiple standards.  

SDR is the underlying technology behind the Joint 
Tactical Radio System (JTRS) initiative to develop 
software-programmable radios that enable seamless, real-
time communication across the U.S. military services, and 
with coalition forces and allies. The functionality and 
expandability of the JTRS is built upon an open architecture 
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framework called the software communications 
architecture. The JTRS terminals must support dynamic 
loading of one or more of 25 specified air interfaces or 
waveforms, typically more complex than those used in the 
civilian sector. To achieve all these requirements in a 
reasonable form factor requires extensive, yet different 
processing powers. 
 

3. SDR SYSTEM ARCHITECTURE 
 
Most SDR systems utilize GPP, DSP, and FPGA in their 
architectures. These general-purpose processing resources 
can be used for different parts of the overall SDR system, 
and Figure 1 shows the typical functions found in an SDR 
divided across each of these devices. However, there is a 
significant amount of overlap between each of these 
elements. For example, an algorithm running on the DSP 
could be implemented in the GPP, albeit more slowly, or 
rewritten in HDL and run much faster in an FPGA as a 
coprocessor or hardware acceleration unit.  
 

4. HARDWARE COPROCESSORS 
 
Typical system design flow begins with a pure-software 
specification running on a CPU, then uses profiling to 
determine algorithmic bottlenecks. These bottlenecks can be 
reduced in several ways, including the creation of custom 
hardware accelerators that offload the CPU, exploiting 

parallelism in the algorithm to achieve significant 
performance increases. This method works best when 
dealing with complex computation-intensive algorithms that 
operate on large blocks of data. Unlike custom instructions, 
hardware accelerators are autonomous—once activated, 
they can run without intervention from the CPU, creating 
thread-level parallelism as well as instruction-level 
parallelism. 

Accelerator modules contain data master ports that 
connect directly to the CPU’s memory subsystem. With an 
FPGA-based interconnect (such as Altera’s Avalon® 
memory mapped and streaming interfaces), it is possible to 
enable an arbitrary number of simultaneous transfers by 
arbitrating between multiple masters on the slave side. 
Accelerator modules can then be created with multiple 
master ports that simultaneously access different memory 
buffers, allowing much higher memory bandwidth than that 
achievable by a CPU with a single data master.  
 

5. SYSTEM INTERCONNECT 
 
The FPGA-based Avalon system interconnect fabric is 
automatically generated by Altera’s SOPC Builder system 
integration tool. Similar to a fully switched system bus in 
functionality, it uses dynamically generated switches and 
wires to interconnect modules. These can be soft intellectual 
property (IP) blocks, custom user logic, or interfaces to off-
chip peripherals. This approach overcomes the bottleneck 

GPP DSP

FPGA
•Low-Speed Packet Processing 
•Complex MAC Layer Protocols 
•Network Level Protocols 
•Waveform Management 
•Tx Packet Construction 
•Rx Packet Decode 
•Waveform Load 
•Waveform Execution Control 

•Medium-Speed Timing 
•Critical Low-Speed Signal 
Filter 
•Sample Rate Decimation 
•Sample Rate Interpolation 
•Low-Speed Mod and Demod 
•Low-Speed AGC 
•Medium-Speed FEC 
•Medium-Speed Packet Proc 
•Simple MAC Layer Protocols 

•Modem External Interface 
•Downconversion to Baseband 
•Upconversion to IF 
•Signal Filtering 
•Sample Rate Decimation/ 
Interpolation 
•High-Speed Mod and Demod 
•High-Speed AGC 
•High-Speed FEC 
•High-Speed Packet Processing 

Figure 1. Example Architecture Splitting SDR Functions Across GPP, DSP, and FPGA 
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encountered in the traditional shared-bus model, where only 
one master can issue a request at any given time. As shown 
in Figure 2, the switch fabric’s automatically generated 
slave-side arbiters allow multiple masters to sustain 
transfers simultaneously to different slaves. 

This is important in multi-CPU systems and systems 
with coprocessing units, as it mitigates the memory 
bottleneck created by bus contention. When data is 
separated into multiple partitions and/or dual-port buffers, it 
is possible to create multimaster systems in which little or 
no arbitration delays are incurred. 

