
ENERGY-PERFORMANCE EXPLORATION OF A CGA-BASED SDR
PROCESSOR

David Novo (IMEC, Leuven, Belgium; novo@imec.be); Bruno Bougard (IMEC, Leuven,

Belgium; bougardb@imec.be); Praveen Raghavan (IMEC, Leuven, Belgium;
ragha@imec.be); Thomas Schuster (IMEC, Leuven, Belgium; schuster@imec.be);
Hong-Seok Kim (Samsung; hong-seok.kim @samsung.com) ; Ho Yang (Samsung;

hoyang@samsung.com); Liesbet Van der Perre (IMEC, Leuven, Belgium;
vdperre@imec.be)

ABSTRACT

Software-Defined Radio (SDR) enables cost-effective
multi-mode terminals. However, the growing complexity
of the new communication standards together with the
reduced energy budget required by battery-powered
devices challenge architects. Coarse Grain Array (CGA)
processors are strong candidates to undertake both high-
performance and low power.
In this paper, we present an extensive energy-performance
exploration of a CGA-based SDR processor. We stress the
importance of trading off different sources of parallelism,
such as data and instruction level parallelism, to achieve
the required performance at minimum energy cost. The
resulting instantiation is able to execute the symbol-based
base-band processing of a 108 Mbps Space Division
Multiplexing (SDM) OFDM WLAN receiver with an
estimated average power consumption of 110 mW in
90nm CMOS technology.

1. INTRODUCTION

Future handhelds will need to concurrently support a wide
variety of wireless communication standards. This can not
be implemented by the traditional approach of multiplying
hardware and software without increasing the cost of the
terminal. Software Defined Radio (SDR), where the
baseband processing is deployed on programmable and/or
reconfigurable hardware, promises short time-to-market,
rapid product derivate development and long product
cycle [1]. However, the challenge still resides in the
instantiation of specific architectures able to cope with
high complex wireless algorithms while keeping
programmability and reasonable battery life time.
In order to achieve the required high performance at
reasonable energy budget, architecture parallelism must be
increased [2]. Parallelism can be provided in several ways:
by adding more issue slots [3], wider SIMD (Single
Instruction Multiple Data) datapaths [4] or hybrid
combination of both [5, 6]. Given that the appropriate
combination of parallelism sources is application-
dependent, fast exploratory methodologies, which enable

cheap iterations in early stages of the design flow, become
crucial to guarantee the efficiency and attractiveness of the
SDR approach.
In this paper, we present an extensive energy-performance
exploration of a CGA templated architecture, which is a
strong candidate to undertake the demanding SDR
requirements [7]. Since both Data Level Parallelism (DLP)
and Instruction Level Parallelism (ILP) have different
affects, we explore both types of parallelism and their
influence on performance and energy. We also illustrate
that by varying processor micro-architecture to trade off
DLP and ILP, both software cycle count and hardware
critical path are considerably affected. Consequently,
optimization metrics in terms of absolute time and
absolute energy, instead of clock cycles and power, must
be considered for such architecture explorations. For this
reason we model each of the CGA architecture
components to extract basic performance and energy
metrics, based on which we develop a parametrical model
of broader design space exploration. The exploratory
methodology is applied for the optimization of a CGA
processor targeting the symbol-based baseband processing
of a 108 Mbps SDM OFDM WLAN receiver.
The remainder of the paper is organized as follows. In
Section 2, we introduce the CGA framework. In Section 3,
we present the selected application driver. In Section 4 we
detail the exploration methodology. We show the results
and further analyze them in Section 5. Finally, in Section 6
we draw our conclusions.

2. CGA ARCHITECTURE
EXPLORATION FRAMEWORK

ADRES [8], the considered CGA framework, consist of a
templated array of densely interconnected functional units
which have local register-file and configuration memory
(loop buffer). A limited subset of those units is instead
connected to a shared multi-ported register-file, enabling
their operation also as standard VLIW (Very Long
Instruction Word) processor (see Fig. 1).

