

MILITARY ANTI-TAMPERING SOLUTIONS USING PROGRAMMABLE LOGIC

Charlie Jenkins (Altera, San Jose, California, chjenkin@altera.com)
Christian Plante (Altera, San Jose, California, cplante@altera.com)

ABSTRACT

Military applications are becoming increasingly complex.
Major programs such as Future Combat Systems (FCS),
Joint Strike Fighter F-35 (JSF), and the Joint Tactical Radio
System (JTRS) are pushing technological capabilities to
their limits. Due to the technology requirements and
environments to which they are exposed, these military
systems rely on programmable logic (FPGAs) to provide
extreme flexibility plus protection from tampering. As
FPGAs become an integral part of leading-edge
architectural design replacing ASICs and ASSPs, the
security of the FPGA design and configuration bitstream is
of utmost importance. This paper describes two
techniques—configuration bitstream encryption and
handshaking tokens—for securing designers’ intellectual
property (IP) within SRAM-based FPGAs.

1. INTRODUCTION

Anti-tampering capabilities are imperative for today’s
varied military scenarios and applications. The exploitation
of system vulnerabilities by enemies, former allies, and
counterintelligence personnel can have serious military
impacts, including faulty/compromised operations, reverse-
engineered technology for superior devices, and premature
system obsolescence. Applications areas include:
• Missiles and munitions: To meet the long shelf life

required by these applications, anti-tampering
capabilities require non-volatile encryption key
storage that eliminates the need for batteries.

• Electronic warfare: Non-volatile encryption key
storage is ideal in applications where limited space, low
maintenance, and ultimate reliability are required, and
that necessitate the elimination of extra components
like batteries.

• Secure communication: With the need to secure
communication on the battlefield, the encryption of
FPGA configuration bitstreams provides an additional
security level above and beyond current methods used.

• Remote sensors and surveillance: The ability of FPGAs
to protect critical IP is important for applications that
are exposed to harsh environments throughout the
battlefield.

2. ISSUE OF DESIGN SECURITY WITH FPGAS

In order for an FPGA to accomplish a certain function,
source code must be generated first. For SRAM-based
FPGAs, the compiled version of this source code is called a
programming file or, more simply, a configuration
bitstream. Similar to standard microprocessors, the
configuration bitstream, stored in external FLASH or other
memory, must be programmed into the FPGA before it can
start operating. Unfortunately hackers or rogue entities
interested in capturing the source code for reverse-
engineering, tampering, or disabling purposes can try to
read the content of the configuration memory, intercept the
bitstream while it is being transferred to the FPGA, or read
back the bitstream from the FPGA.

The solution to this problem is the use of encryption.
To protect the intellectual property (IP) implemented in the
original code, designers need to encrypt the bitstream before
access is granted to external parties, such as external
contractors or contract manufacturers. Once the bitstream is
encrypted, the target FPGA must implement internal
circuitry to reliably and safely decrypt the encoded data,
while preventing read-back or tampering.

3. METHODS FOR PROTECTING FPGA IP

Two techniques, configuration bitstream encryption and
handshaking tokens, can be used to secure IP within
SRAM-based FPGAs. Bitstream encryption is better
supported using the Advanced Encryption Standard (AES)
(FIPS-197). AES is compatible with key lengths of 128,
192, and 256 bits. AES keys provide more stringent
protection than other methods such as the 56-bit key size
Data Encryption Standard (DES) and triple DES (112-bit
effective key size). To understand the increased security
level of AES, studies have shown that if a machine could
discover a DES key every second, it would take
approximately 149 trillion years to discover a 128-bit AES
key.

In order to enable encryption, keys are required to
encode the bitstream generated by the design software tool
(such as Altera® Quartus® II development software).

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Figure 1. Design Security With FPGA-Based Key

Figure 1 shows a diagram depicting the use of
encryption keys. The chosen key must also be known by the
AES decryptor inside in the FPGA. This key may be
programmed permanently on the FPGA (non-volatile) or
can be stored in a special memory location (volatile).

