
A METHODOLOGY FOR A VERIFIABLE SOFTWARE PLATFORM TO
SECURE SOFTWARE DEFINED AND COGNITIVE RADIOS

Thomas W. Rondeau (Virginia Tech, Blacksburg, VA, USA; trondeau@vt.edu); Timothy

M. Bielawa (Computer Sciences Corporation; tbielawa@vt.edu); David Maldonado,
(Virginia Tech, Blacksburg, VA, USA; davidm@vt.edu), Michael Hsiao (hsiao@vt.edu),

and Charles W. Bostian (bostian@vt.edu)

ABSTRACT
Software defined radios (SDR) introduce many new
challenges, one of which is the proper development,
maintenance, and distribution of the core software. As with
any software venture, SDR requires industry, government,
and the independent development community to work
together to produce an environment that fosters software
development and innovation. SDR differs from other areas
of software development by the long history of radio
regulatory requirements that must be satisfied. In this paper,
we propose a methodology to bring to the SDR world the
same level of development and innovation that has made
other software ventures a success. The verification platform
we propose allows software developments to guarantee
regulatory compliance even when faced with the challenges
of open source software and cognitive radio regulation.
 The system itself first verifies that the software meets
regulations and sends back to the developer the object code
along with a security key that grants access to the radio for
download. The system’s security policy relies on standard
industry encryption and authentication schemes. Therefore,
it requires no new developments but rather the application of
existing methodology for this application.

1. INTRODUCTION

Over the past few years, much work has gone into the
concept of software defined radio (SDR) downloads – that
is, getting code that defines a new or modified air interface
into the radio platform [1-3]. This work has been focused on
the reliable, efficient, and secure downloading of new
software from the company of origin, primarily though an
over-the-air (OTA) interface. Major concerns are
guaranteeing the integrity of the download and the
protection of the software itself from prying eyes.
 There is another software issue that has been largely
overlooked, mostly because of the immaturity of the SDR
field: open source software (OSS) and radio software
developed by individuals. Here, the concern is not so much
the security of their source code (although it could be);
instead, the concern is with the probable reaction of the
regulators. In its recent Report and Order on cognitive radio,
the Federal Communications Commission (FCC) [4]

discusses open approaches like the GNU Radio and exempts
them from the rules governing interference regulations
because of their low output power and amateur-band only
operation. Extrapolating from here, it is easy to envision a
future where the available open source software easily
allows operations of the radios outside of the amateur bands,
causing great potential for interference to existing services.
 Accompanying SDR is the development of cognitive
radios (CR), which allow for new and possibly unknown
waveform development in real-time operation [5, 6]. While
the FCC is interested in supporting this, as stated in their
Report and Order, it does not yet understand how to control
the radios to ensure compatibility with the regulations.
 Chapin [7] presents a strong argument for how
successful efforts in new software technology require wide-
spread support and development tools for adoption and
design of best practices. There is no better way to advance
SDR and CR technology than to foster the creative spirit of
the academic and development communities through
encouraged experimentation and supported development
systems like open source software.
 Here, we introduce a new method of SDR and CR
software development along with a methodology and
framework for assuring compliance and securely
downloading the software to these radios. The paper first
presents an analysis of similar software download systems
and concepts and then gives an overview of automatic
software verification methods that could be employed.
Section 4 provides the system architecture, and Section 5
provides a cryptographic analysis of the security issues. In
Section 6, we propose a system of development classes for
SDRs and CRs to support development and regulations on
different levels. Section 7 concludes with thoughts on the
development and use of this system.

2. CURRENT RELEVANT TECHNOLOGIES

2.1 Over-the-Air downloading

Although many methods exist for software upgrades, over-
the-air downloads represents the most attractive and
challenging one. In these situations, downloads and
upgrades are performed under the care of an individual user,

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

A METHODOLOGY FOR A VERIFIABLE
SOFTWARE PLATFORM TO SECURE

SOFTWARE DEFINED AND COGNITIVE
RADIOS

Center for Wireless Telecommunications
466 Whittemore Hall

Blacksburg, VA 24061
Virginia Tech

11/14/2005

Thomas W. Rondeau, Timothy M. Bielawa
David Maldonado, Michael Hsiao, and Charles W. Bostian

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2

Two problems facing the future of
SDR and CR

Hardware
Engineering

Software
Engineering

1) Bridging the gap:

2) Support and encourage creativity, innovation, and
development in government, industry, and academia.