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

RF

FU

FU

FU FU FU

RF

FU FU FU FU

FU FU FU FU

FUFUFU
slot
1

slot
2

slot
3

slot
4

RFRFRF

RFRFRFRF

RFRFRFRF

IB VLIW
IF

slot
1

slot
2

slot
3

slot
4

IB VLIW
IF

slot
1

slot
2

slot
3

slot
4

IB VLIW
IF

slot
1

slot
2

slot
3

slot
4

IB VLIW
IF

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

slot
1

slot
2

slot
3

slot
4

IB

Figure 1. 4x4 ADRES instance with SIMD4.

A retargetable C compiler used for the application
mapping, called DRESC [9], targets both the VLIW and
CGA modes. DRESC transparently maps data flow
dominated loops into the CGA whereas schedules the rest
of the code in the VLIW part. The compiler supports
different architectures described on an XML architecture
file. Application source code can therefore be compiled
directly onto the coarse-grained reconfigurable processor.
DRESC exploits loop-level parallelism to achieve high
ILP by modulo scheduling, a widely used software
pipelining technique [10]. Modulo scheduling executes
multiple iterations of a loop in parallel. On the other hand,
DLP extraction is not yet automated and is inserted into
the program by the programmer using intrinsic C-
functions.

3. APPLICATION DRIVER

In wireless communications the link capacity can be
dramatically improved using multiple antennas. When
both the transmitter and the receiver are equipped with
multiple antennas, this is commonly referred to as Multiple
Inputs, Multiple Outputs (MIMO) communication. SDM
is a type of MIMO encoding which transmits two streams
in the same bandwidth and type slot with two different
antennas. The interference is cancelled either by pre-
coding the signal at the transmitter, or by interference
cancellation at the receiver. We consider the second
option. We identify the SDM mode of IEEE 802.11.n (see
Fig. 2) as the currently most compute intensive mode for
SDR terminals [11]. The final ADRES instance should, at
least, be capable to run this mode respecting latency (SIFS

< 16 � s) and real-time constrains (average symbol
processing time < 4� s) [12].
SDM with receiver processing splits the user data into two
streams of OFDM symbols. Each stream is transmitted
synchronously by an antenna (doubling the data rate for
the user). These streams experience delay, fading and
inter-stream interference while traveling through the
channel. At the receiver, two antennas receive both
streams summed up together. Based on these received
symbols, the receiver recovers the transmitted streams.
The considered functionality, highlighted in Fig. 2,
deploys the continuous symbol-based processing. The
latter starts just after the coarse synchronization which
spots the OFDM symbols and consists of 4 major kernels:
• FFT: 64 points complex Fast Fourier Transform (FFT).
• Tracking: Fine frequency synchronization that corrects

the error of the initial coarse estimate.
• Spatial equalizer: SDM equalizer that neutralizes the

channel distortion. Its implementation is based on
complex matrix multiplications.

• Demapper: 64-QAM demapper that translates from
constellation symbols to bits.

A part from the aforementioned kernels, our receiver
application also contains the non-kernel code (glue code).
Steering only the kernel code can lead to architecture
optimizations that blow up the glue code execution time.
This can result in unexpected overhead and therefore
expensive iterations in late stages of the design flow.
Hence we stress the importance of considering the whole
application to drive, even at this high level, architectural
explorations.

Figure 2. SDM WLAN OFDM receiver.

4. EXPLORATION METHODOLOGY

With the increasing complexity of wireless platforms, the
main design challenges are related to design methodology
[13]. Consequently, new approaches are crucial to enable
fast but still meaningful explorations.
In this section we introduce the methodology applied in
our extensive energy-performance aware architecture
exploration. We first give a global overview of the
methodology flow, providing later further details on the
energy and delay estimation steps.

RECEIVERTRANSMITTER

TR 1 FE + Sync FFT

S
patial equalization

Demapper

Channel
estimator

TR 2 FE + Sync FFT Demapper

Stream 1

Stream 2

Stream 1

Stream 2

Wireless
channel

Sync.
Tracking

Sync.
Tracking

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

FR

OR

IFDM

IC
FU CM

LRF

FU CM

LRF

FU CM

LRF

FU CM

LRF

FU CM

LRF

FU CM

LRF

FU CM FU CM FU CM

GRF

Architecture
description

(XM L)
Architecture
description

(XM L)

m 2C

Application
(M atlab)

P latform
dependent

optim izations

Architecture
description

(XM L)

D RESC
com piler

ISS

C code

schedule

Energy & tim e estim ator
90 nm
Power

F igures

Activ ity

C code

M code

Pareto point

Abs tim e

E
ne

rg
y

90 nm
Delay

F igures

Figure 3. Exploration methodology flow.

