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ABSTRACT 
 
Direct Digital Synthesizers traditionally use a phase accu-
mulator and a phase-to-amplitude conversion mechanism to 
form complex samples of arbitrary frequency sinusoids. The 
CORDIC [1] algorithm is the most common phase-to-
amplitude conversion processes. To obtain low levels of 
phase noise with a small number of iterations the DDS often 
employs a two pass algorithm in which the complex sam-
ples formed from high order phase bits are corrected by post 
processing with terms derived from low order phase bits. 
This paper presents a modified version of the CORDIC 
based DDS that suppresses the amplitude noise generated by 
the second pass phase correction. We then show that the 
amplitude noise suppression is equivalent to an embedded 
AGC. We then recast the second order normal recursive 
filter as a recursive version of the CORDIC and insert the 
equivalent AGC to stabilize the loop against finite arithme-
tic and signal growth due to the CORDIC. We show this to 
be a very interesting variation of the DDS. 
 

1. INTRODUCTION 
 
Many DSP algorithms in communication systems require 
values of a complex sinusoid (sine and cosine) of specific 
angles to accomplish a particular processing task. Examples 
include the DFT (discrete Fourier transform), the FFT (fast 
Fourier transform), digital up converters, digital down con-
verters, and carrier recover loops [2]. Algorithms imple-
mented in a high level language by a main frame or personal 
computer may compute the required sines and cosines from 
series expansions via a subroutine call as they are needed. 
Algorithms embedded in an ASIC (Application Specific 
Integrated Circuit) or in a fixed point microprocessor or 
FPGA can not afford the luxury of a subroutine call to a 
series expansion. They require another method to obtain 
values of the complex exponential for the specified value of 
argument. 
      In some algorithms, such as in the FFT, the values of the 
sines and cosines are known before hand and may be pre-
computed and stored in a trig table. In other algorithms, the 
range of arguments may be too numerous to use a pre-
computed table. We can still use the pre-computed table if 
we are willing to allow an acceptable approximation to the 
specified angle of the sine and cosine. 
        
 
 

      
Let us examine the system effects of using approximations 
to the desired angles. The DDS (Direct Digital Synthesizer) 
is the standard mechanism to form a complex time series 
representing sample values of a sine and cosine. Figure 1 is 
the block diagram of a simple DDS formed by a 48-bit 
phase accumulator, a quantizer that extracts the 10 most 
significant bits from the accumulator, and a look up table 
addressed by the quantized 10-bit field to perform the phase 
to complex sinusoid conversion.  
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Figure 1. DDS: Phase Accumulator, Quantizer, and LUT 
 
      It is easy to verify [3] that the sequence of phase angle 
errors formed by the b-bit quantized address is a periodic 
sawtooth with amplitude proportional to the LSB, 2-b. It is 
similarly easy to verify that the spectrum of the sinusoid 
formed with a sawtooth phase error contains a set of spuri-
ous spectral lines with the largest line 2-b below the carrier 
spectral line. The largest spurious line is 6b dB below the 
carrier, where b is the quantized address width accessing the 
look up table. The signal formed with the 10-bit address 
shown in figure 1 should exhibit a spur 60 dB below the 
carrier. Figure 2, subplot(2,1,1) shows the -60 dB spur lev-
els of a sinusoid formed with a 10-bit address while sub-
plot(2,1,2) shows the reduction in spur level due to random 
dithering of the accumulator output prior to quantization. 
 

 
Figure 2. Spectra of 10-bit Angle DDS Output  

without and with Random Dither 
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      To obtain spur levels 100 dB below the carrier we would 
require a 17-bit address for a table containing 131072 en-
tries. The symmetry of sines and cosines allow some mem-
ory savings by storing the sinusoid samples in the first quad-
rant. Nevertheless, we are thus faced with the problem of 
doubling the table size for every 6-dB decrease in spurious 
level.  
      We can avoid the need for large tables by using the 
CORDIC algorithm to implement a set of elementary rota-
tions requiring only shift and add operations and a look up 
table containing only b entries. Here we exchange a process-
ing task for memory. The spur level of the time series 
formed by the CORDIC still has spurs 6b dB below the car-
rier but now b represents the number of rotation cycles im-
plemented in the CORDIC. Figure 3 shows a modified DDS 
structure in which the length 2b LUT is replaced by the 
CORDIC algorithm supported by a length b LUT. We delay 
detailed discussion of the CORDIC till a later section of this 
paper. 
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Figure 3. DDS: Phase Accumulator, Quantizer, 
and CORDIC 

