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ABSTRACT 

 
Software-Defined Radio (SDR) enables cost-effective 
multi-mode terminals. However, the growing complexity 
of the new communication standards together with the 
reduced energy budget required by battery-powered 
devices challenge architects. Coarse Grain Array (CGA) 
processors are strong candidates to undertake both high-
performance and low power.  
In this paper, we present an extensive energy-performance 
exploration of a CGA-based SDR processor. We stress the 
importance of trading off different sources of parallelism, 
such as data and instruction level parallelism, to achieve 
the required performance at minimum energy cost. The 
resulting instantiation is able to execute the symbol-based 
base-band processing of a 108 Mbps Space Division 
Multiplexing (SDM) OFDM WLAN receiver with an 
estimated average power consumption of 110 mW in 
90nm CMOS technology. 
 

1. INTRODUCTION 
 
Future handhelds will need to concurrently support a wide 
variety of wireless communication standards. This can not 
be implemented by the traditional approach of multiplying 
hardware and software without increasing the cost of the 
terminal. Software Defined Radio (SDR), where the 
baseband processing is deployed on programmable and/or 
reconfigurable hardware, promises short time-to-market, 
rapid product derivate development and long product 
cycle [1]. However, the challenge still resides in the 
instantiation of specific architectures able to cope with 
high complex wireless algorithms while keeping 
programmability and reasonable battery life time.  
In order to achieve the required high performance at 
reasonable energy budget, architecture parallelism must be 
increased [2]. Parallelism can be provided in several ways: 
by adding more issue slots [3], wider SIMD (Single 
Instruction Multiple Data) datapaths [4] or hybrid 
combination of both [5, 6]. Given that the appropriate 
combination of parallelism sources is application-
dependent, fast exploratory methodologies, which enable 

cheap iterations in early stages of the design flow, become 
crucial to guarantee the efficiency and attractiveness of the 
SDR approach.  
In this paper, we present an extensive energy-performance 
exploration of a CGA templated architecture, which is a 
strong candidate to undertake the demanding SDR 
requirements [7]. Since both Data Level Parallelism (DLP) 
and Instruction Level Parallelism (ILP) have different 
affects, we explore both types of parallelism and their 
influence on performance and energy. We also illustrate 
that by varying processor micro-architecture to trade off 
DLP and ILP, both software cycle count and hardware 
critical path are considerably affected. Consequently, 
optimization metrics in terms of absolute time and 
absolute energy, instead of clock cycles and power, must 
be considered for such architecture explorations. For this 
reason we model each of the CGA architecture 
components to extract basic performance and energy 
metrics, based on which we develop a parametrical model 
of broader design space exploration. The exploratory 
methodology is applied for the optimization of a CGA 
processor targeting the symbol-based baseband processing 
of a 108 Mbps SDM OFDM WLAN receiver.  
The remainder of the paper is organized as follows. In 
Section 2, we introduce the CGA framework. In Section 3, 
we present the selected application driver. In Section 4 we 
detail the exploration methodology. We show the results 
and further analyze them in Section 5. Finally, in Section 6 
we draw our conclusions. 
 

2. CGA ARCHITECTURE  
EXPLORATION FRAMEWORK 

 
ADRES [8], the considered CGA framework, consist of a 
templated array of densely interconnected functional units 
which have local register-file and configuration memory 
(loop buffer). A limited subset of those units is instead 
connected to a shared multi-ported register-file, enabling 
their operation also as standard VLIW (Very Long 
Instruction Word) processor (see Fig. 1).   
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Figure 1.  4x4 ADRES instance with SIMD4. 