The non-volatile key is stored in the FPGA using one-
time programmable polyfuses and retains its information
when the power is off, eliminating the need for unreliable
battery backup in harsh military environments. The key is
programmed into the FPGA during regular manufacturing
flow, either before or after assembly onto the printed circuit
board. Keys stored in volatile memory require an external
backup battery when there is no power to the device. Keys
can also be easily reprogrammed on the manufacturing line
or in the field.

For systems designed around FPGAs that do not offer
on-board AES key support, the handshaking tokens method
offers a valid alternative. With this method, the FPGA
communicates with an external secure device, such as a
CPLD, which includes a non-volatile encrypted token. The
FPGA design must read this token and compare it with a
matching token, otherwise the design will shut down.

With these methods, the decryption key is securely
stored inside the FPGA. Even if the configuration bitstream
is captured, it is virtually impossible to decrypt without the
appropriate key and therefore cannot be used to configure
another FPGA. Further read-back of a decrypted
configuration file is not allowed by some FPGA vendors.

Reverse engineering of any FPGA design through the
configuration bitstream is very difficult and time-
consuming, even without encryption. For high-density
devices, the configuration file may contain millions of bits.
Some FPGA vendors’ configuration file formats are
proprietary and confidential, providing another layer of
security. With the addition of configuration bitstream
encryption, it might be easier and quicker to build a
competitive design from scratch rather than trying to reverse
engineer such a design.

Tampering cannot be prevented if a volatile key is used
because the key is erasable; once the key is erased, the
device can be configured with any configuration file. For
the non-volatile key solution, the device can be set to only
accept configuration files encrypted with the stored key. A
configuration failure signals possible tampering with the
configuration file, whether in the external memory, during
transmission between the external memory and the FPGA,
or during remotely communicated system upgrades. This is
another advantage of a non-volatile key.

4. TOKEN-BASED ENCRYPTION

Configuration bitstream encryption is only available in
high-density, high-performance, SRAM-based FPGAs. The
following solution allows any FPGA design to remain
secure even if the configuration bitstream is captured. This
is accomplished by disabling the functionality of a user
design within the FPGA until handshaking tokens are
passed to the FPGA from a secure external device. The
secure external device generates continuous handshaking
tokens to the FPGA to ensure continuous operation. This
concept is similar to the software license scheme shown in
Figure 2.

Configuring the FPGA is similar to installing software

onto a computer; the configuration bitstream is not
protected. The external secure device is similar to the
license file. The software will only operate when a valid
license file is present. Likewise, the user design within the
FPGA will only operate when the handshaking tokens sent
from the external secure device are valid. Figure 3 shows a
simplified hardware implementation for this solution, where
a CPLD is used as the secure external device because it is
non-volatile and retains its configuration data during power
down.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Figure 2. Comparison of Software License Scheme and FPGA Security Scheme

Figure 3. Simplified Hardware Implementation of the FPGA Design Security Solution

Once the FPGA is configured, its user design
functionality is disabled. Then, after properly handshaking
tokens with the external CPLD, the enable signal is asserted
by the security block within the FPGA. The random number
generator (RNG) generates and sends the initial counter
value to the CPLD, which encrypts the counter value and
sends the resulting handshaking token to the FPGA. If the

handshaking token matches the data generated inside the
FPGA, the enable signal is asserted, and the user design
starts functioning. This process continues during the entire
operation of the FPGA. A mismatch will cause the enable
signal to go low and disable the functionality of the user
design. Figure 4 shows an example of how the enable signal
is used with a simple AND gate.

RNG

Encryptor

Comparator

User
Design

FPGA CPLD

System Clock

Clock

Random Number

Handshaking Tokens Enable

Counter
Encryptor

Counter

1. Install Software 1. Configure FPGA

2. Software Operation 2. Device Operation

SRAM-Based
FPGA

...License...

SRAM-Based
FPGA ...Handshaking Tokens...

... Configuration Data ...

Configuration or

Flash Device

Secure Device

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Figure 4. Design With Security Scheme

The FPGA user design works only when the
handshaking tokens from the external secure device and the
data generated inside the FPGA are identical. Even if the
FPGA configuration bitstream is stolen, it is useless, similar
to software without a license. Therefore, the FPGA user
design is secure from copying. This solution does not
provide additional protection against reverse engineering
(though difficult) and tampering.

