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ABSTRACT 
 
Military applications are becoming increasingly complex. 
Major programs such as Future Combat Systems (FCS), 
Joint Strike Fighter F-35 (JSF), and the Joint Tactical Radio 
System (JTRS) are pushing technological capabilities to 
their limits. Due to the technology requirements and 
environments to which they are exposed, these military 
systems rely on programmable logic (FPGAs) to provide 
extreme flexibility plus protection from tampering. As 
FPGAs become an integral part of leading-edge 
architectural design replacing ASICs and ASSPs, the 
security of the FPGA design and configuration bitstream is 
of utmost importance. This paper describes two 
techniques—configuration bitstream encryption and 
handshaking tokens—for securing designers’ intellectual 
property (IP) within SRAM-based FPGAs. 
 
 

1. INTRODUCTION 
 
Anti-tampering capabilities are imperative for today’s 
varied military scenarios and applications. The exploitation 
of system vulnerabilities by enemies, former allies, and 
counterintelligence personnel can have serious military 
impacts, including faulty/compromised operations, reverse-
engineered technology for superior devices, and premature 
system obsolescence. Applications areas include: 
• Missiles and munitions: To meet the long shelf life 

required by these applications, anti-tampering 
capabilities require non-volatile encryption key 
storage that eliminates the need for batteries.  

• Electronic warfare: Non-volatile encryption key 
storage is ideal in applications where limited space, low 
maintenance, and ultimate reliability are required, and 
that necessitate the elimination of extra components 
like batteries.  

• Secure communication: With the need to secure 
communication on the battlefield, the encryption of 
FPGA configuration bitstreams provides an additional 
security level above and beyond current methods used. 

• Remote sensors and surveillance: The ability of FPGAs 
to protect critical IP is important for applications that 
are exposed to harsh environments throughout the 
battlefield. 

 
2. ISSUE OF DESIGN SECURITY WITH FPGAS 

 
In order for an FPGA to accomplish a certain function, 
source code must be generated first. For SRAM-based 
FPGAs, the compiled version of this source code is called a 
programming file or, more simply, a configuration 
bitstream. Similar to standard microprocessors, the 
configuration bitstream, stored in external FLASH or other 
memory, must be programmed into the FPGA before it can 
start operating. Unfortunately hackers or rogue entities 
interested in capturing the source code for reverse-
engineering, tampering, or disabling purposes can try to 
read the content of the configuration memory, intercept the 
bitstream while it is being transferred to the FPGA, or read 
back the bitstream from the FPGA. 

The solution to this problem is the use of encryption. 
To protect the intellectual property (IP) implemented in the 
original code, designers need to encrypt the bitstream before 
access is granted to external parties, such as external 
contractors or contract manufacturers. Once the bitstream is 
encrypted, the target FPGA must implement internal 
circuitry to reliably and safely decrypt the encoded data, 
while preventing read-back or tampering. 
 

3. METHODS FOR PROTECTING FPGA IP 
 
Two techniques, configuration bitstream encryption and 
handshaking tokens, can be used to secure IP within 
SRAM-based FPGAs. Bitstream encryption is better 
supported using the Advanced Encryption Standard (AES) 
(FIPS-197). AES is compatible with key lengths of 128, 
192, and 256 bits. AES keys provide more stringent 
protection than other methods such as the 56-bit key size 
Data Encryption Standard (DES) and triple DES (112-bit 
effective key size). To understand the increased security 
level of AES, studies have shown that if a machine could 
discover a DES key every second, it would take 
approximately 149 trillion years to discover a 128-bit AES 
key. 

In order to enable encryption, keys are required to 
encode the bitstream generated by the design software tool 
(such as Altera® Quartus® II development software).  
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Figure 1. Design Security With FPGA-Based Key 
 

Figure 1 shows a diagram depicting the use of 
encryption keys. The chosen key must also be known by the 
AES decryptor inside in the FPGA. This key may be 
programmed permanently on the FPGA (non-volatile) or 
can be stored in a special memory location (volatile). 