Ada

vs.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3

Shared
Symmetric Key

Overview of System Operation
Development

Platform

Verification
Server

SDR
Hardware

Software is verified, and a secure key is used to
protect downloads to the radio.

Development Class
Source Code

Object Code
Security Key

Development Class
Object Code
Security Key

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

4

Timing Diagram
Radio

Platform Developer
Verification

Server
Test code

locally
Start secure
connection

Verify
Encrypt ESK(D)
Hash Key =
H(ESK(D))

Authenticate
Encrypt ESK(D)
Hash Key’ =
H(ESK(D))
diff(Key, Key’)

Transmit to
radio platform

devel. class, src. code

obj. code, sec. key

obj. code, sec. key,

devel. class

Connection
handshake

Transmit to
Verification

server

Secure connection
accepted

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5

Software Verification

PI PO

N
S

PS

Original
Design

Abstract

Abstracted
Design

Model Check

(Cut open
latches)

V
al

id
at

e
co

un
te

r-
ex

am
pl

e

Refine

DONE !

FAIL
PASS

• Apply unbounded and/or
bounded model checking to
underlying software

• Check property violations
– Frequency bounds
– Power output
– Authorization

• If property holds in abstracted
design, it definitely holds in
original

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

6

Security Key

Plaintext
contents of
the Object
File.

Œ
� � � � � �x ‡NP�™`ÉF&

�4ý^h }Ý—º� °æ‹—
‘� � ‚È¤;Ì½ŽÑ“� WùrÏ”ñ†
£˜� Û®� Rà � �N Õø!Ÿab

�(j'i Ñ—‡f5¬“€Ü¹cÈ�

7e3377644e2392651d5cd5d93ce49b4a

Plaintext Ciphertext

Encrypt

Hash

Encryption links the key to
the object code.

Hashing protects against
decryption attacks

Final key is small and secure

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

7

System Diagram

The radio platform contains its own symmetric key to
recreate the HMAC.
If this HMAC matches the security key, the code is
authenticated.

Shared
Symmetric Key

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

8

Development Classes

Provide a set of development
classes that developers can use
to certify their radios.
Development classes are
licenses the FCC grants
developers
Symmetric keys are associated
with a particular development
classes
Could be free or priced
depending on level. Access to
verification servers could be
priced by these classes.

• Amateur

• Cognitive Radio

• Part 15 / ISM

• Cell phone

• GPS receiver

• Public Safety

• Experimental

Partial Class List

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

9

Security Issues

• Cryptographic-Based
Attacks
– man-in-the-middle
– birthday
– plaintext

• Hardware-Based
Attacks
– Power
– Timing
– Logic

Eve

Bob

Alice
Bombe

Enigma

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

10

This project is supported by Award No. 2005-IJ-CX-K017 awarded by the National
Institute of Justice, Office of Justice Programs, US Department of Justice. The
opinions, findings, and conclusions or recommendations expressed in this
publication/program/exhibition are those of the author(s) and do not necessarily
reflect the views of the Department of Justice.

This material is based upon work supported by the National Science Foundation
under Grants No. 9983463, DGE-9987586, and CNS-0519959. Any opinions,
findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation (NSF).

Acknowledgement

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Thank you!

Thomas W. Rondeau
Timothy M. Bielawa
David Maldonado
Michael Hsiao
Charles W. Bostian

Center for Wireless Telecommunications
Virginia Tech
466 Whittemore Hall MC 0111
Blacksburg, VA 24061

Contact:

trondeau@vt.edu

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

mailto:trondeau@vt.edu

not a licensed authority. In general terms, OTA downloads
can happen in two ways: originated by the network server
(push) or by a unit request (pull). Most current work in the
OTA download area assumes the push model, which lowers
the burden of authenticating the devices. Within a given
network, the authentication process is easier as the network
server knows which units will require a given
update/download, and the service that it provides as an
authentication mechanism is already in place. On the other
hand, when a pull request is generated, the server may have
no knowledge of the intent of the device and how the
download would affect any given service. Therefore, the
authentication mechanism needed must contain additional
information beyond the one that is currently provided.
 Signaling is required to request or initiate a download
(by either the server or terminal). The signaling will have to
cover the aspects of security (authorization and
authentication) as well as negotiation of the download.
Several approaches have been presented that explain in
detail successful ways to achieve that [1-3].
 Security in OTA downloads is one of the largest
concerns in implementing this technology, and a lot of work
has gone into the development secure methods to safely
transport the information between the developer and the
radio as well as ensuring proper authentication [1-3]. These
systems assume a closed-source development structure,
which has different challenges than this system is faced with.