The security of the solution relies on the external
device to be secure and the handshaking tokens to be
unpredictable. A secure external device needs to be non-
volatile and to retain its configuration during power-down
(e.g., CPLDs or security processors). The RNG in the
solution is critical. It ensures that every time the device
starts up, it uses a different initial value. This prevents
anyone from storing the handshaking tokens in a storage
device. To prevent someone from detecting the pattern in
the handshaking tokens, a proven encryption algorithm such
as AES should be used.

To ensure the security scheme works properly, the
system clock feeding the FPGA user design should be the
same as the system clock feeding the security block. This
prevents someone from disabling the security block when
the enable signal is asserted. To further increase security,
the comparator block can be duplicated several times to
produce more enable signals to feed different portions of the
user designs.

5. DESIGN SECURITY AND OUTSOURCING OF
MANUFACTURING

For cost reasons, manufacturers of military equipment are
increasingly outsourcing the manufacturing of certain

modules to foreign contractors. There is a growing concern
that sensitive IP can be leaked to non-authorized entities.
Thus, in some cases, FPGA-based IP has to be kept secret
from the manufacturing subcontractor.

Therefore, encryption keys should only be known by
the original equipment manufacturer (OEM). From a
development perspective, this is easily controlled by
restricting access to the key inside the OEM’s organization.
Bitstreams can be encrypted and then easily and safely
shared with outside contractors.

On the hardware side of things, design security
schemes based on non-volatile keys need to rely on a trusted
entity being responsible for programming the key into the
FPGA. Once programmed, the FPGA can be provided to the
manufacturing company safely. Another approach has the
subcontractor build the board and then send it to a trusted
party for on-board programming of the non-volatile
encryption key. This means that final system testing has to
be done by this trusted partner, or requires the system to be
shipped back to the original manufacturer. The use of a
volatile key also requires the system be shipped to a trusted
partner. This partner will have access to the key and the
equipment needed to program it. Additionally, volatile keys
can be programmed in the field. For such systems, a non-
encrypted bitstream that does not include any sensitive IP
can be generated to test the hardware system. The final key
can then be programmed in the field by the trusted owner of
the final equipment.

6. CONCLUSION

Building on the success of the Stratix® II design security
implementation, Stratix III devices are the industry’s first

FPGA Design With Security Scheme

User

Clock

User

Clock Clock Enable Clock Enable

Enable

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

FPGAs to support configuration bitstream encryption using
AES and a 256-bit key with the option of volatile or non-
volatile on-chip storage. Other FPGA vendors only support
encryption using a battery to power up or back up a volatile
key. Only Stratix III FPGAs provide the choice between the
flexibility of a battery-backed-up volatile key or the
ultimate security of a non-volatile scrambled key.
Moreover, Stratix III devices do not allow read-back of
configuration data, thus providing an additional level
security against reverse engineering. The following points
summarize some of the key features of Altera’s latest anti-
tampering solutions:
• Both non-volatile encryption key storage (no battery

backup required) and volatile (for field
programmability) are supported.

• The encryption key is stored securely inside the FPGA,
using internal circuit techniques virtually impossible to
jeopardize.

• Once inside Altera FPGAs, the configuration file
(encrypted or unencrypted) cannot be read back, adding
another layer of security.

• Supports 128-bit and 256-bit AES encryption keys.
• FIPS-197 certified.
In an era of ever-increasing security concerns, enhanced
anti-tampering capabilities of Altera FPGAs provide
military application designers the assurance that their IP
within these systems is secure against copying, reverse
engineering, and tampering.

7. REFERENCES

[1] Altera, Design Security Using MAX II CPLDs, September

2004, http://www.altera.com/literature/wp/wp_m2dsgn.pdf.
[2] Altera, “Design Security in Stratix II Devices”,

http://www.altera.com/products/devices/stratix2/features/secu
rity/st2-security.html

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search Author
	Search by Session

