
USING C-TO-HARDWARE ACCELERATION IN FPGAS FOR WAVEFORM
BASEBAND PROCESSING

David Lau (Altera Corporation, San Jose, CA, dlau@altera.com)

Jarrod Blackburn, (Altera Corporation, San Jose, CA, jblackbu@altera.com)
Charlie Jenkins (Altera Corporation, San Jose, CA, chjenkin@altera.com)

ABSTRACT

Software-defined radio (SDR) architectures typically
include general-purpose CPUs (GPPs), digital signal
processing (DSP) ASSPs and FPGAs that process different
waveforms, functions, and algorithms. GPPs typically
handle network protocol processing and management
functions. Historically, DSPs handled transceiver baseband
processing and encoding, while FPGAs provided high-
performance IF up/down conversion and preconditioning
functions. Now FPGAs, when used with embedded soft-
core processors, have absorbed the DSP baseband
processing and some GPP functionality as well, providing a
smaller, lower power solution. However, meeting the
baseband performance requirements requires aggressive use
of hardware acceleration. In this paper, we discuss an
efficient methodology for hardware acceleration of SDR
waveforms, the creation and use of hardware acceleration
units, and a tool that automates the flow. The Altera®
Nios® II C-to-Hardware (C2H) Acceleration Compiler is a
coprocessor generation tool that converts performance-
critical ANSI C functions into hardware accelerator
modules with direct memory access. Results are presented
showing performance gains of 13–73X over software only,
offering a promising solution for rapid development of
high-performance SDR systems.

1. INTRODUCTION

In the past, FPGAs were used as a convenient interconnect
layer between chips in a system. In SDRs, FPGAs are now
being used as programmable up/down intermediate
frequency and signal processing hardware that boost
performance while providing lower cost and lower power.
Typical implementations of SDR modems include a GPP,
DSP, and FPGA. Today’s latest generation FPGAs can also
be used to offload the GPP or DSP with application-specific
hardware acceleration units. Soft-core microprocessors can
easily extend their functionality with custom logic and
hardware acceleration coprocessors added to the system.
Furthermore, by using general-purpose routing resources

available in the FPGA, these hardware acceleration units
can run in parallel to further enhance the total computational
throughput of the system.

Three different methods for hardware acceleration of
SDR waveforms have been previously discussed at this
conference: custom instructions, arithmetic coprocessing
units, and application-specific instruction-set processors [3].
In this paper, we will focus on arithmetic coprocessing units
and the automated design flow made possible by Altera’s
Nios II C2H Compiler. This compiler provides a pure-
software design flow, automatically moving user-specified
performance-critical functions from software running on the
FPGA processor into pipelined, optimized hardware
accelerators. These accelerators have direct access to the
processor’s memory subsystem and can sustain extremely
high bandwidth through parallel transactions to an arbitrary
number of buffers.

Sections 2 and 3 provide background information on
SDR and system architecture. An efficient methodology for
developing hardware coprocessors using a slave-side
arbitration interconnect is discussed in Sections 4 and 5. In
Sections 6 and 7, the automation of this flow with the Nios
II C2H Compiler is discussed, followed by optimization
strategies in Section 8, user test results in Section 9 and the
summary in Section 10.

2. SOFTWARE-DEFINED RADIO

The concept behind SDR is that more waveform processing
can be implemented in reprogrammable digital hardware so
a single platform can be used for multiple waveforms. With
the proliferation of wireless standards, future wireless
devices will need to support multiple air interfaces and
modulation formats. SDR technology enables such
functionality in wireless devices by using a reconfigurable
hardware platform across multiple standards.

SDR is the underlying technology behind the Joint
Tactical Radio System (JTRS) initiative to develop
software-programmable radios that enable seamless, real-
time communication across the U.S. military services, and
with coalition forces and allies. The functionality and
expandability of the JTRS is built upon an open architecture

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

framework called the software communications
architecture. The JTRS terminals must support dynamic
loading of one or more of 25 specified air interfaces or
waveforms, typically more complex than those used in the
civilian sector. To achieve all these requirements in a
reasonable form factor requires extensive, yet different
processing powers.