The non-volatile key is stored in the FPGA using one-
time programmable polyfuses and retains its information 
when the power is off, eliminating the need for unreliable 
battery backup in harsh military environments. The key is 
programmed into the FPGA during regular manufacturing 
flow, either before or after assembly onto the printed circuit 
board. Keys stored in volatile memory require an external 
backup battery when there is no power to the device. Keys 
can also be easily reprogrammed on the manufacturing line 
or in the field. 

For systems designed around FPGAs that do not offer 
on-board AES key support, the handshaking tokens method 
offers a valid alternative. With this method, the FPGA 
communicates with an external secure device, such as a 
CPLD, which includes a non-volatile encrypted token. The 
FPGA design must read this token and compare it with a 
matching token, otherwise the design will shut down. 

With these methods, the decryption key is securely 
stored inside the FPGA. Even if the configuration bitstream 
is captured, it is virtually impossible to decrypt without the 
appropriate key and therefore cannot be used to configure 
another FPGA. Further read-back of a decrypted 
configuration file is not allowed by some FPGA vendors. 

Reverse engineering of any FPGA design through the 
configuration bitstream is very difficult and time-
consuming, even without encryption. For high-density 
devices, the configuration file may contain millions of bits. 
Some FPGA vendors’ configuration file formats are 
proprietary and confidential, providing another layer of 
security. With the addition of configuration bitstream 
encryption, it might be easier and quicker to build a 
competitive design from scratch rather than trying to reverse 
engineer such a design.  

Tampering cannot be prevented if a volatile key is used 
because the key is erasable; once the key is erased, the 
device can be configured with any configuration file. For 
the non-volatile key solution, the device can be set to only 
accept configuration files encrypted with the stored key. A 
configuration failure signals possible tampering with the 
configuration file, whether in the external memory, during 
transmission between the external memory and the FPGA, 
or during remotely communicated system upgrades. This is 
another advantage of a non-volatile key.  

 
4. TOKEN-BASED ENCRYPTION 

 
Configuration bitstream encryption is only available in 
high-density, high-performance, SRAM-based FPGAs. The 
following solution allows any FPGA design to remain 
secure even if the configuration bitstream is captured. This 
is accomplished by disabling the functionality of a user 
design within the FPGA until handshaking tokens are 
passed to the FPGA from a secure external device. The 
secure external device generates continuous handshaking 
tokens to the FPGA to ensure continuous operation. This 
concept is similar to the software license scheme shown in 
Figure 2. 

 
Configuring the FPGA is similar to installing software 

onto a computer; the configuration bitstream is not 
protected. The external secure device is similar to the 
license file. The software will only operate when a valid 
license file is present. Likewise, the user design within the 
FPGA will only operate when the handshaking tokens sent 
from the external secure device are valid. Figure 3 shows a 
simplified hardware implementation for this solution, where 
a CPLD is used as the secure external device because it is 
non-volatile and retains its configuration data during power 
down. 
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Figure 2. Comparison of Software License Scheme and FPGA Security Scheme 
 

 

 
 
Figure 3. Simplified Hardware Implementation of the FPGA Design Security Solution 
 

Once the FPGA is configured, its user design 
functionality is disabled. Then, after properly handshaking 
tokens with the external CPLD, the enable signal is asserted 
by the security block within the FPGA. The random number 
generator (RNG) generates and sends the initial counter 
value to the CPLD, which encrypts the counter value and 
sends the resulting handshaking token to the FPGA. If the 

handshaking token matches the data generated inside the 
FPGA, the enable signal is asserted, and the user design 
starts functioning. This process continues during the entire 
operation of the FPGA. A mismatch will cause the enable 
signal to go low and disable the functionality of the user 
design. Figure 4 shows an example of how the enable signal 
is used with a simple AND gate. 
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Figure 4. Design With Security Scheme 
 

The FPGA user design works only when the 
handshaking tokens from the external secure device and the 
data generated inside the FPGA are identical. Even if the 
FPGA configuration bitstream is stolen, it is useless, similar 
to software without a license. Therefore, the FPGA user 
design is secure from copying. This solution does not 
provide additional protection against reverse engineering 
(though difficult) and tampering. 

