
Architecture and Simulation of Timing Synchronization Circuits for the FPGA
Implementation of Narrowband Waveforms

 Chris Dick Benjamin Egg fred harris
 Xilinx Inc. Cubic Defense and SDSU San Diego State University
 chris.dick@xilinx.com benjamin.egg@gmail.com fred.harris@sdsu.edu

ABSTRACT

This paper describes the architecture, design flow and veri-
fication process for the FPGA implementation of timing
recovery circuits for QAM waveforms. We achieve sample
timing alignment by phase selection of a polyphase
matched filter. The challenge in realizing these circuits in
hardware is not in the construction of the multirate filter
architecture, but rather the complex control circuitry that
marshals data from the receiver front-end processor (e.g.
digital down-converter) into the timing recovery compute
engine. This engine must select the correct filter path to
align the output sample position with the maximum eye-
opening in the face of sample clock phase and frequency
offsets and drift. The design and FPGA implementation of
this control plane, filter architecture, timing error detector
and memory management sub-system is described, along
with implementation considerations for Xilinx Virtex-4
FPGAs. A model-based FPGA design flow called System
Generator, based on the Mathworks Simulink visual pro-
gramming environment, was used for our implementation.
The FPGA resource utilization and performance is also
reported.

1. INTRODUCTION

For a number of practical reasons, digital QAM receivers
often operate at 2-to-4 samples per input symbol. It does
this, first to satisfy the Nyquist sampling criterion on behalf
of a following fractionally spaced equalizer, and second to
enable the carrier recovery loop to recognize and digitally
correct residual frequency offsets in the down converted
and I-Q sampled input signal. The over sampling of the
input time series also enables easy to design and implement
interpolating filters that support the timing recovery proc-
ess in the receiver. In this process, the receiver must align
output samples from its matched filters with the peak of the
equivalent correlation function formed by the matched fil-
ter. This peak location corresponds to the maximum open-
ing of the eye opening formed from the over sampled
matched filter output.
 There are two standard DSP approaches to obtain tim-
ing recovery in QAM receivers. The first approach uses a
polyphase interpolator to calculate the samples at the de-
sired locations from the offset samples obtained from the

free running ADC. These position corrected samples are
processed in the receiver matched filter whose output,
through a detector, forms a timing error signal to guide the
interpolating filter re-sampling process. The second ap-
proach folds the interpolation process into a polyphase
matched filter. The separate paths of this polyphase filter
represent a collection of filters matched to different time
offsets between input sample positions and the output sam-
ple peak correlation value position. The timing recovery
process simply has to determine which filter matches the
unknown time offset between input and output samples.
Either process uses a phase locked loop (PLL) to direct the
pointer to the appropriate phase leg of the polyphase filter.
These options are shown in figure 1.

Polyphasel
Interpolate
 Filter

Polyphase
 Matched
 Filter

Polyphase
Interpolate
 Filter

Polyphase
 Matched
 Filter

 Digital
Matched
 Filter

 Digital
Matched
 Filter

 Analog
Front-End

 Analog
 Down
Convert,
Filter and
Sample

 Analog
Front-End

 Analog
 Down
Convert,
Filter and
Sample

 DDS

 DDS

Timing Error
 and
Phase Error
 Detection

Timing Error
 and
Phase Error
 Detection

 CLK

 CLK

cos(n)θ0

-sin(n)θ0

-sin(n)θ0

cos(n)θ0

s(t)

s(t)

Figure 1. DSP Based Timing Recovery Options:
(Upper) Polyphase Interpolator with Matched Filter

Or (Lower) Polyphase Matched Filter

The two most common timing error detection schemes are
based on the maximum likelihood (ML) estimator and the
Gardner estimator. In the ML estimator, the PLL seeks the
peak of the correlation function. It accomplishes this by
forming an estimate of the derivative at the test point. Early
legacy systems used the early and late gates to form the
derivative estimates while modern receivers use a deriva-
tive matched filter which is in fact, exactly that, a filter
formed as the time aligned derivative of the matched filter.
Such a filter forms the derivative of the matched filter out-
put at its output. The timing error sample fed to the PLL is

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

the product y(n)*ydot(n), the output of the two matched
filters at the sample time location being tested. By way of
comparison, in the Gardner estimator the PLL seeks the
zero crossings of the eye-diagram, obtained at 2-
samples/symbol, from the product shown in (1). This prod-
uct is seen to be an approximation to ydot(n) * y(n).