 
2. SPURIOUS LEVEL SUPPRESSION 

 
The quantization of the 48 bit accumulator to obtain the 8-
bit address introduces a phase error term in the angle pre-
sented to the angle to amplitude conversion whether the 
conversion is performed by the look-up table or the 
CORDIC algorithm. The effect of the angle approximation 
is seen in (1): the angle delivered to the trig function is the 
angle we want plus an error angle proportional to the bits 
left behind in the accumulator. Substituting the approximate 
angle in the trig function and recognizing that the error an-
gle is small, on the order of 2π 2-10, we can use the small 
angle approximation to extract the phase error term from the 
trig function as shown in (2).  
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      The results seen here is that, even with the phase angle 
errors, the desired carrier is present in the output which con-
tains a second term seen to be the phase angle time series 

phase modulated to the carrier center frequency. It is this 
second term that is responsible for the spurs in the signal 
spectrum. Of course we can reduce the spur levels by reduc-
ing the amplitude of the phase error terms. This can be ac-
complished by using a wider bit field to represent the ap-
proximate phase angles.  
      An alternate approach is to recognize that the phase an-
gle error is not random but, for this example, is -2π/248 
times the bit field left behind by the quantization process. 
We can extract the error term by scaling the difference be-
tween the input and the output of the quantizer and use this 
term to obtain an improved estimate of the desired trig func-
tion values from the trig values formed with the quantized 
value of the angle. This relationship is seen in (3). 
 
                           ˆ( ) ( ) ( )Error n n nθ θ θ= −                          (3) 
 
      The feed forward correction applied to the output of the 
trig function is seen in (4). In a sense, this is the cosine and 
sine of the sum of two angles where we have replaced the 
cosine and sines of the small angle θError by 1 and by and 
θError respectively. A block diagram of the feed forward 
processing is shown in figure 4. 
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Figure 4. Block Diagram Feed Forward 
Angle Correction 

 
      The effect of the feed forward angle correction on the 
spectrum of the DDS output is quite dramatic. Figure 5, 
subplot (2,1,1) shows the spectrum formed with a 10 bit 
angle resolution corrected by the feed forward process of 
(4). Note the change in the y-axis scaling of figure 5 and 
figure 2, of -150 dB and -100 dB respectively. Note that the 
-60 dB spur level of figure 2 has been suppressed by the 
angle feed forward to -110 dB. We would have expected -
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126 dB because we have removed the linear term of the 
phase Taylor series of size θError leaving the quadratic term 
of the Taylor series of size 0.5⋅θ2

Error. There must be another 
error source for which we have not accounted. There is, it is 
the amplitude modulation imposed by the phase correction 
term (1 - j θError). 
 

 
Figure 5. Spectra of DDS Output with 10-bit Angle Preci-

sion, with Phase Error Correction, and with Phase and  
Amplitude Error Correction 

 
      The actual rotation angle θRotate imposed by the feed 
forward correction term (1 - j θError) is described exactly by 
(5). This is precisely the angle relationship embedded in the 
CORDIC algorithm for values of tan(θk) = 2-k. Each rotation 
in the CORDIC requires an amplitude correction equal to 
cos(θk) which is applied at the end of the rotation sequence 
by a single product of the known correction terms. What is 
missing after the final phase error correction is the corre-
sponding cosine amplitude correction. 
  
                              tan( )Rotate Errorθ θ=                                   (5) 
 
      To apply the amplitude correction we have to multiply 
the rotated I-Q pair by cos(θRotate). When we corrected the 
amplitude in the CORDIC rotations we knew the values of 
the cosine and pre-computed the product of the cosine val-
ues. Since we don’t know the precise correction angle be-
forehand we can’t pre-compute its amplitude correction and 
we have to form an approximation based on the relation-
ships shown in (6). Here we use the small argument ap-
proximation for the SQRT(1+e) and once again for the 
1/(1+e/2). The correction term shown in (6) is applied as a 
scale factor to the outputs of the phase corrected terms as 
shown in figure 6. Note this term matches the first two 
terms of the cosine Taylor Series. 
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Figure 6. Signal Flow of Gain and Phase Corrected DDS 
 