The security of the solution relies on the external 
device to be secure and the handshaking tokens to be 
unpredictable. A secure external device needs to be non-
volatile and to retain its configuration during power-down 
(e.g., CPLDs or security processors). The RNG in the 
solution is critical. It ensures that every time the device 
starts up, it uses a different initial value. This prevents 
anyone from storing the handshaking tokens in a storage 
device. To prevent someone from detecting the pattern in 
the handshaking tokens, a proven encryption algorithm such 
as AES should be used.  

To ensure the security scheme works properly, the 
system clock feeding the FPGA user design should be the 
same as the system clock feeding the security block. This 
prevents someone from disabling the security block when 
the enable signal is asserted. To further increase security, 
the comparator block can be duplicated several times to 
produce more enable signals to feed different portions of the 
user designs. 
 

5. DESIGN SECURITY AND OUTSOURCING OF 
MANUFACTURING 

 
For cost reasons, manufacturers of military equipment are 
increasingly outsourcing the manufacturing of certain 

modules to foreign contractors. There is a growing concern 
that sensitive IP can be leaked to non-authorized entities. 
Thus, in some cases, FPGA-based IP has to be kept secret 
from the manufacturing subcontractor.  

Therefore, encryption keys should only be known by 
the original equipment manufacturer (OEM). From a 
development perspective, this is easily controlled by 
restricting access to the key inside the OEM’s organization. 
Bitstreams can be encrypted and then easily and safely 
shared with outside contractors. 

On the hardware side of things, design security 
schemes based on non-volatile keys need to rely on a trusted 
entity being responsible for programming the key into the 
FPGA. Once programmed, the FPGA can be provided to the 
manufacturing company safely. Another approach has the 
subcontractor build the board and then send it to a trusted 
party for on-board programming of the non-volatile 
encryption key. This means that final system testing has to 
be done by this trusted partner, or requires the system to be 
shipped back to the original manufacturer. The use of a 
volatile key also requires the system be shipped to a trusted 
partner. This partner will have access to the key and the 
equipment needed to program it. Additionally, volatile keys 
can be programmed in the field. For such systems, a non-
encrypted bitstream that does not include any sensitive IP 
can be generated to test the hardware system. The final key 
can then be programmed in the field by the trusted owner of 
the final equipment. 
 

6. CONCLUSION 
 
Building on the success of the Stratix® II design security 
implementation, Stratix III devices are the industry’s first 
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FPGAs to support configuration bitstream encryption using 
AES and a 256-bit key with the option of volatile or non-
volatile on-chip storage. Other FPGA vendors only support 
encryption using a battery to power up or back up a volatile 
key. Only Stratix III FPGAs provide the choice between the 
flexibility of a battery-backed-up volatile key or the 
ultimate security of a non-volatile scrambled key. 
Moreover, Stratix III devices do not allow read-back of 
configuration data, thus providing an additional level 
security against reverse engineering. The following points 
summarize some of the key features of Altera’s latest anti-
tampering solutions: 
• Both non-volatile encryption key storage (no battery 

backup required) and volatile (for field 
programmability) are supported. 

• The encryption key is stored securely inside the FPGA, 
using internal circuit techniques virtually impossible to 
jeopardize. 

• Once inside Altera FPGAs, the configuration file 
(encrypted or unencrypted) cannot be read back, adding 
another layer of security. 

• Supports 128-bit and 256-bit AES encryption keys.  
• FIPS-197 certified. 
In an era of ever-increasing security concerns, enhanced 
anti-tampering capabilities of Altera FPGAs provide 
military application designers the assurance that their IP 
within these systems is secure against copying, reverse 
engineering, and tampering. 
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