 Gardner

dot

e (n) {det[y(n-1)]-det[y(n+1)]} y(n)
(n) y(n)y

= ⋅
≅ ⋅

 (1)

For completeness, we observe that the ML estimator re-
quires two filters to process the input samples while the
Gardner estimator forms both y and ydot from successive
samples of a single matched filter to form its error term.
The ML estimator has a higher SNR than does the Gardner
estimator and will achieve a specified timing variance with
a shorter averaging time. In the rest of this paper we will
restrict our discussion to the ML implementation of the
timing recovery loop.
 Figure 2 presents the structure of the two timing re-
covery schemes based on the ML error term formed from
two matched filters. Here the left side loop is seen to con-
trol the polyphase interpolator while the right side loop is
seen to control the matched filters. The first loop exhibits a
larger transport delay through the cascade of two filters
than does the second loop through the delay of a single
filter. Due to the additional delay, the polyphase interpolat-
ing filter must have a slower (or lower bandwidth) loop
filter than does the polyphase matched filter. The perform-
ance comparisons presented in the last two paragraphs is
the reason we examine the ML polyphase matched filter
timing recovery system: namely faster and lower variance
loop response.

Polyphasel
Interpolate
 Filter

 PLL
Loop Filter

 PLL
Loop Filter

 Matched
 Filter

Polyphase
 Matched
 Filter

Derivative
 Matched
 Filter

Polyphase
Derivative
 Filter

s(n) s(n)y(n) y(n)

y(n) y(n)
. .

2:1

2:1

Figure 2. ML Control of Polyphase Interpolating Filter
and of Polyphase Matched Filter

We note that the time error detector operates at symbol rate
while the filters processing input samples operate at 2 (or
4) samples per symbol. Thus, as shown in figure 2, there is
a 2-to-1 down sampler between the matched filter output
and the input to the loop filter which, now that we think
about it, operates at symbol rate. The problem we must
now address is how do we decide which matched filter
output sample is to be delivered to the loop filter?

2. TIMING RECOVERY SAMPLE SELECTION

We have two samples of the modulated signal per symbol
interval. The question to be resolved is “in which interval
does the peak reside, first or second”. At the start of the
process we don’t know the answer to this question so we
hypothesize it is in the first interval and test the hypothesis.
Figure 3 presents both of these conditions: on the left side
the peak is in the first half interval and on the right side the
peak is in the second half interval.
 As a specific example, suppose we have a matched
filter and derivative filter with 32 sets of path weights (0
through 31) which allow us to partition the T/2 clock inter-
val into 32 sub increments. Assume the left segment of
figure 3 is valid and we start with the hypothesis that the
peak resides in the first half interval. We set an interval flag
to “0” as a reminder and preset the phase accumulator to
the center of this half interval by loading it with the index
“16”. The loop then increments the filter pointer to higher
indices, towards the right, in response to the y(n)*ydot(n)
product increasing the content of the PLL phase accumula-
tor. We eventually reach the position for which the
y(n)*ydot(n) product becomes zero and the phase accumula-
tor settles to its nominal steady state value.
 Continuing with our specific example, we now assume
the right segment of figure 3 is valid but start with the hy-
pothesis that the peak resides in the first half interval. With
the interval flag set to “0” and with the phase accumulator
set to the center of the first half interval by index “16”, the
loop starts to increment the filter pointer to higher indices,
towards the right, in response to the y(n)*ydot(n) product
increasing the content of the PLL phase accumulator. In
this scenario, the index pointer eventually reaches filter
“31” and the loop filter tries to shift to the next index, in-
dex “32”. While there is no index “32”, there is a next in-
dex! Index “32” is actually index “0” in the next interval.
When the phase accumulator overflows in response to a
loop filter increment we respond by toggling the interval
flag and start computing outputs after the n+1 sample in-
stead of after the originally hypothesized n sample.

n

n

n+1 n+1

n+2

n+2k k
k 1+ k 1+k-1 k-1

T/2 T/2

ΔT ΔT

T T

y(n) y(n+1)

y(n+1)
y(n+2)

y(n+1) y(n)

y(n +)

y(n +)

y(n +)
y(n +)

k

k

k
kM

M

M
M

.
.