4.1. Methodology flow

The starting point of our methodology flow (see Fig. 3) is
a Matlab [14] description of the application. Then, the
targeted functionality is automatically translated to C by
means of the Real-Time Workshop toolbox from
MathWorks [14]. To maximize the mapping efficiency of
the generated code, it is advantageous to manually apply a
number of source-code transformations [10]. For example,
among others, nested loops should be replaced with a
single loop (loop coalescing), array elements operated
inside the loop should be dumped into integers, loops
should have one exit and function calls within loops must
be in-lined. The optimized C code is then compiled for the
different architectures instances using the DRESC
compiler. The resulting schedule is simulated with the
Instruction Set Simulator (ISS) to both check the
correctness and generate activity traces. This activity
information, together with delay and energy information of
the current architecture instance are the inputs to generate
a point in the exploration space. Varying the architecture
parameters, one can construct an image of the design
space where only the Pareto optimal points need to be
preserved.

4.2. Energy estimates

One possible power estimation approach is the so-called
Physical-Level Power Analysis (PLPA) methodology. The
latter, based on the analysis of the switching activity of all
circuit nodes of the architecture, gives accurate estimates.
However, PLPA requires a detailed description of the
processor implementation at transistor level, which

normally is only available late in the design cycle, being
therefore unsuitable for early fast explorations. In order to
estimate the power at a reasonable computation effort, we
advocate for a Functional-Level approach [13] where an
abstraction of the CGA processor core, depicted in Fig. 4,
is considered. The latter splits the architecture in the
following functional elements:
- IF: Fetching of VLIW instruction words and

dispatching of atomic instructions. We assume NOP
compression.

- DM: Multi-banked scratchpad memory. We assume
one memory per Load/Store unit.

- FR: First row of reconfigurable cells. This includes all
the Functional Units (FUs) connected to the Global
Register File (GRF), their Context Memory (CM)
fetching, and the GRF.

- OR: All the rows but the first row. This includes all
the FUs connected to the Local Register Files (LRF),
their CM fetching, and the LRF.

- IC: Interconnect network
We have synthesized the components of the FU and RFs
with Synopsys Physical Compiler targeting state-of-the-art
90nm technology. We considered worst-case design corner
for synthesis and nominal corner (VDD=1V) for power
estimation. The energy consumptions of the memories
(DM, CM and IF blocks) have been obtained from
appropriate memory datasheet. Finally, to characterize the
IC contribution, the energy consumption per active
connection has been extracted from the place & routing of
a representative instance. The latter is then extrapolated
for other architecture instances.
To estimate the energy required to execute a given
application, the energy estimator script weights the
aforementioned figures with the activity information
extracted by the instruction set simulator (ISS).

Figure 4. Architecture partitioning for power analysis.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

0

32

64

96

3X3 4X4 6X6 8X8

CGA sizes

C
G

A
 in

st
ru

ct
io

n
s

SIMD4

SIMD2

SISD

0

25

50

75

100

3X3 4X4 6X6 8X8

CGA size s

 A
ve

ra
g

ed
 s

ch
ed

u
lin

g
 d

en
si

ty

SIMD4

SIMD2

SISD

4.2. Execution time estimate

The ISS reports the exact number of cycles required to
execute a given application. This metric would be enough
to compare the performance of different applications
running on the same processor instance. However, in our
exploration we also vary architecture parameters that
affect the critical path and consequently the clocking
frequency of the architecture instance. Thus, in order to
correctly compare different architectures, we need to
transform the reported cycles to absolute execution time.
To do so, we have identified the critical path of our
architecture template in the VLIW units, more concretely
in the necessary operand forwarding network. This
specific part of the architecture is therefore further
explored with the RTL synthesis flow presented in [16].
RTL implementation of the VLIW part out of our XML
architecture description is generated. After synthesis with
Synopsys, the maximum clocking frequency for every
instance is obtained. The timing and power consumption
of several architectures obeying at different combinations
of number of VLIW issues and word widths is generated.
With the latter information a library is instantiated.