      Figure 5, subplot(2,1,2), shows the spectrum obtained 
from a 10-bit precision angle CORDIC followed by the feed 
forward phase correction and again followed by the ampli-
tude correction. The maximum spur level of the original 10-
bit precise angle was -60 dB. When phase corrected, the 
spur dropped to -110 dB, and when amplitude corrected the 
spur fell below the noise floor with an observed maximum 
level of -132 dB. The arithmetic for this simulation used 20 
bit multipliers with rounding for an expected numerical 
noise floor of -120 dB which when we include the process-
ing gain of the 1024 point Kaiser-Bessel windowed FFT 
processing gain of approximately 25 dB becomes -145 dB. 
Without the benefit of ensemble averaging, the noise floor 
appears to be in the right neighborhood.  
      Figure 7 presents an interesting verification that the re-
sidual spur level in the DDS output after phase correction is 
the amplitude modulation. The three subplots of figure 6 are 
spectra of the DDS envelopes of the DDS, the phase cor-
rected DDS, and the phase and amplitude corrected DDS. 
The envelopes have nominal amplitude of 1.0 which was 
treated as a bias and subtracted to enable detailed examina-
tion of the deviation from the nominal value. Note that the 
phase error correction increased the amplitude modulation 
spectral peak from -140 dB to -110 dB and that the ampli-
tude error correction returned the level to -140 dB. The re-
sidual spectral noise floor is the amplitude noise due to fi-
nite precision of the trig table.   
 

 
    Figure 7. Spectra of DDS, Phase Corrected DDS, and 

Phase and Amplitude Corrected DDS Envelopes 
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3. EMBEDDING CORDIC PHASE AND AMPLITUDE 
CORRECTIONS IN RECUSIVE OSCILLATOR 

 
The block diagram shown in figure 8 is a single pole feed-
back filter with a pole located on the unit circle at digital 
frequency θ radians/sample. A single iteration of this filter 
produces the same result as a 2x2 rotation matrix. The block 
diagram on the left of figure 9 illustrates the rotation as the 
formation of an output 2-tuple [x(n), y(n)] from the input 2-
tuple [x(n-1), y(n-1)] in an architecture known as the normal 
filter [4, 5]. This rotation is shown explicitly in (7). When 
the cosine terms are factored from (7), as in (8), we obtain 
an alternate form of rotation, a tangent rotation, the core of 
the CORDIC algorithm shown as a filter on the right side of 
figure 9.  
 
 
                  
 
 
 

Figure 8. Single Pole Filer with Pole on Unit Circle 
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Figure 9. Normal and Tan Rotate Form of Single Pole Filter 
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      The attraction of the normal filter structure is that the 
root locations reside on a Cartesian grid independently con-
trolled by the filter coefficients. The real part of the root is 
equal to the feedback coefficient, cos(θ), around the filter 
register and the imaginary part equal to the cross couple 
coefficient, sin(θ), connecting the registers. This root distri-
bution is illustrated in figure 10 which shows all possible 
root locations for coefficients implemented with 6-bit 
words. 
 

 
Figure 10. Root Distribution for 6-bit Quantized Coeffi-

cients of Normal Filter Architecture 
 
    We might be tempted to use one of the two forms of fig-
ure 9 as a complex sinusoid signal generator. Because the 
sine and cosine or the tangent and cosine in the two filters of 
figure 9 are transcendental numbers, and the arithmetic im-
plementing the filter must be finite precision, the pole 
shown in figure 8 can not be precisely on the unit circle. 
Thus the pole is inside or outside and the response of either 
filter to an initial condition is an exponentially decaying or 
growing sinusoid. Look carefully at the root locations in the 
vicinity of the unit circle in figure 10. To use the filter as a 
complex sinusoid signal generator we would have to incor-
porate an AGC loop to stabilize its amplitude. The left side 
of figure 11 shows a redrawn version of the tan-rotate filter 
that incorporates an AGC mechanism to stabilize the filter 
amplitude. We note here that the cos(θ) multiply following 
the tan-rotate and the AGC scale factor “g” are both doing 
the same thing,  scaling the ordered pair to obtain unity gain 
in the rotation. We want to keep the ordered pair on the unit 
circle! We elect to fold the cosine scale factor into the AGC 
scale factor, the standard approach in the CORDIC algo-
rithm, and obtain the tan-rotate filter shown in the right side 
of figure 11. 
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Figure 11. Tan-Rotate Filter with AGC, and Tan-Rotate 
Filter with Cosine Scale Embedded in AGC 
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      We now replace the tan(θ) term in the tan-rotate block 
diagram with the CORDIC rotate and include a state ma-
chine to cycle the binary shifts and adds through their suc-
cessive steps. This structure is shown in figure 12. The rota-
tion process works in the following manner. The negative of 
the desired rotation angle is inserted in the servo accumula-
tor. The CORDIC rotation engine performs (say) 10 itera-
tions of binary shift and add of the ordered pairs [x(n-
1),y(n-1)] while trying to zero the content of the servo ac-
cumulator by adding or subtracting the angles atan(2-k) 
stored in the atan table. The AGC “g” is set to 1 for the first 
9 iterations and at the 10th iteration is set to 1/1.646759, the 
product of the cosine scale factors is applied once at the end 
of the rotation cycle rather than once per rotation. There is 
assuredly a non-zero residual angle, θRem, remaining in the 
servo accumulator. We perform one addition rotation by 
replacing the term 2-k in the butterfly by the angle θRem. This 
is the angle correction described in (4). We now have to 
perform the amplitude correction which because of the un-
known arithmetic error terms in the recursion is not 1-
θ2