Figure 3. Two Conditions:
Left Side, Correlation Peak in First Half Interval and
Right Side, Correlation Peak in Second Half Interval

The accumulator overflow toggles the flag to remind us
that the peak resides in the next half interval. The next half
interval starts with the next input sample, sample (n+1).
Thus on overflow, we must present the next input sample

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

to the filter register. Thus an overflow will require two in-
put samples prior to computing one output sample. Simi-
larly, an underflow will require two computed outputs in
response to one input sample. The overflow (or underflow)
may occur periodically as the index pointer slides forward
or backwards on the number line to resolve a frequency
offset between sample clock and underlying modulation
clock. The phase accumulator and the polyphase pointer
profiles are shown in figure 4 for a timing acquisition with
and without an overflow. Here we clearly see the accumu-
lator overflow and the even-odd index flag toggling at the
overflow. Figure 4 also illustrates the acquisition for a
fixed phase offset and for a sampling frequency offset of
one part per thousand relative to symbol clock.

Figure 4. Phase Accumulator and Polyphase Pointer for

Phase Offsets and for Frequency Offset Acquisition

3. POLYPHASE MATCHED FILTERS

The design of the polyphase matched filter and derivative
matched filters are simple once the process is carefully
explained. The prototype matched filter for the example
cited in this paper up-samples by a factor of 32 from input
data originally over-sampled 2-to-1. Thus the prototype
filter design requires a 64-samples per symbol square-root
Nyquist filter, which when down-sampled 32-to-1 presents
a set of time offset polyphase arms each operating at 2-
samples per symbol. It is common to select a filter length
that is an integer multiple of 32, the number of paths in the
polyphase partition.

 We now address some practical details. Some filter
design packages only offer filters with an odd number of
weights of the form 2M+1, where M is the number of sym-
bols delays to the filter center tap. If we desire a filter with
an even number of weights we have two choices. The first
is that we accept the offered weights and discard the last
sample, or second, we design a filter for twice the number
of stages and discard the even indexed samples.
 The sqrt Nyquist filter weights “hh” presented by the
design routines are normally scaled for unity energy, that
is, hh*hh’ = 1. We have to change this scaling to obtain
unity gain when the receiver polyphase segments process
the scaled shaping filter weights of the modulator weights
“gg” designed for 2-samples per symbol and scaled for
unity amplitude, that is gg = gg/max(gg). The scale factor
required for the down-sampled receiver filter sets the inner
product of one path with the scaled modulator filter to
unity. The processing steps required to scale the receiver
filter are shown in (2). Also shown are the steps required to
form the derivative matched filter from the matched filter.
These steps entail extending “hh” with a repeat sample on
each end to suppress the edge discontinuity when differen-
tiated and a convolution with a simple derivative filter [1 0
-1] to form the “dy” along with a division by 2/64 to form
the “dx” of the derivative. The final step is the pruning of
the extended end points required to make the filters equal
length and align their centers. Figure 5 shows the impulse
response and the frequency responses of the matched and
the derivative matched prototype filters formed by the Mat-
lab instructions shown in (2).

Modulator Shaping Filter: gg rcosine(1,2,'sqrt',0.5,6);
Scaled and Pruned Filter: gg gg(1:24)/max(gg);

Polyphase Matched Filter: hh rcosine(1,64,'sqrt',0.5,6);
Scale Factor:

=
=

=
 aa hh(1:32:768)*gg';

Scale Matched Filter: hh hh/aa;
Polyphase Partition: hh2 reshape(hh(1:768),32,24);

Derivative Matched Filter: dhh conv([hh(1) hh hh(768)],[1 0 -1]

=
=
=

= *64/2);
Prune End Points: dhh dhh(3:770);
Polyphase Partition: dhh2 reshape(dhh,32,24)

=
=

(2)

Figure 5. Prototype Matched and Derivative Matched

Filter Impulse and Frequency Responses

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

4. FPGA IMPLEMENTATION

This section describes the process employed to realize the
FPGA timing recovery circuit. The tool chain and architec-
ture of the timing recovery circuit are described.