5. EXPLORATION AND ANALYSIS

This section reports and analyzes the results obtained with
the proposed CGA energy-performance aware architecture
exploration. We first justify the architectural parameters
considered in this initial high level exploration. In the
following subsections, we describe concrete affects related
to ILP and DLP variations on the architecture instance.
Later, we analyze the latency-performance trade off
resulted from the software pipelined approach. Finally, we
discuss the results on the Time-Energy Pareto space.

5.1. Exploration strategy

ADRES template provides a large number of parameters
that can be varied. We advocate for a gradual architecture
exploration, starting with the dimensioning of the
parameters that have bigger impact in performance and
energy consumption of the architecture. For the actual
experiment we only vary the size of the array and the
width of the SIMD datapath. Varying only these
parameters we show variations of up to 65% in
performance and up to 85% in energy. We do not consider
other parameters like interconnect topology in this paper.
Our previous work [17] shows that different interconnect
topologies can influence up to 35% of the performance
and 30% of the energy consumption. The application of
such partitioning considerably reduces the search space
and thus the design time.

Figure 5. The efficiency of the compiler is reduced while increasing the

size of the CGA .

5.2. ILP exploration

In a CGA, the only architectural way to modify the
achievable ILP is by changing the size of the array. The
DRESC compiler can extract the ILP from the code in the
scope of a loop and map it on the architecture using
modulo scheduling. Fig 5 shows the evolution of the
averaged scheduling density (over the considered kernels)
while increasing the size of the CGA. We observed that
from the 4x4 array onwards, the scheduling density starts
to decay drastically. The reason is that by increasing the
size, the scheduling problem, solved by heuristics,
becomes more complex and the risk of finding a
suboptimal schedule increases. Moreover, for a given
piece of code, the amount of instructions that can be
scheduled in parallel is limited, as dependencies break the
amount of ILP present. In Fig. 5 we also observe that for
the SISD (Single Instruction, Single Data) case, the decay
of the scheduling density is weaker than for the other
curves. This is because the compiler converts the DLP
present in the algorithm to ILP. As soon as the DLP is
exploited (SIMD2 or SIMD4), the number of independent
operations that can be scheduled in parallel is further
reduced and hence the scheduling density experiences a
more pronounced decay.

5.3. DLP exploration

The DLP extraction in the ADRES framework fully relies
on the programmer, who models the vector operations
using intrinsic functions in the application C code.

Figure 6. Complex ISA reduces the instruction memory footprint.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

0%

60%

120%

1 sym 2 sym 4 sym 8 sym

Symbols proccessed in parallel

N
o

rm
al

iz
ed

 s
ym

b
o

l
ti

m
e

0%

100%

200%

300%

400%

500%

N
o

rm
al

iz
ed

 s
ym

b
o

l
la

te
n

cy

Symbol time Symbol Latency

We select 16 bits as subword length since it provides
enough precision to accommodate the targeted SDR
processing. For the DLP exploration, we instantiate 3
different degrees of data parallelism:
- SISD: single instruction operates on single subword.

This results in a 16 bit architecture.
- SIMD2: single instruction operates on 2 subwords,

real and imaginary part of a complex word. This
results in a 32 bit architecture.

- SIMD4: single instruction operates on 4 subwords,
real and imaginary part of 2 complex words. This
results in a 64 bit architecture.

Most of the baseband processing operates on complex data
(I and Q data). Thus we upgrade the Instruction Set
Architecture (ISA) of the SIMD2 and SIMD4
architectures to support complex arithmetic [16].
This simplifies the application dataflow reducing the
complexity of the scheduling problem, as there are fewer
instructions to be scheduled (see Fig 6).