A retargetable C compiler used for the application 
mapping, called DRESC [9], targets both the VLIW and 
CGA modes. DRESC transparently maps data flow 
dominated loops into the CGA whereas schedules the rest 
of the code in the VLIW part. The compiler supports 
different architectures described on an XML architecture 
file. Application source code can therefore be compiled 
directly onto the coarse-grained reconfigurable processor. 
DRESC exploits loop-level parallelism to achieve high 
ILP by modulo scheduling, a widely used software 
pipelining technique [10]. Modulo scheduling executes 
multiple iterations of a loop in parallel. On the other hand, 
DLP extraction is not yet automated and is inserted into 
the program by the programmer using intrinsic C-
functions.  
 

3. APPLICATION DRIVER 
 
In wireless communications the link capacity can be 
dramatically improved using multiple antennas. When 
both the transmitter and the receiver are equipped with 
multiple antennas, this is commonly referred to as Multiple 
Inputs, Multiple Outputs (MIMO) communication. SDM 
is a type of MIMO encoding which transmits two streams 
in the same bandwidth and type slot with two different 
antennas. The interference is cancelled either by pre-
coding the signal at the transmitter, or by interference 
cancellation at the receiver. We consider the second 
option. We identify the SDM mode of IEEE 802.11.n (see 
Fig. 2) as the currently most compute intensive mode for 
SDR terminals [11]. The final ADRES instance should, at 
least, be capable to run this mode respecting latency (SIFS 

< 16 � s) and real-time constrains (average symbol 
processing time < 4� s) [12].  
SDM with receiver processing splits the user data into two 
streams of OFDM symbols. Each stream is transmitted 
synchronously by an antenna (doubling the data rate for 
the user). These streams experience delay, fading and 
inter-stream interference while traveling through the 
channel. At the receiver, two antennas receive both 
streams summed up together. Based on these received 
symbols, the receiver recovers the transmitted streams. 
The considered functionality, highlighted in Fig. 2, 
deploys the continuous symbol-based processing. The 
latter starts just after the coarse synchronization which 
spots the OFDM symbols and consists of 4 major kernels: 
• FFT: 64 points complex Fast Fourier Transform (FFT). 
• Tracking: Fine frequency synchronization that corrects 

the error of the initial coarse estimate.  
• Spatial equalizer: SDM equalizer that neutralizes the 

channel distortion. Its implementation is based on 
complex matrix multiplications. 

• Demapper: 64-QAM demapper that translates from 
constellation symbols to bits. 

A part from the aforementioned kernels, our receiver 
application also contains the non-kernel code (glue code). 
Steering only the kernel code can lead to architecture 
optimizations that blow up the glue code execution time. 
This can result in unexpected overhead and therefore 
expensive iterations in late stages of the design flow. 
Hence we stress the importance of considering the whole 
application to drive, even at this high level, architectural 
explorations. 

Figure 2.  SDM WLAN OFDM  receiver. 

4. EXPLORATION METHODOLOGY 
 
With the increasing complexity of wireless platforms, the 
main design challenges are related to design methodology 
[13]. Consequently, new approaches are crucial to enable 
fast but still meaningful explorations.  
In this section we introduce the methodology applied in 
our extensive energy-performance aware architecture 
exploration. We first give a global overview of the 
methodology flow, providing later further details on the 
energy and delay estimation steps. 
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Figure 3.  Exploration methodology flow. 

 
4.1. Methodology flow 
 
The starting point of our methodology flow (see Fig. 3) is 
a Matlab [14] description of the application. Then, the 
targeted functionality is automatically translated to C by 
means of the Real-Time Workshop toolbox from 
MathWorks [14]. To maximize the mapping efficiency of 
the generated code, it is advantageous to manually apply a 
number of source-code transformations [10]. For example, 
among others, nested loops should be replaced with a 
single loop (loop coalescing), array elements operated 
inside the loop should be dumped into integers, loops 
should have one exit and function calls within loops must 
be in-lined. The optimized C code is then compiled for the 
different architectures instances using the DRESC 
compiler. The resulting schedule is simulated with the 
Instruction Set Simulator (ISS) to both check the 
correctness and generate activity traces. This activity 
information, together with delay and energy information of 
the current architecture instance are the inputs to generate 
a point in the exploration space. Varying the architecture 
parameters, one can construct an image of the design 
space where only the Pareto optimal points need to be 
preserved. 
 
