
A Software Defined Radio Proof-of-Concept Demonstration Platform

Shi Zhong, Craig Dolwin, Rollo Burgess
Toshiba Research Europe Limited, 32 Queen Square, Bristol, BS1 4ND, UK;

{shi.zhong,craig.dolwin}@toshiba-trel.com;
Telephone +44 117 9060700; Fax +44 117 9060701

ABSTRACT

This paper presents our work on a demonstration platform
for a software defined radio proof-of-concept. The aim of
the demonstrator is to show seamless switching between
different functions of an IEEE 802.11a [1] WLAN OFDM
system on an adaptive execution environment. The
mechanisms and interfaces for dynamic, reliable and secure
Software Defined Radio (SDR) equipment reconfiguration
are investigated.
 The adaptive execution environment concept is
evaluated on the Real-Time Research Platform (RTRP). A
Functional Description Language (FDL) based on XML is
used to describe functional configurations for
reconfigurable equipment. The FDL XML description is
interpreted by the Configuration Control Module (CCM)
using Signal Processing Modules (SPM) to create a binary
configuration file for the target platform. A hardware
abstraction layer (HAL) for uniform access to the
heterogeneous signal processing hardware is defined.
Finally a WLAN OFDM system is implemented on the
platform and used to demonstrate the ideas discussed.

1. INTRODUCTION

The modern mobile phone works in a heterogeneous radio
environment with operators potentially supplying a number
of different access technologies. Depending on location and
required service the user or operator may select a different
technology to minimise cost or optimise performance e.g.
when the user is at home or in the office the local WiFi
connection is probably the cheapest option for making a
connection but when travelling the only option possible
maybe a cellular connection. Currently this type of
operation is supported by phones that are capable of
supporting multiple Radio Access Technologies or
waveforms (e.g. GSM, WCDMA, IEEE802.11abg) as well
as packet based services such as VOIP. If we project this
into the future we can see that, with the gradual push for
spectrum de-regulation [2], operators will be free to select
their own access technology. This is attractive to the
operator because it allows them to differentiate themselves
from competitors and rapidly track market requirements.
However, it will mean that the number of modes that need

to be supported by a multi-mode handset will become very
large and the cost and time to develop these multi-mode
chips will be prohibitively expensive and slow. The solution
we have been investigating in E2R phase 1 and phase 2 is a
Software Defined Radio (SDR) that is capable of being
dynamically reconfigured while in the field. A basic
requirement for any SDR terminal is the ability to be
reconfigurable while still maintaining low power
consumption and minimal use of silicon. This is a very big
challenge to the silicon manufacturer especially when the
complexities of future systems are continuing to increase.

INTERNET

Access
Point

GSM
Base-

Station

3G
Base-

Station

GPS/Galileo

CMM

Configuration
InformationCCM

SPM
SPM

FDL

SPM

01
01

010
101

10
0

FD
L

SPM

FDL

Speech Packet

SPM

Operator/ MVNO
Configuration Control

Signal
Processing

Module
Package

Functional
Description Package

Equipment Manufacturer
Database

0101010101100

Figure 1: Reconfiguration scenario

 One of the areas E2R has focused on is the logical
framework that will allow the remote and reliable
reconfiguration of equipment. This has included the
definition of a language called Functional Description
Language (FDL) to communicate across the network the
requirement for a new a configuration. The FDL is platform
independent and is interpreted by the equipment, via the

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Configuration Control Module (CCM), to create a unique
configuration for that specific hardware platform. To create
this configuration the CCM may request new object code
for reconfigurable logic or DSPs from a manufacturer’s
database. This is shown graphically in Figure 1. In this
paper we describe the work being done within E2R phase 2
on a proof of concept which aims to demonstrate how these
ideas can be implemented on an actual platform.

2. OVERVIEW

The HW/SW block diagram for the SDR Proof-of-Concept
demonstration platform is shown in Figure 2.

The Configuration Control Module (CCM) is
responsible for the reconfiguration of the radio device. It
interacts with a higher-level entity (known as the
Configuration Management Module CMM and not shown)
which has the responsibility for deciding what Radio Access
Technologies (RAT) should be operational at any time.
When a change in configuration is required the CMM
communicates with the CCM to request new configurations
and to exchange any relevant configuration data.