5.4 Performance-latency trade off

The software pipelining approach that increases the
application ILP comes with a known drawback: the
processing efficiency depends on the number of iterations
of a loop. In the software pipeline, like in hardware
pipeline, we need to fill in the pipeline (prologue stage)
before fully utilizing all the allocated resources (kernel
stage). Then, once we provide the last input, we still have
to wait until the pipeline is emptied (epilogue stage) to
obtain the result. More the iterations to execute, lower is
the overhead due to the epilogue and prologue in the
overall cycle count. To increase the number of loops
iterations, we consider the processing of several OFDM
symbols in parallel. Fig. 7 shows the effect, in symbol time
and latency, of parallelizing the execution of multiple
symbols. We observe that going from 4 to 8 processed
symbols in parallel, the symbol execution time is slightly
reduced while the latency is almost doubled. This indicates
that from 4 parallel symbols on, the weight of the prologue
and epilogue on the overall cycle count is negligible.
Hence we consider the processing of 4 symbols in parallel
as the optimal configuration for execution time. However,
processing multiple symbols together increases the latency
and also the data memory footprint requirement. Thus,
once at design time the memory size is fixed to
accommodate several symbols (4 symbols in our concrete
example), the still existing trade off between latency and
symbol time can be exploited at run-time. For this reason
we have written our code on such a way that the number of
symbols to process is an input parameter of our software
which controls the loop iterations. This enables the
adaptability of the processing efficiency to the current
latency requirement.

Figure 7. Performance-latency trade off.

5.5. Energy vs. execution time

In order to choose the most suitable architecture, the
selection of appropriate figures of merit is crucial. We
consider the average energy and execution time of a single
OFDM symbol. Area has not been considered since it is
supposed to be largely dominated by memories, which are
not affected by our exploration.
Fig. 8 shows the Time-Energy Pareto curves obtained in
this architecture exploration. The performance axis (X
axis) indicates the absolute time required for the
processing of one OFDM symbol. The latter should be, in
average, below 4 � s to guarantee real-time demodulation.
The Y axis corresponds to the energy consumed in the
processing of a single OFDM symbol. In the space defined
by these two axes we have plotted the possible design
points of the studied CGA instances. We have two
representations for every architecture instance, one
considering the processing of a single OFDM symbol
(solid line) and a second one considering the processing of
4 symbols in parallel (dashed line). At run-time, when the
conditions allow long latency, the processor can
drastically improve its energy efficiency by moving from
the solid working point to the dashed one. We represent
with an identical marker the points that belong to the same
array size and vary only the width of the datapath (from
left to right: SIMD4, SIMD2 and SISD).
Larger arrays produce longer prologues/epilogues as well
as the overhead in terms of both performance and energy
due to these prologues and epilogues. Therefore they
experience a remarkable improvement when changing the
processing mode from single symbol to 4 symbols in
parallel. We also observe, especially in small arrays, a
clear benefit of widening the SIMD datapath. The latter
importantly improves the performance while the energy
consumption is maintained, thereby leading to
architectures with higher energy efficiency.
From a certain array size on, no performance improvement
is obtained due to the reduction in scheduling density and
achievable clock frequency. Moreover, this increase in
size leads to an energy penalty. Hence architectures such
as 6x6 and 8x8 arrays are not interesting instances of the
ADRES template to efficiently run the considered
application driver.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

0.E+00

2.E-10

4.E-10

6.E-10

8.E-10

1.E-09

0.E+00 4.E-06 8.E-06

Sym bol processing tim e [s]

E
n

er
g

y
p

er
 s

ym
b

o
l [

J]

3x3 (4 symbols) 4x4 (4 symbols) 6x6 (4 symbols) 8x8 (4 symbols)

3x3 (1 symbol) 4x4 (1 symbol) 6x6 (1 symbol) 8x8 (1 symbol)

Figure 8. Explored architecutes represented in the “Time-Energy”
Pareto space.

The 3x3 and 4x4 SIMD4 instances are Pareto-optimum
points offering different energy-performance trade offs.
The 3x3 SIMD4 instance consumes less energy than the
4x4 SIMD but also delivers less performance. We select
the 4x4 SIMD4 instance as it offers real-time processing
when demodulating a single OFDM symbol (hard latency
constraints). The latter executes the symbol-based base-
band processing of a 108 Mbps SDM OFDM WLAN
receiver with an estimated average power consumption of
110 mW running at 330 MHz in 90nm CMOS technology.