2.2 Other Software Download Systems

Without naming any particular technology, we can separate
relevant methods into two main areas: proprietary
technologies that secure and protect the interest of the
original developer, and technologies that distribute open
source software for general application, e.g., software
published under the General Public License (GLP).
 The first group protects the intellectual property of the
original developers and manufacturers, prevents access to
too much information, and possibly offers a high-level
development kit supporting limited applications. These
systems are often built on proprietary processors and
operating systems. Downloads are restricted to certain areas
of operation within the system, and other areas require
special permissions. These closed systems offer some
flexibility, but often at a high cost. Physically, these systems
are manufactured to be secure; the systems are not publicly
well documented and are physically compact and obscure.
While such systems would offer security guarantees to
regulators, they discourage the innovation so critical in the
development of SDR and CR techniques and communities.
 Some closed technologies are supported on open
platforms that use standard parts, which are easily reverse
engineered. While they are secured to some extent, there is a
history and culture of “tinkerers” that hack such systems.

 On the other side, open source methods grant access to
most of the system, allow individuals to change and
distribute newer versions of software or build new systems
incorporating parts of or whole projects. The Internet has
grown out of this concept, and many of the standard tools
used today have come directly from this culture, like the
GNU project and Linux.
 The innovation the market has seen from the open
source concept is now being brought, for the first time, into
a world with regulatory limits and protections. In neither the
closed nor open systems do we yet see the crossover
between the freedom and development of the OSS
community and the protections required by the government.

3. SOFTWARE VERIFICATION

The verification system we propose is a general architecture
for safely conveying verified software from the developer to
the radio platform, but we do not provide any particular
means of performing the verification. While verification
could be done by an individual human auditor, it could also
be done, more efficiently, with advanced and automatic
software verification techniques. In this section, we briefly
summarize the concept of software verification and argue for
the validity of this approach [8].
 Software testing has traditionally been performed via
simulation, program analysis, theorem proving, or model
checking. While simulation is easy to understand, it is not
scalable to large systems. In addition, coverage metrics such
as statement and condition coverage are not readily mapped
to how the bugs may have been covered.
 In testing the software embedded in SDRs and CRs,
success in validation has an additional dimension of making
sure that the waveforms, frequencies, etc., produced by the
embedded software not only comply with the FCC, but also
do not make demands beyond the radio hardware
capabilities. This allows the testing of SDRs to target
specific goals or properties. Thus, model checking becomes
a very suitable technique.
 Model checking by definition is the systematic
exploration of the state space of the underlying system.
Properties can readily be mapped to states and/or transitions
in the state diagram. Software model checking essentially
views the software as a transition system and applies the
concept of model checking onto it. Unlike hardware
systems, software can have significantly more variables.
However, most variables, especially local variables, do not
change in value and may be dormant when considering a
given program trace. This can be advantageous when model
checking the software. Aggressive abstraction can be
performed before model checking is applied.
 Given the abstracted model of the software on the
cognitive radio, along with the set of properties that we need
to check for, the testing follows the standard model checking

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

flow, and results of the model-check either uncovers any
counter-examples to which certain properties are not upheld
or declares the properties are upheld in the software.
 We note that the software testing paradigms are still
evolving, including software model checking. Advances in
testing technology will further our goals of testing the
embedded software in SDRs. Nevertheless, we believe our
proposed flow for verifying the software in SDRs is valid
and can be widely deployed for SDR servers.