3. SDR SYSTEM ARCHITECTURE

Most SDR systems utilize GPP, DSP, and FPGA in their
architectures. These general-purpose processing resources
can be used for different parts of the overall SDR system,
and Figure 1 shows the typical functions found in an SDR
divided across each of these devices. However, there is a
significant amount of overlap between each of these
elements. For example, an algorithm running on the DSP
could be implemented in the GPP, albeit more slowly, or
rewritten in HDL and run much faster in an FPGA as a
coprocessor or hardware acceleration unit.

4. HARDWARE COPROCESSORS

Typical system design flow begins with a pure-software
specification running on a CPU, then uses profiling to
determine algorithmic bottlenecks. These bottlenecks can be
reduced in several ways, including the creation of custom
hardware accelerators that offload the CPU, exploiting

parallelism in the algorithm to achieve significant
performance increases. This method works best when
dealing with complex computation-intensive algorithms that
operate on large blocks of data. Unlike custom instructions,
hardware accelerators are autonomous—once activated,
they can run without intervention from the CPU, creating
thread-level parallelism as well as instruction-level
parallelism.

Accelerator modules contain data master ports that
connect directly to the CPU’s memory subsystem. With an
FPGA-based interconnect (such as Altera’s Avalon®
memory mapped and streaming interfaces), it is possible to
enable an arbitrary number of simultaneous transfers by
arbitrating between multiple masters on the slave side.
Accelerator modules can then be created with multiple
master ports that simultaneously access different memory
buffers, allowing much higher memory bandwidth than that
achievable by a CPU with a single data master.

5. SYSTEM INTERCONNECT

The FPGA-based Avalon system interconnect fabric is
automatically generated by Altera’s SOPC Builder system
integration tool. Similar to a fully switched system bus in
functionality, it uses dynamically generated switches and
wires to interconnect modules. These can be soft intellectual
property (IP) blocks, custom user logic, or interfaces to off-
chip peripherals. This approach overcomes the bottleneck

GPP DSP

FPGA
•Low-Speed Packet Processing
•Complex MAC Layer Protocols
•Network Level Protocols
•Waveform Management
•Tx Packet Construction
•Rx Packet Decode
•Waveform Load
•Waveform Execution Control

•Medium-Speed Timing
•Critical Low-Speed Signal
Filter
•Sample Rate Decimation
•Sample Rate Interpolation
•Low-Speed Mod and Demod
•Low-Speed AGC
•Medium-Speed FEC
•Medium-Speed Packet Proc
•Simple MAC Layer Protocols

•Modem External Interface
•Downconversion to Baseband
•Upconversion to IF
•Signal Filtering
•Sample Rate Decimation/
Interpolation
•High-Speed Mod and Demod
•High-Speed AGC
•High-Speed FEC
•High-Speed Packet Processing

Figure 1. Example Architecture Splitting SDR Functions Across GPP, DSP, and FPGA

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

encountered in the traditional shared-bus model, where only
one master can issue a request at any given time. As shown
in Figure 2, the switch fabric’s automatically generated
slave-side arbiters allow multiple masters to sustain
transfers simultaneously to different slaves.

This is important in multi-CPU systems and systems
with coprocessing units, as it mitigates the memory
bottleneck created by bus contention. When data is
separated into multiple partitions and/or dual-port buffers, it
is possible to create multimaster systems in which little or
no arbitration delays are incurred.

The Avalon switch fabric supports a rich feature set,
including dynamic bus sizing, burst management, address
decoding, datapath multiplexing, wait-state insertion,
pipelining, clock domain crossing, and off-chip interfaces.
(For more information on SOPC Builder, see [1], [2], and
[5].)