4.2. Energy estimates  
 
One possible power estimation approach is the so-called 
Physical-Level Power Analysis (PLPA) methodology. The 
latter, based on the analysis of the switching activity of all 
circuit nodes of the architecture, gives accurate estimates. 
However, PLPA requires a detailed description of the 
processor implementation at transistor level, which 

normally is only available late in the design cycle, being 
therefore unsuitable for early fast explorations. In order to 
estimate the power at a reasonable computation effort, we 
advocate for a Functional-Level approach [13] where an 
abstraction of the CGA processor core, depicted in Fig. 4, 
is considered. The latter splits the architecture in the 
following functional elements: 
- IF: Fetching of VLIW instruction words and 

dispatching of atomic instructions. We assume NOP 
compression. 

- DM: Multi-banked scratchpad memory. We assume 
one memory per Load/Store unit. 

- FR: First row of reconfigurable cells. This includes all 
the Functional Units (FUs) connected to the Global 
Register File (GRF), their Context Memory (CM) 
fetching, and the GRF.  

- OR: All the rows but the first row. This includes all 
the FUs connected to the Local Register Files (LRF), 
their CM fetching, and the LRF.  

- IC: Interconnect network 
We have synthesized the components of the FU and RFs 
with Synopsys Physical Compiler targeting state-of-the-art 
90nm technology. We considered worst-case design corner 
for synthesis and nominal corner (VDD=1V) for power 
estimation. The energy consumptions of the memories 
(DM, CM and IF blocks) have been obtained from 
appropriate memory datasheet. Finally, to characterize the 
IC contribution, the energy consumption per active 
connection has been extracted from the place & routing of 
a representative instance. The latter is then extrapolated 
for other architecture instances. 
To estimate the energy required to execute a given 
application, the energy estimator script weights the 
aforementioned figures with the activity information 
extracted by the instruction set simulator (ISS).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Architecture partitioning for power analysis. 
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4.2. Execution time estimate 
 
The ISS reports the exact number of cycles required to 
execute a given application. This metric would be enough 
to compare the performance of different applications 
running on the same processor instance. However, in our 
exploration we also vary architecture parameters that 
affect the critical path and consequently the clocking 
frequency of the architecture instance. Thus, in order to 
correctly compare different architectures, we need to 
transform the reported cycles to absolute execution time. 
To do so, we have identified the critical path of our 
architecture template in the VLIW units, more concretely 
in the necessary operand forwarding network. This 
specific part of the architecture is therefore further 
explored with the RTL synthesis flow presented in [16]. 
RTL implementation of the VLIW part out of our XML 
architecture description is generated. After synthesis with 
Synopsys, the maximum clocking frequency for every 
instance is obtained. The timing and power consumption 
of several architectures obeying at different combinations 
of number of VLIW issues and word widths is generated. 
With the latter information a library is instantiated.  
 

5. EXPLORATION AND ANALYSIS 
 
This section reports and analyzes the results obtained with 
the proposed CGA energy-performance aware architecture 
exploration. We first justify the architectural parameters 
considered in this initial high level exploration. In the 
following subsections, we describe concrete affects related 
to ILP and DLP variations on the architecture instance. 
Later, we analyze the latency-performance trade off 
resulted from the software pipelined approach. Finally, we 
discuss the results on the Time-Energy Pareto space. 
 
5.1. Exploration strategy  
 
ADRES template provides a large number of parameters 
that can be varied. We advocate for a gradual architecture 
exploration, starting with the dimensioning of the 
parameters that have bigger impact in performance and 
energy consumption of the architecture. For the actual 
experiment we only vary the size of the array and the 
width of the SIMD datapath.  Varying only these 
parameters we show variations of up to 65% in 
performance and up to 85% in energy. We do not consider 
other parameters like interconnect topology in this paper. 
Our previous work [17] shows that different interconnect 
topologies can influence up to 35% of the performance 
and 30% of the energy consumption. The application of 
such partitioning considerably reduces the search space 
and thus the design time. 
 