4. THE SYSTEM ARCHITECTURE

The system discussed in this paper is a platform model to
ensure SDR code is properly verified before being
downloaded and used on a radio. It requires a system that
both properly verifies the software and provides a secure
method to get the code from the developer to the radio that
prevents the download of unverified code; in this paper, we
focus on the later issue. This system requires no new work in
cryptography and authentication; we only apply these
techniques in a way conducive to both the developers and
the regulators.
 The system design (see Figure 1) operates simply.
Following the timing diagram of Figure 2, the developer
begins by first locally testing and verifying the code before
offloading it to the verification server. The developer and
server perform standard authentication and establish a
secure connection to transmit the information. The
developer sends the source code as well as an indication of
the development class under which the code will be verified.
 The verification server takes the code and performs the
verification methods on it. Once verified, the server creates
a Keyed-hashed Message Authentication Code (HMAC)
security key [9, 10]. Both the object code and the security
key are transmitted back to the developer.
 The developer then sends the object code, security key,
and development class to the radio. The radio uses the
development class to determine which private key it must
use in the creation of its own HMAC. The object code is
then encrypted and hashed, and the HMAC is compared with
the HMAC of the security key to test if there is a difference.
If there is no difference, the code is accepted. If there is a
difference, an error is returned to the developer.

 We will now look closer at all the ideas developed for
the system operation.

Source Code
The source code written by the developer may be open
source, proprietary, or in between; the same principles of the
system’s operation apply regardless. The code should be
verified as much as possible by the developer before
transmission to the verification server to ease the burden and
time for both the server and developer. If desired, the
connection between the developer and server can be secured
using a SSL/TLS security policy [11].

Verification Server
The verification server assumes an analogous function to the
FCC in verifying proper regulatory compliance of the
software. Evaluation can be done in a similar way as current
compliance testing is done, or it could be done in a more
sophisticated and automatic way using the software
verification theory discussed previously. The verification
servers could be controlled completely by the regulatory
body (i.e., the FCC) or on trusted third-party servers to
offload some processing time. Third-party servers offer
economic incentives to the administrative entities through a
per-use charge depending on the type and number of radio
applications supported and the level of sophistication used
in their verification methods. Independent companies could
also obtain authorization to establish their own trusted
servers to allow complete in-house verification of all SDR
and CR applications created.

Object Code
The object code is returned by the verification server after
successful compilation and verification. The terms object
code and compilation are generalized for many code

Figure 2. System timing diagram.

Figure 1. Verification ystem block diagram.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

structures, even if no code is compiled (such as with some
Java or Python implementations). Compilation on the server
is important to have the proper ties between the object code
and the security key, as is discussed in the next section. The
server must therefore support a number of standard
languages to support different development strategies. The
list of languages can be constrained to some reasonable
number of common and well-accepted languages (e.g., C,
C++, Java, and Python to start with).

Security Key
The verification server returns two items: the object code
and the security key. The security key is what allows the
SDR to permit the user to download new code. Of course,
the radio must know that the code being downloaded is code
that was properly verified, and so the security key must
include enough information to ensure this. This requires that
the security key is somehow directly tied to the object code.
 It is because of the relationship between the security key
and the object code that we recommend the code is always
compiled on the verification server and not left to each
developer to compile the software. Different compilers and
configurations will result in different object code, which will
destroy the relationship between the security key and the
server’s object code.
 To create the security key, the verification server must
have enough information about the object code to tie the two
together; however, the key must be sufficiently unique that
the user can not create his own security key and sufficiently
complex such that there is no one-to-one relationship
between the object code and the security key.
 A common way of authenticating software is to create a
hash, or message digest, of the software [12, 13], which is a
one-way fingerprint of the contents of the hashed software
(one-way in that there is no (known) mathematical method
of taking the fingerprint and knowing the message that
created it [14]). However, this by itself is a weak
authentication method if we are trying to prevent only
verified code from being downloaded to the radio.
 Another method that could be used is to encrypt the
object code with a private key and only the SDR would be
able to decrypt it using a public key (or using a symmetric
algorithm). However, this is very weak form of encryption
since the user could compile his own code and, despite
possible differences between the two compilers, would have
a reasonable facsimile if not the exact copy of the object
code created by the server. This allows an easy plaintext
attack on the encryption, enabling the extraction of the key
originally used to encrypt the object code and allow the user
to create his own encrypted object code.
 A much more secure method combines both of these
functions and is referred to as a Keyed-hashed Message
Authentication Code (HMAC) that has been used in network
applications for years [9, 10]. The HMAC first encrypts the

object code with a symmetric key; the ciphertext returned
from the encryption process is then hashed using a valid
hashing function such as SHA-256 [12] or MD5 [13]. This
operation is shown in equation 1. It is important that the
encryption algorithm, the hash algorithm, and the symmetric
key be replaceable if any of them turn out to be weak or
broken in the future.