4.1. Timing Recovery: From Simulation to Hardware

The timing recovery circuit was first realized in Matlab.
This functional model was extensively instrumented to
generate test vectors that were used for the hardware vali-
dation. The script also included verification code to com-
pare data generated in the Matlab model with the corre-
sponding nodes in the System Generator™ [2] description
of the FPGA implementation.

4.2. FPGA Implementation Using Model Based Design

System Generator [2] is a model-based design environment
that extends The Mathworks Simulink® [4] visual pro-
gramming framework with hardware generation capability.
The design environment allows the system developer to
work at a suitable level of abstraction from the target hard-
ware and allows the use the same computation graph not
only for simulation and verification, but for FPGA hard-
ware implementation. System Generator blocks are bit- and
cycle-true behavioral models of FPGA intellectual property
components, or library elements. The library based ap-
proach results in design cycle compression in addition to
generating area efficient high-performance circuits. The
complete timing recovery circuit was realized in this tool
chain, with some of the verification methodology leverag-
ing the untimed Matlab description of the circuit.

4.2. Timing Recovery Hardware Architecture

The most complex element of the timing recovery circuit is
the control plane. The hardware implementation is de-
signed with an oversampling factor of 2, that is, there are
two samples per symbol. In the ideal case, when the re-
ceiver’s ADC sampling clock is identical in phase and fre-
quency to the transmitter output clock, the timing recovery
circuit will consume 2 input samples per symbol period and
generate one correctly timed output sample that is subse-
quently forwarded downstream to the post timing recovery
demodulation tasks. Of course in practice, the ADC sam-
pling clock will not be identical to the transmitter clock,
and will typically be running at a slightly lower, or higher
frequency than the transmitter clock.

The FPGA realization of the core filter functions that are at
the heart of the derivative matched filter timing recovery
circuit are relatively simple. The complexity of the imple-
mentation is associated with the data management tasks.
Managing the input sample stream and directing the correct

number of input samples and coefficients to the polyphase
filter and derivative matched filter requires careful design
of the datapath architecture and consideration on how data
is transferred between the functional blocks in the timing
recovery circuit.

A dataflow-style methodology was employed for the tim-
ing recovery block itself, as well as for supporting the
communication of data between the functional components
that comprise the circuit. Extensive use of handshake sig-
nals are used to manage delivery of samples from the digi-
tal down converter (DDC) that precedes the timing recov-
ery module, to the data input port of the timing block, and
for identifying the availability of the new, re-timed sam-
ples, at the output port of the block. New input data is writ-
ten to the timing recovery circuit by asserting the New Data
(ND) signal. New output samples are indicated by the Out-
put Valid signal.

This simple interface produces a modular block that can
easily be inserted in to a MODEM datapath with a mini-
mum of design effort and minimum consideration for the
latency of the other upstream modules in the physical layer,
since all of the control for the timing recovery circuit is
localized.

FIFO

InFIFO
Data

WR

TRPE

Timing
Recovery

Finite State
Machine

TRFSM

Timed
Samples

M

Num. samples to read from FIFO

RD EMPTY

WR

Data
New input data

(ND)

Input data Output
Valid

Processing
Clock

Retimed
Samples

Output
Valid

Figure 6. Top level architecture of the timing recovery cir-
cuit.

4.2.1. High-Level Architecture

Figure 6 provides a high-level view of the timing recovery
circuit architecture. There are 3 basic time domains to con-
sider in the implementation – the rate at which samples
arrive at the input of the timing recovery circuit, the output
rate of the circuit, which is the effectively the symbol rate,
and the FPGA processing clock rate. The maximum input
rate for the system is a function of the processing clock
frequency and the number of operations required per input
sample. Based on the MODEM specifications, that would