6. AUTOMATED HARDWARE ACCELERATION

The Nios II C2H Compiler automates a significant portion
of the design flow outlined above, by generating
coprocessors that offload and enhance performance of a
microprocessor running software written in pure ANSI C. It
is tightly integrated into the software build flow and SOPC
Builder system generation tool, allowing true pushbutton
acceleration of performance-critical functions. The tool
automatically integrates the accelerator into the hardware
and software projects, providing a pure-software
development environment for managing hardware/software
partitioning.

Recursion, floating-point types, and the goto control
statement are the only major exclusions from standard C.
Pointers, arrays, structures, and enums, as well as all other
loop types and control structures (including break,
continue, and return statements) are fully supported.
The Nios II C2H Compiler uses SOPC Builder to connect

the accelerator to the processor and any other peripherals in
the system. This gives the accelerator direct access to a
memory map identical to that of the CPU, allowing
seamless support for pointers and arrays when migrating
from software to hardware. The GUI for the compiler is the
CPU’s software integrated development environment (IDE).
By supporting pointers and unextended ANSI/ISO C, the
compiler allows developers to quickly prototype a function
in software running on the processor, then switch to a
hardware-accelerated implementation with the push of a
button.

Figure 3 shows how the Nios II C2H Compiler
integrates into the software build process in the IDE. The
left half of the flowchart shows the standard C compilation
of main.c and accelerator.c, as it occurs without
acceleration. The right half of the flowchart shows the
hardware compilation process invoked when a function in
accelerator.c is accelerated. It also shows the generation and
selective linking of the accelerator driver (discussed in
section 4) into the executable file. When prototyping and
optimizing accelerators, running this complete process is
not required. Options in the IDE provide for switching
between the software-only build process, software plus Nios
II C2H Compiler analysis/reporting, or software plus
complete hardware. This allows for fast debug and
optimization iterations during the early stages of
development, as well as automated integration of the entire
hardware flow during later stages.

7. DIRECT MEMORY ACCESS

The Nios II C2H Compiler also provides a unique solution
with full support for pointers and array accesses. This is
possible due to the integration with SOPC Builder, which
gives the accelerated function access to the same memory
map that it had when running in software. This is also

System CPU
(Master 1)

I/O
1

Slaves

Avalon Switch Fabric

Data
Memory

ArbiterArbiter

Data
Memory

AribiterAribiter

DSP
(Master 2)

I/O
1

Masters

Slaves

I/O CPU
(Master 3)

I/O
2

Program
Memory

Data
Memory

ArbiterArbiter

Custom
Accelerator
Peripheral

Program
Memory

System CPU
(Master 1)

System CPU
(Master 1)

I/O
1

Slaves

Avalon Switch Fabric

Data
Memory

ArbiterArbiter

Data
Memory

AribiterAribiter

Data
Memory

AribiterAribiter

DSP
(Master 2)

DSP
(Master 2)

I/O
1

Masters

Slaves

I/O CPU
(Master 3)
I/O CPU

(Master 3)

I/O
2

I/O
2

Program
Memory

Data
Memory

ArbiterArbiter

Custom
Accelerator
Peripheral

Program
Memory

Figure 2. Avalon Switch Fabric Connecting Masters and Slaves in a System

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

necessary for easy transfer of data between the accelerator
and the CPU, as well as the other peripherals in the system.

The solution presented here imposes no restrictions on
the bandwidth into and out of the accelerator, other than the
bandwidth limitations of the connected memories. When the
Nios II C2H Compiler creates hardware for a function, it
generates Avalon master ports for pointer and array
operations, as well as operations that access static and
global variables allocated on the stack or heap. These
master ports allow access to memory and other peripherals
in the system, and are capable of operating independently,
in parallel. While one or more masters fetch data from input
buffers, others write data to output buffers, all on the same
clock cycle. Figure 4 shows an accelerator with multiple
read and write masters. Since an accelerator can have an
arbitrary number of master ports, the memory bandwidth is
limited only by the number of slave ports to which they can
connect.