6. CONCLUSIONS

In the race towards SDR terminals, energy efficiency is the
figure of merit. The latter can be largely affected by
increasing the parallelism on processor architectures. In
this paper, we demonstrated that finding right combination
of the different sources of architectural parallelism is
fundamental. This combination is application/domain
dependent and consequently we stress the importance of
selecting complete and representative application drivers.
CGAs are strong candidates to deliver high energy
efficiency while providing the required performance.
Nevertheless, most CGAs like ADRES are templated,
being able to generate an infinite amount of different
instances, though just few of them can be considered
optimal. Consequently fast methodologies, like the
proposed in this paper, are crucial to drive designers’
choice in this large design space.

7. ACKNOLEDGEMENTS

The authors want to thank their colleagues in the SDR
FLAI and ADRES projects for technical support.
This research has been carried out in the context of
IMEC's multimode multimedia program which is partly
sponsored by Samsung.

8. REFERENCES

[1] Glossner, J.; Moudgill, M.; lancu, D., “The sandbridge SDR
communications platform,” SympoTIC '04, pp. ii–ix, 24-26
Oct. 2004.

[2] J. Rabaey, “Silicon Platforms for the next generation
wireless systems - What role does reconfigurable hardware
play?,” FPL 2000, pp. 277-285, Aug. 2000

[3] SiliconHive, Philips Research, http://www.siliconhive.com
[4] K Van Berkel, F. Heindle, P. Meuwissen, K. Moeren and

M. Weiss, “Vector Processing as an Enabler for Software-
Defined Radio in Handsets from 3G+WLAN Onwards,”
SDR Technical Conference, pp. 125-130, Nov. 2004.

[5] Texas Instruments “TMS320C6000 CPU and Instruction
Set”, http://www.ti.com.

[6] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C.
Chakrabarti, K. Flautner, “SODA: A Low Power
Architecture For Software Radio,” ISCA’06, pp. 89-101,
June 2006.

[7] Novo, D.; Moffat, W.; Derudder, V.; Bougard, B.,
“Mapping a multiple antenna SDM-OFDM receiver on the
ADRES coarse-grained reconfigurable processor,” SIPS’06,
pp. 473-478, Nov. 2006.

[8] B. Mei, S. Vernalde, D. Verkest, H. De Man and R.
Lauwereins, “ADRES: An Architecture with Tightly
Coupled VLIW Processor and Coarse Grained
Reconfigurable Matrix,” FPL 2003, pp. 61-70, Sept. 2003

[9] B. Mei, S. Vernalde, D. Verkest, H. De Man and R.
Lauwereins, “DRESC: A Retargetable Compiler for Coarse-
Grained Reconfigurable Architectures,” FPL’02, pp. 166-
174, Sept. 2002.

[10] R. B. Rau, “Iterative Modulo Scheduling,” HP Lab, Tech
Report: HPL-94-115, 1995.

[11] Van der Perre, L., “Broadband WLANs: setting the limits
for SDR platforms”, WWRF15 Meeting, 2005.

[12] MathWorks, http://www.mathworks.com/
[13] Aarno Parssinen, “Keynote talk: System Design for Multi-

Standard Radios,” ISSCC’06, February, 2006.
[14] IEEE 802.11, http://grouper.ieee.org/groups/802/11/
[15] Laurent, J.; Julien, N.; Senn, E.; Martin, E., “Functional

level power analysis: an efficient approach for modeling the
power consumption of complex processors”,
DATE’04, Vol. 1, pp. 666-667, Feb. 2004.

[16] T. Schuster et al., “Subword-Parallel VLIW Architecture
Exploration for Multimode Software Defined Radio”,
SIPS’06. Oct. 2006.

[17] A. Lambrechts, P. Raghavan, M. Jayapala, F. Catthoor and
D. Verkest, “Energy-Aware Interconnect Exploration of
Coarse-Grained Reconfigurable Processors,” WASP’05,
September, 2005.

SIMD4

SIMD2
SISD

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Searc by Session