Rem/2 as it was 6. We must extract the correction term 
from the data sample. 
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Figure 12. Tan-Rotate Filter with CORDIC Rotate and  
AGC Level Control 

 
      We assume that the rotation process resulted in an un-
known amplitude increase ε relative to 1 which we indicate 
in (9). We apply the gain “g” to the outputs of the final rota-
tion to obtain the results shown in (10). Solving for the gain, 
we determine the relationship shown in (11). It appears that 
we have a problem, we really don’t know the error ε. But in 
fact we do! We can solve for it from (9) and substitute in 
(11) to obtain (12). 
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      The AGC gain term “g” of (12) applied to the output of 
the tan rotate and angle correction rotate operates in the 
direction to correct the amplitude error caused by the phase 
correction as well amplitude increase or decrease due to the 
pole position error relative to the unit circle. Figure 13, sub-
plot(2,1,1) shows the spectrum of a complex sinusoid 
formed with the recursive CORDIC and stabilized with the 
AGC mechanism described in (12). Subplot(2,1,2) shows 
the AGC gain less its nominal unity value. In this example 
the CORDIR ran 10 iterations, and the arithmetic used 20 
bit multipliers. 
 

 
Figure 13. Spectrum: Complex Sinusoid from Recursive 

CORDIC with AGC and Gain Correction Term Time Series 
 

      An interesting aspect of the recursive CORDIC is that 
for a fixed frequency sinusoid, the servo accumulator is 
initialized with the same angle value for each successive 
time sample. Thus the sequence of add-subtract iterations in 
the CORDIC is identical for each computed trig sample. 
The memory of the recursive CORDIC resides in the filter 
states rather than in the traditional phase accumulator which 
forms and presents a sequence of phase angles modulo 2π to 
the CORDIC’s servo accumulator. Thus the phase error 
sequence is a constant for the recursive CORDIC, it is al-
ways the same angle error residing in the servo accumulator. 
Consequently there is no line structure in the spectrum of 
recursive CORDIC and the phase error correction is not 
applied to suppress phase error artifacts but rather to com-
plete the phase rotation left incomplete due to the residual 
phase term in the servo accumulator. This is a very different 
DDS!  A practical note related to recursive filters. There are 
quantizers between the summing junction feeding the 
CORDIC registers and the registers. The truncation circu-
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lates in the registers and contributes a DC term, hence a 
spectral line to the complex sinusoid. This DC term can be 
(should be) suppressed by using a sigma delta feedback loop 
to feedback the truncated segments of the sums. A final 
comment about the data dependent AGC used in the recur-
sive CORIC. This process can also be used in the non recur-
sive CORDIC following the feed forward phase correction 
as a replacement option for the deterministic phase error 
related correction shown in (6). 
 

4. CONCLUSIONS 
 
We have reviewed the structure of traditional DDS quadra-
ture sinusoidal signal generators. This structure contains a 
phase accumulator, a quantizer, and an angle-to-amplitude 
conversion process which is either a look-up table or a 
CORDIC rotator. We also reviewed the relationship be-
tween the width of the bit field taken from the phase accu-
mulator by the quantizer and the spurious levels seen in the 
spectra of the carrier. We recognized that the spurs were 
related to the phase error caused by leaving bits behind in 
the phase accumulator. Knowing the error we reviewed the 
process that feeds the error forward to suppress the spurs. A 
contribution to the art made in this paper is our recognition 
that the  phase correction induced an amplitude modulation 
and that if the amplitude modulation is similarly suppressed 
a significant reduction in spurs can be had relative to the 
already significant reduction due to the phase correction. 
We developed and presented the process required to com-
pensate for the amplitude modulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Recognizing that the amplitude control was akin to an 
AGC we embedded the CORDIC, the phase correction, and 
the amplitude correction in a first order recursive filter with 
a pole located close to, but not precisely on the unit circle. 
The performance of a DDS with the recursive structure is 
quite remarkable and we suggest that you, the reader, might 
want to take a careful look at its structure.    
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