Thereafter a sub-module of the CCM, known as the
Primary Configuration Controller (PCC) interprets the
configuration request and the configuration data, to decide
how best to implement the RAT using the available
hardware, ensuring that all relevant constraints are met.
Finally the PCC installs the chosen software modules on the
signal-processing hardware and initiates the execution of
the new RAT. The required implementation-independent
functionality of each RAT, including its real-time
constraints, is communicated to the PCC by a Functional
Description Language (FDL) document.

The Real-time Research Platform [3] (RTRP) contains
a set of interconnected hardware components, which are a
heterogeneous mix of different processing elements, e.g.
GPPs and DSPs, and FPGAs. These provide the
mechanisms required for dynamic, reliable and secure
change of equipment operation, and offer a consistent
interface to the equipment reconfiguration manager in order
to apply the needed reconfiguration actions.

A RTRP Hardware Abstraction Layer (RTRP_HAL)
has been defined. The RTRP_HAL is a generic interface
that allows the client to install tasks, pipes and links in a
standard manner. In essence the RTRP_HAL is analogous
to an operating system that has been extended to encompass
multiple operating systems and a single system-wide
communication system that manages the inter-processor
links.

Figure 2: Block diagram of the Software Defined
Radio Proof-of-Concept Demonstration Platform

3. THE REAL-TIME RESEARCH PLATFORM

The Real-Time Research Platform is a scalable system
consisting of a compact PCI rack containing a number of
boards, see Figure 3. One contains a dual processor PC
running Windows XP while the remainder are carrier boards
supporting a flexible communications fabric that links up to
4 processing nodes attached using daughter modules. Both
the carrier and daughter boards are commercial off-the-shelf
components. The carriers are critical to our approach since
they contain communication architecture in the form of a
ring that enable nodes to be dynamically connected
together, with guaranteed fixed bandwidths and latency.

Figure 3: The real-time research platform

Figure 4 shows a typical arrangement of the RTRP with
two communication rings and 4 processors. Each module
connected to communication fabric can be configured to
receive data on one or more of the six available FIFO
channels. Similarly each module can write to one or more of
six channels. If the total number of channels in a particular
HEART [3] configuration is less than six it is possible to
allocate more than one time slot to a channel. Each
connection between processors across a ring can be

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

assigned bandwidth in increments of 533Mbps up to a limit
of 3.2Gbps, the maximum supported by each ring.

Figure 4: HEART connections of RTRP

The ring’s nodes support modules containing processors,

ADCs, DACs and inter-ring communication devices. We
are using boards containing DSPs and FPGAs.

3.1 DSP module

The DSP module supports a 300 MHz TI C6203 DSP [4]
which is connected to both the host system and other
modules via the data transfer fabric. The HERON FIFO
interface is used to load DSP programs and to allow the
DSP to send and receive data from other modules. This
module also supports some digital I/O which connects to
other system modules.

3.2 FPGA module

The FPGA module provides a Xilinx XC2VP7 Virtex-II Pro
[5] FPGA connected to the data transfer fabric. As with the
DSP module the FPGA is directly connected to the 100
MHz 32 bit wide HERON FIFO interface. This interface
can potentially feed data to the FPGA at gigabit rates whilst
simultaneously accepting data at similar rates. The
configuration of this interface is programmed via the Hunt
host application.

4. FUNCTIONAL DESCRIPTION LANGUAGE

Configuration data is found at all levels of software-defined
radio. For example, at the hardware level, a DSP binary file
can be considered as configuration data that targets the DSP
and configures it for a specific signal-processing function.
Likewise an implementation-independent description of that
function can be considered as configuration data that targets
the configuration plane and is used to configure the
software implementation of that part of the radio.

In [6][7][8] we classified the principal configuration
data types required for a software modem, showing that
many types are well understood, e.g. compiled binary
executables for microprocessors. Others, such as radio
functional descriptions, are less well known with no
commonly accepted representations. A recommendation
was made that these types, particularly those concerning
high-level descriptions, should be encapsulated using a
common data-model, and packaged for transportation and
storage using a common file format. Together each data-
model and file format constitutes a configuration language.
Compressed XML and XML Schema [9] were selected as
the file formats for containing the data and data-model
respectively.