 
 
 
 
 
 
 
 
 
Figure 5.  The efficiency of the compiler is reduced while increasing the 

size of the CGA . 

5.2. ILP exploration 
 
In a CGA, the only architectural way to modify the 
achievable ILP is by changing the size of the array. The 
DRESC compiler can extract the ILP from the code in the 
scope of a loop and map it on the architecture using 
modulo scheduling. Fig 5 shows the evolution of the 
averaged scheduling density (over the considered kernels) 
while increasing the size of the CGA. We observed that 
from the 4x4 array onwards, the scheduling density starts 
to decay drastically. The reason is that by increasing the 
size, the scheduling problem, solved by heuristics, 
becomes more complex and the risk of finding a 
suboptimal schedule increases. Moreover, for a given 
piece of code, the amount of instructions that can be 
scheduled in parallel is limited, as dependencies break the 
amount of ILP present. In Fig. 5 we also observe that for 
the SISD (Single Instruction, Single Data) case, the decay 
of the scheduling density is weaker than for the other 
curves. This is because the compiler converts the DLP 
present in the algorithm to ILP. As soon as the DLP is 
exploited (SIMD2 or SIMD4), the number of independent 
operations that can be scheduled in parallel is further 
reduced and hence the scheduling density experiences a 
more pronounced decay.  
 
5.3. DLP exploration 
 
The DLP extraction in the ADRES framework fully relies 
on the programmer, who models the vector operations 
using intrinsic functions in the application C code. 
 
 
 
 
 
 
 
 
 

Figure 6.  Complex ISA reduces the instruction memory footprint. 
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We select 16 bits as subword length since it provides 
enough precision to accommodate the targeted SDR 
processing. For the DLP exploration, we instantiate 3 
different degrees of data parallelism: 
- SISD: single instruction operates on single subword. 

This results in a 16 bit architecture. 
- SIMD2: single instruction operates on 2 subwords, 

real and imaginary part of a complex word. This 
results in a 32 bit architecture.  

- SIMD4: single instruction operates on 4 subwords, 
real and imaginary part of 2 complex words.  This 
results in a 64 bit architecture. 

Most of the baseband processing operates on complex data 
(I and Q data). Thus we upgrade the Instruction Set 
Architecture (ISA) of the SIMD2 and SIMD4 
architectures to support complex arithmetic [16].  
This simplifies the application dataflow reducing the 
complexity of the scheduling problem, as there are fewer 
instructions to be scheduled (see Fig 6). 
 
5.4 Performance-latency trade off 
 
The software pipelining approach that increases the 
application ILP comes with a known drawback: the 
processing efficiency depends on the number of iterations 
of a loop. In the software pipeline, like in hardware 
pipeline, we need to fill in the pipeline (prologue stage) 
before fully utilizing all the allocated resources (kernel 
stage). Then, once we provide the last input, we still have 
to wait until the pipeline is emptied (epilogue stage) to 
obtain the result. More the iterations to execute, lower is 
the overhead due to the epilogue and prologue in the 
overall cycle count. To increase the number of loops 
iterations, we consider the processing of several OFDM 
symbols in parallel. Fig. 7 shows the effect, in symbol time 
and latency, of parallelizing the execution of multiple 
symbols. We observe that going from 4 to 8 processed 
symbols in parallel, the symbol execution time is slightly 
reduced while the latency is almost doubled. This indicates 
that from 4 parallel symbols on, the weight of the prologue 
and epilogue on the overall cycle count is negligible. 
Hence we consider the processing of 4 symbols in parallel 
as the optimal configuration for execution time. However, 
processing multiple symbols together increases the latency 
and also the data memory footprint requirement. Thus, 
once at design time the memory size is fixed to 
accommodate several symbols (4 symbols in our concrete 
example), the still existing trade off between latency and 
symbol time can be exploited at run-time. For this reason 
we have written our code on such a way that the number of 
symbols to process is an input parameter of our software 
which controls the loop iterations. This enables the 
adaptability of the processing efficiency to the current 
latency requirement.  