 ()()DEHKey SK= (1)

 In this equation, D is the object code, ESK is the
encryption algorithm using a secret key, and H is the hash
algorithm. This method ensures that the key is a small
fingerprint that is uniquely tied to the object code, but it
prevents anyone from either figuring out the ciphertext (due
to the one-way property of the hash) and prevents the user
from creating his own key due to the use of the secret key
that is shared by the verification server and the radio.
 The security key could come in the form of a certificate
that includes information about the server, the developer, the
verification process, and the HMAC. The certificate security
key helps establish accountability and trust.

Radio Platform
Of course, the whole system requires a radio platform to
operate the software. Software defined radios are the most
likely platform to be used, not only for SDR code, but also
as the enabling platform of cognitive radios.
 When the developer downloads the object code, he or
she must also download the security key returned from the
server. In order to authenticate the object code, the same
process occurs inside the SDR as it did in the verification
server. Equation 1 is used on the plaintext object code to
create an HMAC. If the HMAC calculated here matches the
HMAC of the security key, the SDR has authenticated the
object code as coming from a valid verification server, and
so the object code is accepted.
 The SDR itself therefore requires a standard operating
environment to perform the proper authentication measures.
While this system requires widespread cooperation and
deployment, the trade-off allows both freedom of
development as well as regulatory compliance guarantees
that do not currently exist.

5. SECURITY ANALYSIS

In this section, we review some of the most common
cryptographic attacks and security risks to systems.
Typically, developers and companies have little desire or
incentive to break the regulations if they are trying to sell a
product. It is for this reason that we suggested the in-house
establishment of a verification server with proper rules
governing the company’s responsibilities and accountability.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

 For these cases where software developers are trying to,
in good faith, create new SDR and CR technologies, the
verification server acts such that it protects the developers
from making a regulatory mistake and wasting their efforts.
 Conversely, there is always a small percentage of the
community that will want to tinker or break any system set
before them. While they may not necessarily be malicious
about it, our intention is to protect the integrity of the
verification method its role as much as possible. While we
can never guarantee a perfectly secure system, we can
ensure security against most attacks and establish methods
that will allow correction of problems as they arise.

5.1 Standard Cryptographic Attacks

Unlike OTA downloads, this verification methodology is not
subject to a man-in-the-middle attack. While this is a
concern in the transmission of the code to and from the
verification server, standard and trusted methods of
authentication and privacy can be employed here. If such an
attack were to occur, it would not damage the integrity of the
authentication method between the developer and the SDR.
 By using accepted standards for both encryption and
hashing, we ensure proper key and hash lengths to prevent a
birthday attack from being problematic. If designed
properly, the encryption and hashing algorithms are also
replaceable in case they show any weaknesses in the future.
 This paper has already addressed a plaintext attack.
Even with the encrypted object code (a known plaintext), we
have hashed it using an HMAC, so there is no known
method (aside from brute-force) that will tie the known
plaintext to the security key [15].

5.2 Hardware Attacks

Other attacks on security are when there is physical access to
the secured system. Both timing and power attacks exploit
the behavior of the system when performing the security
operations. Timing and power use can directly indicate the
type of operation being performed, which can lead to
discovering the secret keys used [16, 17]. There are many
known and developing methods to effectively combat such
attacks, and any implementation of this proposed
methodology should apply some measure of protection.
 Another issue is bypassing the security operations
altogether. If the security and authentication is performed in
a different chip on the radio hardware than the actual
processing of the code, there are methods to remove or
bypass the security chip. To counter this, tamper-proof
hardware has been used to ensure that both the security and
processing are done on-board the same chip or that an
attempt to remove or bypass the security chip would destroy
the system board [18]. It would be easier to create a new
system than hack this one.