A functional description language enables radio signal-
processing algorithms to be defined as a hierarchical flow of
signals (data and control) between functions (termed
processes in the language) communicating via 1-to-1 or 1-
to-many channels. The channels are connected to input and
output ports on the functions. They define the input and
output data types. In addition the description captures
constraints and timing information, for example a function’s
real-time deadlines and a channel’s maximum latency. The
root of a hierarchy is known as an algorithm. An algorithm
is just a function which contains other functions and
channels. A complete radio modem is an example of an
algorithm, one which must be broken up into sub-functions,
such as turbo-decoders and filters. There is considerable
flexibility in how each algorithm can be implemented, since
each sub-function can be targeted to a different processor.
Leaf functions, i.e. those that are not algorithms and have
no sub-functions, must be implemented using a single target
processor.

The first stage in interpreting a functional description is
to obtain the individual data items from the XML source.
We assume that all such descriptions will initially be
available as local XML files. (These may have been
obtained either during initialisation of the equipment by a
manufacturer/service provider etc, or by over-the-air
download.) Subsequently the XML files must be parsed into
a memory representation. The data in this representation can
either be acted upon immediately or it can be transferred to
a more sophisticated storage device, such as a local
database. Figure 5 is an overview of the functional
description service which is used by the CCM. Since an
algorithm is always the starting point the language is known
as the algorithm description language.

The language’s XML Schema is a critical component; it
defines the syntax of the XML documents, the structure of
the XML database and classes in the object-oriented
implementation of the service. The CCM and this service
execute on the host PC of the RTRP. The CCM accesses the
service through the algorithm description interface. In
general there is a one-to-one mapping between elements in
the XML Schema data-model and classes in the C++

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

implementation. For example the Alg_Algorithm XML
element represents an algorithm. The Alg_Algorithm class
mirrors the XML element and, being at the top of the
hierarchy, provides a large part of the algorithm description
interface.

Algorithm Description IF

Algorithm

Alg_Algorithm Alg_Process Alg_Channel

XM L Parser API

XM L ParserXM L DB M anager

XM L DB API

«real ize» «real ize»

«real ize»

Figure 5: Algorithm description service

5. HARDWARE ABSTRACTION LAYER

The configuration data are parsed by the PCC and
implemented on the RTRP platform via RTRP_HAL. In a
conventional system access to a hardware device is often
achieved using a single operating system, which may be a
RTOS if timeliness is an important concern. These
operating systems generally apply to a specific type or
group of processor types. We assume in the general case the
target system will be composed of different types of
processors, each potentially with their own operating
system. Each OS may support a limited amount of inter-
processor communication. In the general case though, as in
our hardware architecture, the communication device or
devices may be independent of the individual operating
systems. From the CCM’s perspective, mapping and
scheduling the functions is a complex task and it does not
want to get involved in the individual details of different
hardware. All it needs is to be able to manipulate primitives
such as tasks and communication links, with a unified
mechanism for reporting errors. The following Table 1 lists
some of the generic configuration API for creating tasks,
linking two tasks, deleting and abort a task across different
execution environment hardware.

TASK_NAME PARAMETERS
CreateTask TASK_ID,TASK_NAME,

DEST_HARDWARE_ID,
BINARY_MEMORY_ADDR,
STARTUP_TIME
PARAMETERS

DeployTask TASK_ID
LinkTasks PRODUCER_TASK_ID,

CONSUMER_TASK_ID,
MSG_LENGTH

DeleteTask TASK_ID, WAIT_TO_FINISH
AbortTask TASK_ID

Table 1. RTRP_HAL configuration API

5.1 Task creation

A task is a program context that can be executed on
different hardware. In order to create a task, a unique
TASK_ID is required. The task instance will be placed into
the task database. The DEST_HARDWARE_ID specifies the
destination hardware, and the BINARY_MEMORY_ADDR
points to the memory address that stores the binary code for
a specific hardware. The STARTUP_TIME is used for
scheduling purpose, which specifies the time to trigger the
task. The PARAMETERS provides configuration
information for a task.

5.2 Deploy task on a GPP

GPPs provide software programmability by executing the
applications on an instruction set architecture (ISA). By
changing the software instructions, the functionality of the
system is altered without changing the hardware. In order
to reconfigure GPP on Windows or Linux operating
environment, dynamic loader objects are commonly used,
e.g. Windows Dynamic Linkable Libraries (DLL) [10], and
Linux shared library (.so) [11]. DLLs need to be relocated
during loading, unless the fixed base it was built with
happens to be unused in the loading process. Relocations to
the same address can be shared, but if different processes
have conflicting memory layouts, the loader needs to
generate multiple copies of the DLL in memory.