Optimal accelerator performance is achieved when
large data structures used in critical loops are stored in
system modules with separate slave ports. This way, the
Nios II C2H Compiler is able to use dedicated master ports
that connect to each of the slaves and transfer data
concurrently. This is easily achieved by using register banks
and on-chip memory blocks embedded in the FPGA fabric,
which can either be instantiated manually into the system or
inferred by declaring an array in the accelerated function.

8. OPTIMIZING CODE FOR ACCELERATION

Test users found that they could increase their speed
significantly (3–7X) by simply performing optimizations in
the C code, such as applying the restrict qualifier to pointers

(introduced in ISO C 99, specifying that a particular pointer
will not alias another), reducing loop-carried dependencies,
and consolidating control paths where possible. These three
techniques considerably increased the amount of parallelism
that the Nios II C2H Compiler could extract from the target
function.

However, despite these significant optimizations,
performance was limited not by computational speed, but by
availability of data. The problem was no longer compute
bound, but memory bound. Because the accelerator was
attempting to operate on multiple data structures that were
all stored in the CPU’s data memory, the bandwidth of the
single memory slave became the performance bottleneck.
Users were able to overcome this limitation simply by
adding on-chip memory buffers to their systems and using
them to store critical data structures. Similarly, by using
dedicated memory modules for input and output buffers, the
accelerators could use many master ports simultaneously to
quickly stream data in and out of the buffers.

Combining code-optimization techniques by reducing
dependencies and moving critical arrays into dedicated
memory buffers proved extremely successful in increasing
accelerator performance. These two techniques addressed
the two types of potential bottlenecks: computation and I/O.
The Nios II C2H Compiler methodology allows for
elimination of both techniques, thus providing
computational performance, efficient scheduling and
pipelining, and detailed critical-path reporting, as well as
increased memory bandwidth, and generation of dedicated
master ports and buffers.

However, not all algorithms and C functions are
suitable for hardware acceleration. Parallel/speculative
execution and loop pipelining are two key ways by which
performance is increased. Therefore, if the algorithm (or its
implementation) limits the compiler in performing these two
tasks, then only minimal speedup factors will result. For
example, code that contains sequentially dependent
operations in disjoint control paths (such as complex
peripheral servicing routines) will not significantly benefit
from hardware acceleration. These tasks are better suited for
running on a processor. In contrast, functions with simple

C PreprocessorC Preprocessor

System
Description

System
Description

accelerator.caccelerator.c

accelerator_
driver.c

accelerator_
driver.c

main.cmain.c

ParserParser

C2H CompilerC2H Compiler

accelerator.vaccelerator.v

C CompilerC Compiler

main.omain.o

No Yes
User setting:

Use accelerator
instead of original

software?

System
Module HDL

System
Module HDL

System GeneratorSystem Generator

Synthesis, Place/RouteSynthesis, Place/Route

Device
Programming

File

Device
Programming

File

LinkerLinker

Binary
Executable

HardwareSoftware

accelerator.oaccelerator.o accelerator_
driver.o

accelerator_
driver.o

Figure 3. C2H Integration With Software Build

Accelerator
Logic

Accelerator
Logic

Processor Access
(Read / Write)

ControlControl

Read
Master
Read

MasterMemory Write
Master
Write

Master Memory

Read
Master
Read

MasterMemory

.

.

.

Write
Master
Write

Master Memory

.

.

.

Accelerator
Logic

Accelerator
Logic

Processor Access
(Read / Write)

ControlControl

Processor Access
(Read / Write)

ControlControlControlControlControlControl

Read
Master
Read

MasterMemory Read
Master
Read

Master
Read

Master
Read

MasterMemory Write
Master
Write

Master MemoryWrite
Master
Write

Master
Write

Master
Write

Master Memory

Read
Master
Read

MasterMemory

.

.

.

Read
Master
Read

MasterMemory Read
Master
Read

Master
Read

Master
Read

MasterMemory

.