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

include a definition for the system data rata for example, it
is straightforward to determine the input sample rate to the
timing recovery circuit. Based on this value, the designer
would select a suitable FPGA processing clock frequency,
and identify the degree of computational parallelism that is
required in the implementation to accommodate the input
sample rate. The matched filter (MF) and derivative
matched filter (DMF) are the most arithmetically demand-
ing elements in the implementation, and drive a significant
component of the hardware resource utilization. One of the
key properties of FPGA-based signal processing is the abil-
ity to service problems with significant compute require-
ments by leveraging spatial, or concurrent computing.
State-of-the-art FPGAs like the Xilinx Virtex-4 [3] family
provide devices with up to 512 embedded MAC units, and
this abundance of resources can deliver high-performance
systems by exploiting the available parallelism in a signal
flow graph. For example, in the case of the timing recovery
circuit, the matched filter could be implemented by a single
time-shared multiply-accumulate (MAC) engine, or a fully
parallel architecture that employs one MAC per filter coef-
ficient. Naturally, the former implementation would pro-
duce the smallest hardware footprint at the expense of input
sample rate. The later parallel implementation would result
in a larger hardware footprint but with significantly greater
throughput than the fully folded architecture. The design
constraint in our example is to minimize FPGA real estate,
and as a consequence, time division multiplexing, or hard-
ware folding is a significant theme in the implementation.

4.2.2. Circuit Description

Referring to Figure 6, complex input samples are written to
the input FIFO InFIFO by asserting the dataflow signal
ND. The FIFO output port supplies the samples that are
consumed by the matched filter and the derivative matched
filter at the heart of the circuit. The control block TRFSM
orchestrates the delivery of samples from InFIFO to the
filter regressor vector memory based on a combination of
the availability of samples in the FIFO and the availability
of the filter resource labeled TRPE in the figure. TRPE
contains the polyphase matched filter, polyphase derivative
matched filter, error loop filter and a reasonably complex
state machine that, among other functions, supplies the
address generation for accessing the various filter coeffi-
cients and data required to execute the two filters.

The timing circuit is designed to run at the nominal rate of
2 samples per symbol. In “steady-state” operation, the pro-
cedure is to deliver 2 new input samples to the circuit and
extract a single and correctly timed sample. As a function
of time, temperature, component tolerance and component
aging, there will be a slight difference between the baud
clocks of the receiver and transmitter. As described in an

earlier section, the timing circuit is to compensate for this
timing differential. For the case of a slow receiver baud
clock, the timing circuit is called upon to deliver a new
output sample based on the delivery of only one new input,
compared to the nominal 2 input samples. Conversely, if
the receiver sample clock is running at a higher frequency
than the transmitter clock, on average, more samples are
accumulated per symbol period, and periodically, the tim-
ing circuit is required to deliver a new output sample based
on the delivery of 3 new input samples rather than 2. The
number of samples M that are to be consumed to form the
next output is computed by TRPE and provided to the state
machine. This in turn is factored in to the control module
TRFSM and eventually converted in to the required control
signals required to actually read samples from InFIFO and
write these values to the filter regressor vector memory in
TRPE. An additional key control signal to TRFSM is the
current state of InFIFO as reflected by the FIFO Empty
flag. To simplify the timing recovery block interface, and
to essentially provide some insulation, or abstraction, from
the timing details of the upstream processing modules, the
firing of the timing of the recovery circuit is ultimately
gated by the availability of input samples to the circuit.
After a particular firing of the timing recovery circuit to
compute output sample i, the number of input samples M
(1, 2 or 3) required to generate output i+1 becomes avail-
able and is supplied to TRFSM. TRFSM effectively polls
the data input FIFO, waiting for new input samples, and as
they become available manages the transfer of the new
sample from the FIFO to the filter memory. Once the req-
uisite number of samples have been inserted in to the filter
memory, the timing circuit is instructed to fire and generate
a new output. New input samples that may arrive while the
timing recovery circuit is computing are simply buffered in
the input FIFO. There is no strict requirement on the arrival
time of new input samples to the timing recovery module
as the whole design is dataflow driven. Naturally, to ac-
commodate the real-time requirements of the MODEM the
average rate of arrival of input samples must be commen-
surate with the MODEM throughput. Constructing the cir-
cuit in this manner, makes it a relatively simple task to
compose a large system from module level IP (intellectual
property) that supports a similar dataflow interface abstrac-
tion.