5.3 Deploy task on a DSP

DSPs are specialised processors, which well suited to
extremely complex maths-intensive tasks, with conditional
processing. The performance of a DSP is limited by the
clock rate, and the number of useful operations it can do per
clock cycle. TI Dynamic Loader [12] is integrated into the
RTRP_HAL to enable tasks to be deployed on the TI 6203
DSP at run-time. The dynamic loader is a general-purpose
runtime library for loading program images. It can be used
for loading dynamic images to an already running DSP

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

application. When installing a DSP module during
execution, the reformatted image is provided to the dynamic
loader. The dynamic loader relocates the code and data of
the module as needed, and places it in the memory of the TI
DSP. References within the module to already loaded
software are resolved at this time.

5.4 Deploy Task on a FPGA

FPGAs, contain an array of computational elements whose
functionality is determined programmable configuration
bits. These elements, sometimes known as logic blocks, are
connected using a set of routing resources that are also
programmable. In this way, custom digital circuits can be
mapped to the reconfigurable hardware by computing the
logic functions of the circuit within the logic blocks, and
using the configurable routing to connect the blocks
together to form the necessary circuit, which in turn
provides hardware programmability. In order to deploy a
task on VirtexIIpro FPGA chip, the Hunt Serial Bus (HSB)
access functions are integrated into the RTRP_HAL. The
FPGA can be reconfigured by downloading a new
configuration bitstream via HSBs.

5.5 Link creation

Links are created through the RTRP_HAL API, and each
link provides one-to-many connection mapping for the
execution environment hardware. Figure 6 shows the
wrappers for defining link within the hardware, which is
suitable for processor type hardware (e.g. GPP, and DSP).
When a task is defined, a thread is attached to the task body
as a link wrapper. Semaphore and shared memory access
functions are also generated by the wrapper. After a result is
produced by the producer functions, a semaphore is sent to
the consumer thread with the corresponding memory
address of the result. Finally, the consumer task will
consume the result.

Figure 6: Links between tasks on the same processor

 Furthermore, Figure 7 explains a more sophisticated
scenario for defining links between tasks on different
processor. Extra tasks for crossing hardware
communications are needed. In our case, these are
Read/Write functions for the communication FIFO between
the source and destination hardware. Results generated by a

producer task will be routed to the consumer task via the
FIFO.

Figure 7: Links between tasks on different processor.

6. WLAN OFDM SYSTEM IMPLEMENTATION

A wireless LAN 802.11a OFDM system is being developed
on our proof-of-concept SDR platform. Figure 8 shows the
block diagram of the system with a transmit chain and a
receive chain. On the transmitter side, the input bits are
scrambled, convolutionally encoded, punctured, interleaved,
mapped, IFFTed, and added with a cyclic prefix and finally
transmitted over RF via an antenna. On the receiver side,
the incoming packet is synchronised using the coarse timing
block and fine timing block estimates the channel state and
information of the packet. The rest of the design blocks of
the receiver perform the inverse of the operations performed
at the transmitter.

Figure 8: Block diagram of 802.11a OFDM system.

The OFDM system is developed in C. In the preliminary
experiment, two common blocks are chosen to demonstrate
the switching between FPGA and DSP. Convolutional
encoder and 64-point FFT are taken from the OFDM system
and compiled on TI Code Composer Studio (CCS) for TI

SEMAPHORE AND SHARED MEMORY

THREAD

PRODUCER
TASK

THREAD

CONSUMER
TASK

O
U

T
P

U
T

IN
P

U
T

FIFO

THREAD

PRODUCER
TASK

O
U

TP
U

T

IN
P

U
T

THREAD

WRITE FIFO
TASK

SEMAPHORE AND SHARED
MEMORY

SEMAPHORE AND SHARED
MEMORY

THREAD

CONSUMER
TASK

O
U

TP
U

T

THREAD

READ_FIFO
TASK

IN
P

U
T

W
R

IT
E

R
E

AD

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

6203 DSP. The relocatable object codes are loaded into
DSP at runtime via the generic configuration API. For the
Virtex II-Pro FPGA, convolution encoder and 64-point FFT
are generated from Xilinx Core Generator and synthesised
by the Xilinx ISE[13] tool flow. Table 2 summarised the
size of the 802.11a binary components. For the same
implementation, FPGA usually needs more memory than
the DSP for storing the configuration data. Compression
can be implemented on the configuration data to reduce the
memory consumption and latency for downloading such
data. FPGA compression works by writing identical
configuration frames once rather than many times.
Configuration frames are arranged vertically. With the ZIP
compression algorithm [14], the bitstream can be
compressed much smaller. For example, the size of the
compressed convolution encoder bitstream is reduced by
48%, and the zipped version is reduced by 98%.