 
 
 
 
 
 
 

Figure 7.  Performance-latency trade off. 

5.5. Energy vs. execution time 
 
In order to choose the most suitable architecture, the 
selection of appropriate figures of merit is crucial. We 
consider the average energy and execution time of a single 
OFDM symbol. Area has not been considered since it is 
supposed to be largely dominated by memories, which are 
not affected by our exploration. 
Fig. 8 shows the Time-Energy Pareto curves obtained in 
this architecture exploration. The performance axis (X 
axis) indicates the absolute time required for the 
processing of one OFDM symbol. The latter should be, in 
average, below 4 � s to guarantee real-time demodulation. 
The Y axis corresponds to the energy consumed in the 
processing of a single OFDM symbol. In the space defined 
by these two axes we have plotted the possible design 
points of the studied CGA instances. We have two 
representations for every architecture instance, one 
considering the processing of a single OFDM symbol 
(solid line) and a second one considering the processing of 
4 symbols in parallel (dashed line). At run-time, when the 
conditions allow long latency, the processor can 
drastically improve its energy efficiency by moving from 
the solid working point to the dashed one. We represent 
with an identical marker the points that belong to the same 
array size and vary only the width of the datapath (from 
left to right: SIMD4, SIMD2 and SISD).  
Larger arrays produce longer prologues/epilogues as well 
as the overhead in terms of both performance and energy 
due to these prologues and epilogues. Therefore they 
experience a remarkable improvement when changing the 
processing mode from single symbol to 4 symbols in 
parallel. We also observe, especially in small arrays, a 
clear benefit of widening the SIMD datapath. The latter 
importantly improves the performance while the energy 
consumption is maintained, thereby leading to 
architectures with higher energy efficiency. 
From a certain array size on, no performance improvement 
is obtained due to the reduction in scheduling density and 
achievable clock frequency. Moreover, this increase in 
size leads to an energy penalty. Hence architectures such 
as 6x6 and 8x8 arrays are not interesting instances of the 
ADRES template to efficiently run the considered 
application driver. 
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Figure 8.  Explored architecutes represented in the “Time-Energy” 
Pareto space.  

The 3x3 and 4x4 SIMD4 instances are Pareto-optimum 
points offering different energy-performance trade offs. 
The 3x3 SIMD4 instance consumes less energy than the 
4x4 SIMD but also delivers less performance. We select 
the 4x4 SIMD4 instance as it offers real-time processing 
when demodulating a single OFDM symbol (hard latency 
constraints). The latter executes the symbol-based base-
band processing of a 108 Mbps SDM OFDM WLAN 
receiver with an estimated average power consumption of 
110 mW running at 330 MHz in 90nm CMOS technology. 
 

6. CONCLUSIONS 
 

In the race towards SDR terminals, energy efficiency is the 
figure of merit. The latter can be largely affected by 
increasing the parallelism on processor architectures. In 
this paper, we demonstrated that finding right combination 
of the different sources of architectural parallelism is 
fundamental. This combination is application/domain 
dependent and consequently we stress the importance of 
selecting complete and representative application drivers. 
CGAs are strong candidates to deliver high energy 
efficiency while providing the required performance. 
Nevertheless, most CGAs like ADRES are templated, 
being able to generate an infinite amount of different 
instances, though just few of them can be considered 
optimal. Consequently fast methodologies, like the 
proposed in this paper, are crucial to drive designers’ 
choice in this large design space. 
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