The Avalon switch fabric supports a rich feature set, 
including dynamic bus sizing, burst management, address 
decoding, datapath multiplexing, wait-state insertion, 
pipelining, clock domain crossing, and off-chip interfaces. 
(For more information on SOPC Builder, see [1], [2], and 
[5].) 
 

6. AUTOMATED HARDWARE ACCELERATION 
 
The Nios II C2H Compiler automates a significant portion 
of the design flow outlined above, by generating 
coprocessors that offload and enhance performance of a 
microprocessor running software written in pure ANSI C. It 
is tightly integrated into the software build flow and SOPC 
Builder system generation tool, allowing true pushbutton 
acceleration of performance-critical functions. The tool 
automatically integrates the accelerator into the hardware 
and software projects, providing a pure-software 
development environment for managing hardware/software 
partitioning. 

Recursion, floating-point types, and the goto control 
statement are the only major exclusions from standard C. 
Pointers, arrays, structures, and enums, as well as all other 
loop types and control structures (including break, 
continue, and return statements) are fully supported. 
The Nios II C2H Compiler uses SOPC Builder to connect 

the accelerator to the processor and any other peripherals in 
the system. This gives the accelerator direct access to a 
memory map identical to that of the CPU, allowing 
seamless support for pointers and arrays when migrating 
from software to hardware. The GUI for the compiler is the 
CPU’s software integrated development environment (IDE). 
By supporting pointers and unextended ANSI/ISO C, the 
compiler allows developers to quickly prototype a function 
in software running on the processor, then switch to a 
hardware-accelerated implementation with the push of a 
button. 

Figure 3 shows how the Nios II C2H Compiler 
integrates into the software build process in the IDE. The 
left half of the flowchart shows the standard C compilation 
of main.c and accelerator.c, as it occurs without 
acceleration. The right half of the flowchart shows the 
hardware compilation process invoked when a function in 
accelerator.c is accelerated. It also shows the generation and 
selective linking of the accelerator driver (discussed in 
section 4) into the executable file. When prototyping and 
optimizing accelerators, running this complete process is 
not required. Options in the IDE provide for switching 
between the software-only build process, software plus Nios 
II C2H Compiler analysis/reporting, or software plus 
complete hardware. This allows for fast debug and 
optimization iterations during the early stages of 
development, as well as automated integration of the entire 
hardware flow during later stages. 
 

7. DIRECT MEMORY ACCESS 
 
The Nios II C2H Compiler also provides a unique solution 
with full support for pointers and array accesses. This is 
possible due to the integration with SOPC Builder, which 
gives the accelerated function access to the same memory 
map that it had when running in software. This is also 
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Figure 2. Avalon Switch Fabric Connecting Masters and Slaves in a System 
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necessary for easy transfer of data between the accelerator 
and the CPU, as well as the other peripherals in the system. 

The solution presented here imposes no restrictions on 
the bandwidth into and out of the accelerator, other than the 
bandwidth limitations of the connected memories. When the 
Nios II C2H Compiler creates hardware for a function, it 
generates Avalon master ports for pointer and array 
operations, as well as operations that access static and 
global variables allocated on the stack or heap. These 
master ports allow access to memory and other peripherals 
in the system, and are capable of operating independently, 
in parallel. While one or more masters fetch data from input 
buffers, others write data to output buffers, all on the same 
clock cycle. Figure 4 shows an accelerator with multiple 
read and write masters. Since an accelerator can have an 
arbitrary number of master ports, the memory bandwidth is 
limited only by the number of slave ports to which they can 
connect. 

Optimal accelerator performance is achieved when 
large data structures used in critical loops are stored in 
system modules with separate slave ports. This way, the 
Nios II C2H Compiler is able to use dedicated master ports 
that connect to each of the slaves and transfer data 
concurrently. This is easily achieved by using register banks 
and on-chip memory blocks embedded in the FPGA fabric, 
which can either be instantiated manually into the system or 
inferred by declaring an array in the accelerated function. 
 

8. OPTIMIZING CODE FOR ACCELERATION 
 
Test users found that they could increase their speed 
significantly (3–7X) by simply performing optimizations in 
the C code, such as applying the restrict qualifier to pointers 

(introduced in ISO C 99, specifying that a particular pointer 
will not alias another), reducing loop-carried dependencies, 
and consolidating control paths where possible. These three 
techniques considerably increased the amount of parallelism 
that the Nios II C2H Compiler could extract from the target 
function. 