4.3. Implementation Results

Table 1 summarizes the resource utilization for the timing
recovery module. One block memory (BRAM) [3] is re-
quired to implement the input FIFO InFIFO, another for
the MF and DMF regressor vector storage and two addi-
tional BRAMs are used to store the MF and DMF filter
coefficients. Note that the MF and DMF operate on identi-

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

cal input data and so only one BRAM is required to realize
the filter data storage. The MF operates on complex input
samples using a set of real-valued coefficients and so two
multipliers are required in the implementation. Only the
real component of the DMF is required to form the timing
error signal and so only one multiplier is required for this
circuit.
The error signal is the product of the real component of the
MF with the real component of the DMF, and is resourced
with an embedded multiplier. A proportional-integral re-
cursive filter is used to condition the error signal, and one
multiplier is used to support the filter coefficients in the
proportional and integrator paths of this structure.

Device BRAM MPY Slices LUT/FFs
XC4VSX35-12 4 6 444 339/739

ISE version 8.2.01, synthesis with XST, System Generator version 8.2

Table 1: FPGA resource utilization for timing recovery
circuit.

4.4. Performance Analysis

Using a 768-tap matched filter partitioned in to 32-phases
of 24 coefficients per phase, requires 24 processing clock
cycles to run a filter segment for a fully folded implementa-
tion. There are an additional 16 clock cycles of processing
overhead associated with the state machine and other proc-
essing tasks such as, for example, executing the loop filter.
This results in a processing duration of 40 clock cycles to
generate an output sample. The implementation supports a
clock frequency of 330 MHz in the fastest speed grade “-
12” Virtex-4 FPGA. Re-timed samples are therefore pro-
duced at a rate of 330e6/40 = 8.25 MSym/s. If, for exam-
ple, the data is carrying QPSK modulation, the resulting bit
rate is 2x8.25 = 16.5 Mbps. It is straightforward to allocate
more FPGA embedded MAC units to the matched filter
and polyphase matched filter to reduce the processing time.
For a fully unrolled implementation, that is one in which a
dedicated MAC unit is allocated to each tap in the MF and
DMF, the processing time of the timing recovery circuit
can be reduced to 16 cycles. In this case, and using an
FPGA processing clock frequency of 330 MHz, results in
an output symbol rate of 330e6/16 = 20.625 MSym/s. For
QPSK modulation the data rate is 41.25 Mbps. Table 2
summarizes MODEM data rate as a function of the folding
factor applied to the MF and DMF.

Folding
Factor

MF & DMF

Mod. MPs MSym/s Mbps

24 QPSK 6 8.25 16.5
24 16-QAM 6 8.25 33.0
24 64-QAM 6 8.25 49.5
12 QPSK 39 11.79 23.6
12 16-QAM 39 11.79 47.1
12 64-QAM 39 11.79 70.7
1 QPSK 75 20.625 41.3
1 16-QAM 75 20.625 82.5
1 64-QAM 75 20.625 123.8

Table 2: Timing recovery circuit output rate and bit rate as
a function of the number of multipliers allocated to the
implementation. A clock rate of 330 MHz is assumed.

5. CONCLUSIONS

A brief tutorial on timing recovery using derivative
matched filters was presented. The FPGA implementation
of this method was described along with an outline of the
tool chain that was employed. We note that the complexity
of the timing recovery circuit is associated with the control
plane, and that a useful mechanism for managing the mar-
shalling of data through the various modules in the circuit
is based on concepts employed in data flow methodologies.

6. REFERENCES

[1] fred harris, “Multirate Signal processing for Communi
 cation Systems”, Prentice-Hall, Upper saddle River, NJ,
 2004.

[2] System Generator for DSP, Xilinx Inc.,

http://www.xilinx.com/ise/optional_prod/system_gene
rator.htm

[3] Virtex-4 User Guide, Xilinx Inc.,
 http://www.xilinx.com/xlnx/xweb/xil_publications_dis

play.jsp?CMP=ILC-
ver-
tix4newuser&ATT=Datasheet&iLanguageID=1&categ
ory=Publications%2fFPGA+Device+Families%2fVirt
ex-4

[4] Simulink - simulation and Model based design, The
 Math
 works,http://www.mathworks.com/products/simulink/

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