 DSP

object
DSP
zipped
object

FPGA
bitstream

FPGA
compressed
bitstream

FPGA
zipped
bitstream

Convolutional
Encoder

3K 1K 528K 275K 12K

FFT 13K 3K 528K 376K 77K

Table 2. Size (in bytes) of chosen 802.11a components

Though the FPGA provides a better algorithm
implementation with less control flow and more parallel
arithmetic and logic operations over DSP, it suffers higher
reconfiguration overhead. Table 3 summarises the time to
load different components into FPGA and DSP on our
RTRP platform. From the table, we see that the FPGA
introduces much longer latency for loading the
reconfiguration data than the DSP. This is mainly due to
the relatively slow serial bus that is used to download
bitstreams into the FPGA, and the average achievable
bandwidth is less than 100 Kb/Sec. On the other hand, a fast
speed FIFO for downloading DSP objects code is used,
which guarantees 533Mbps bandwidth. With the
compressed configuration data, an extra overhead for
decompressing the data is also introduced. But the
compression method is regarding as a trade-off between
reconfiguration overhead and the time for downloading a
component over the air.

DSP
object

DSP
zipped
object

FPGA
bitstream

FPGA
compressed
bitstream

FPGA
zipped
bistream

Convolutional
Encoder

0.011s 0.058s 2s 3s 3.47s

FFT 0.023s 0.070s 13s 14s 14.47s

Table 3. Loading time of chosen 802.11a components

The size and loading time of the components provide
quantised profiling information for the CCM, which can be
used to make design-time and run-time decisions for
switching components between different execution
environment hardware.

7. CONCLUSIONS AND FUTURE WORK

A SDR proof-of-concept demonstration platform is
presented in this paper. The hardware architecture of Real-
Time Research Platform (RTRP) is introduced. With the
FDL description, an algorithm can be interpreted and
executed on the platform. RTRP_HAL provides a generic
configuration API for loading the components. An IEEE
802.11a OFDM system is being implemented on the
platform. Two components are chosen to demonstrate the
run-time reconfiguration concept for SDR systems. In the
future, a CMM module running on a NOKIA 770 handheld
device will be integrated with the current platform, and a
mechanism for the dynamic, reliable and secure
reconfiguration of SDR equipment will be demonstrated as
part of the E2R project.

8. ACKNOWLEDGEMENT

This work has been performed in the framework of the EU
funded project E2R II. The authors would like to
acknowledge the contributions of their colleagues from E2R
II consortium.

9. REFERENCES
[1] IEEE Wireless LAN Edition, A compilation based on IEEE

Std 802.11TM-1999 (R2003) and its amendments
[2] OFCOM Spectrum Framework Review Plan, Jan 2005,

http://www.ofcom.org.uk/consult/condocs/sfrip/sfip/sfr-
plan.pdf

[3] Hunt Engineering website: http://www.hunteng.co.uk
[4] TMS320C600 CPU and Instruction Set Reference Guide, TI,

Oct,2000
[5] Virtex-II Pro Platform FPGA Data Sheet, Xilinx, 09/10/03
[6] R. Burgess, S. Mende. The Role of Configuration Data and a

Configuration Control Module in an End-to-End (E2R)
Software Radio System. 14th IST Mobile & Wireless
Communications Summit: Dresden, 19th - 23rd June 2005

[7] R. Burgess, S. Mende. Configuration Languages - Theory and
Implementation. E2R Project Whitepaper:
http://e2r.motlabs.com/whitepapers

[8] Rollo Burgess, On the Integration of an XML Functional
Description Language into the Configuration Controller of a
Proof-of-Concept Software Radio System, 4th Karlsruhe
Workshop on Software Radios,Germany,22nd & 23rd,2006

[9] W3C, XML website: http://www.w3.org/XML
[10] MSDN, Microsoft online document,

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/dynamic_link_libraries.asp

[11] Linux online document,
http://www.linux.org/docs/ldp/howto/Program-Library-
HOWTO/shared-libraries.html

[12] Getting Started With the Dynamic Loader, TI application
Report, December, 2002

[13] Xilinx ISE software Manuals and Help, Xilinx ,2005
[14] Guy E. Blelloch, Introduction to Data Compression, October

16, 2001

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session
	Power Point Presentation