.

.

Write
Master
Write

Master Memory

.

.

.

Write
Master
Write

Master MemoryWrite
Master
Write

Master
Write

Master
Write

Master Memory

.

.

.

Figure 4. Accelerator Master Ports and Control Slave

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

control paths and critical computations consolidated into a
small number of inner loops that execute uninterrupted for
many iterations are ideal candidates for conversion to
hardware coprocessors. Therefore, it is very important for
developers to appropriately manage software/ hardware
tradeoffs when introducing accelerators into a design, as
sequential tasks stay in the CPU and iterative computation-
intensive tasks are moved to hardware.

9. RESULTS

Table 1 presents performance and area results for twelve
common signal-processing algorithms. Speedup is
calculated as the total algorithm compute time in software
running on the Nios II processor divided by total compute
time running in the accelerator. The additional system
resource column shows the incremental cost (in equivalent
cost of logic elements for Nios II units) of adding the
accelerator and on-chip hardware blocks such as multipliers,
and memory buffers.

This investigation shows that after one to three man-
days of work, considerable performance gains of 13X-73X
can be achieved with C-to-hardware acceleration, for
approximately one to two times the increase in system
resources. Furthermore, this experiment was performed in
the early stages of the Nios II C2H Compiler development
before implementation of analysis and reporting
functionality, which significantly reduces design time.
Many additional optimizations have since been

implemented that cause the compiler to be much more
efficient with resource utilization.

10. CONCLUSIONS

In this paper, we have discussed the benefits of using
FPGAs for hardware acceleration to provide the
computation power, as well as the portability and
reconfigurability necessary in SDRs. Additionally, we
reviewed the Nios II C2H Compiler, which automates the
creation of hardware coprocessing units and allows the
designer to easily manage hardware/software partitioning in
a pure ANSI C environment. By creating accelerators that
are efficiently pipelined to exploit parallelism in the
algorithm, as well as multiple master ports for fetching and
storing shared data, the Nios II C2H Compiler addresses
both computational and memory bottlenecks while
providing seamless switching between hardware and
software implementations. Results for algorithms pertinent
to SDR exhibit significant speedups with efficient resource
utilization.

11. REFERENCES

[1] Altera Corp, Quartus® II Version 6.0 Handbook, Volume
4: SOPC Builder, Altera Corp., San Jose, CA, 2006.

[2] Altera Corp, Avalon Interface Specification, Altera
Corp., San Jose, CA, 2005.

[3] D. Lau, J. Blackburn, and J. Seely, “The Use of
Hardware Acceleration in SDR Waveforms,” in Proc.
2006 Software Defined Radio Technical Conference
(SDR ’05), (Orlando, FL, November 13-17, 2005).

[4] D. Lau, O. Pritchard, and P. Molson, “Automated
Generation of Hardware Accelerators with Direct
Memory Access from ANSI/ISO Standard C
Functions,” in Proc. 2006 IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM
’06), (Napa, CA, April 24-26, 2006).

 [5] D. Lau and O. Pritchard, “Rapid System-On-A-
Programmable-Chip Development and Hardware
Acceleration of ANSI C Functions,” in Proc. 16th
International Conference on Field Programmable
Logic and Applications (FPL 2006), (Madrid, Spain,
August 28-30, 2006).

Table 1. User Test Results

Algorithm
Speedup

(vs. Nios II
CPU only)

Additional
System

Resource

FFT 17.1X 1.13X

FIR 31.8X 1.48X

QAM 25.3X .74X

Viterbi 17.2X .54X

Autocorrelation 41.0X 1.42X

Bit Allocation 42.3X 1.52X

Convolutional Encoder 13.3X 1.33X

Image Rotation 24.0X 2.08X

High Pass Filter 42.9X 1.81X

Matrix Rotation 73.6X 1.06X

RBG to CMYK 41.5X .84X

RBG to YIQ 39.9X 1.58X

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