However, despite these significant optimizations, 
performance was limited not by computational speed, but by 
availability of data. The problem was no longer compute 
bound, but memory bound. Because the accelerator was 
attempting to operate on multiple data structures that were 
all stored in the CPU’s data memory, the bandwidth of the 
single memory slave became the performance bottleneck. 
Users were able to overcome this limitation simply by 
adding on-chip memory buffers to their systems and using 
them to store critical data structures. Similarly, by using 
dedicated memory modules for input and output buffers, the 
accelerators could use many master ports simultaneously to 
quickly stream data in and out of the buffers. 

Combining code-optimization techniques by reducing 
dependencies and moving critical arrays into dedicated 
memory buffers proved extremely successful in increasing 
accelerator performance. These two techniques addressed 
the two types of potential bottlenecks: computation and I/O. 
The Nios II C2H Compiler methodology allows for 
elimination of both techniques, thus providing 
computational performance, efficient scheduling and 
pipelining, and detailed critical-path reporting, as well as 
increased memory bandwidth, and generation of dedicated 
master ports and buffers. 

However, not all algorithms and C functions are 
suitable for hardware acceleration. Parallel/speculative 
execution and loop pipelining are two key ways by which 
performance is increased. Therefore, if the algorithm (or its 
implementation) limits the compiler in performing these two 
tasks, then only minimal speedup factors will result. For 
example, code that contains sequentially dependent 
operations in disjoint control paths (such as complex 
peripheral servicing routines) will not significantly benefit 
from hardware acceleration. These tasks are better suited for 
running on a processor. In contrast, functions with simple 
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control paths and critical computations consolidated into a 
small number of inner loops that execute uninterrupted for 
many iterations are ideal candidates for conversion to 
hardware coprocessors. Therefore, it is very important for 
developers to appropriately manage software/ hardware 
tradeoffs when introducing accelerators into a design, as 
sequential tasks stay in the CPU and iterative computation-
intensive tasks are moved to hardware. 

 
9. RESULTS 

 
Table 1 presents performance and area results for twelve 
common signal-processing algorithms. Speedup is 
calculated as the total algorithm compute time in software 
running on the Nios II processor divided by total compute 
time running in the accelerator. The additional system 
resource column shows the incremental cost (in equivalent 
cost of logic elements for Nios II units) of adding the 
accelerator and on-chip hardware blocks such as multipliers, 
and memory buffers. 

This investigation shows that after one to three man-
days of work, considerable performance gains of 13X-73X 
can be achieved with C-to-hardware acceleration, for 
approximately one to two times the increase in system 
resources. Furthermore, this experiment was performed in 
the early stages of the Nios II C2H Compiler development 
before implementation of analysis and reporting 
functionality, which significantly reduces design time. 
Many additional optimizations have since been 

implemented that cause the compiler to be much more 
efficient with resource utilization. 
 

10. CONCLUSIONS 
 
In this paper, we have discussed the benefits of using 
FPGAs for hardware acceleration to provide the 
computation power, as well as the portability and 
reconfigurability necessary in SDRs. Additionally, we 
reviewed the Nios II C2H Compiler, which automates the 
creation of hardware coprocessing units and allows the 
designer to easily manage hardware/software partitioning in 
a pure ANSI C environment. By creating accelerators that 
are efficiently pipelined to exploit parallelism in the 
algorithm, as well as multiple master ports for fetching and 
storing shared data, the Nios II C2H Compiler addresses 
both computational and memory bottlenecks while 
providing seamless switching between hardware and 
software implementations. Results for algorithms pertinent 
to SDR exhibit significant speedups with efficient resource 
utilization. 
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Table 1. User Test Results 

Algorithm 
Speedup  

(vs. Nios II 
CPU only) 

Additional 
System 

Resource 

FFT 17.1X 1.13X 

FIR 31.8X 1.48X 

QAM 25.3X .74X 

Viterbi 17.2X .54X 

Autocorrelation 41.0X 1.42X 

Bit Allocation 42.3X 1.52X 

Convolutional Encoder 13.3X 1.33X 

Image Rotation 24.0X 2.08X 

High Pass Filter 42.9X 1.81X 

Matrix Rotation 73.6X 1.06X 

RBG to CMYK 41.5X .84X 

RBG to YIQ 39.9X 1.58X 
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