6. SOCIAL ENGINEERING THE PROBLEM AWAY

While we can never guarantee a completely secure system
(i.e., brute-force) we can at least provide one that prevents
most technical problems. On the other hand, an environment
that embraces research and development can help mitigate
the desire to break the system. Here, we argue for a system
of development classes, which are licenses by the FCC to
perform certain radio operations on the SDR/CR platform.
 A developer applies for a set of development classes for
which he wishes to develop radio applications. Each
development class is associated with a secret key, which is
the key used in the HMAC authentication process. A key for
each development class is pushed to all verification servers,
and when a user is authorized to develop under a particular
class or set of classes, the associated keys are pushed on to
the SDR device using an OTA download mechanism.
 Now, when a developer is attempting to verify his code,
he also indicates his desired development class to the
verification server. The HMAC uses the associated secret
key to create the security key that is returned to the user.
Now, when the developer downloads the verified code to the
radio platform, the radio must have the same secret key to
properly authenticate it.
 Development classes should cover all areas of possible
desired development, and different development classes
could have different prices. Two important development
classes are for amateur radio and general research, both of
which should be free of charge (with proper identification of
a ham license for the amateur class).
 The amateur radio class offers a great set of frequencies
and flexibility for research and development and playing
with different waveforms and protocols [19]. Conversely, we
argue for the introduction of a basic, open-ended
development class that would allow a developer to create
any waveforms and protocol where only the output power is
restricted to some low power (< 0 dBm).
 This concept has the potential to stimulate growth and
experimentation as well as discourage abuse. The tinkerers
who will play with anything, irregardless of the restrictions,
will still be able to play with no added cost to them or the
threat of introducing a major problem for the regulators.
There will still be those who will try to break the system,
because there always are, but we can limit this to a small
percentage and let them have their fun.
 The biggest flaw in this system is the threat of exposing
a secret key. If one of these were to get out, the information
would quickly spread over the Internet. Since almost all
cryptographers advocate the use of open standards for
security, once the key is known, its application in a known
cipher would be trivial. To avoid this problem, we suggest a
new set of keys be generated every so often (on the order of
a month) and automatically pushed to all registered radio

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

platforms. Now, the security risk is in the OTA download
mechanism used to push the set of keys; this must be secured
to maintain the integrity of the entire system.

7. CONCLUSIONS

The system presented offers a way to allow development and
innovation while adhering to the necessary restrictions
placed on wireless communications. While there is still
much work needed to realize this system as well as adoption
by industry, government, and the development community, it
offers a solution that is both secure and flexible.
 One interesting area is the software verification system
that is still a major research undertaking. This topic has
great potential in the future of SDR and CR work, but in the
meantime, the verification platform discussed in this paper
will work with any system or independent auditor that
guarantees regulatory compliance.
 We have focused on the SDR/CR development
community, but we feel it has application in other areas, too.
SDRs and CRs are the first place to look to for a system like
this because of the consequence that innovative designs may
have on regulations, yet the same use applies in other, non-
regulatory areas where open development is greatly
beneficial. Intel has recently supported the efforts of open
source software to develop applications on TinyOS for their
Mote wireless sensors [20] exactly because the support of an
independent development community would build new and
creative tools and applications that might otherwise never be
seen. Likewise, other areas might wish to see such creative
innovation, but the nature of the product introduces safety
and liability risks. This verification platform would uphold
those restrictions and maintain compliance with certain
bounds placed on the system by the original manufacturer.
 While some in the software community might decry this
solution, claiming that any restriction is too much, the intent
is to satisfy both sides: the developers who need their
freedom, and the regulators who need to uphold their laws.

7. ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation under awards 9983463, DGE-9987586, and
CNS-0519959.

9. REFERENCES

[1] M. Dillinger and R. Becher, "Decentralized software

distribution for SDR terminals," IEEE Trans. Wireless
Communications, vol. 9, pp. 20-25, 2002.

[2] SDR Forum, "Overview and Definition of Radio
Software Download for RF Reconfiguration in a
Technical and Regulatory Context," SDR Forum, 2002.

[3] L. B. Michael, J. Mihaljevic, S. Haruyama, and a. R.
Kohno, "Security Issues for Software Defined Radio:
Design of a Secure Download System," IEICE Trans.
Communications, vol. E82, 2002.

[4] FCC, "Facilitating Opportunities for Flexible, Efficient,
and Reliable Spectrum Use Employing Cognitve Radio
Techniques," R&O: FCC 05-57, March 11, 2005.

[5] S. Haykin, "Cognitive Radio: Brain-Empowered
Wireless Communications," IEEE Trans. Selected
Areas in Communications, vol. 23, pp. 201-220, 2005.

[6] T. W. Rondeau, B. Le, C. J. Rieser, and C. W. Bostian,
"Cognitive Radios with Genetic Algorithms: Intelligent
Control of Software Defined Radios," in SDR Forum
Technical Conference, 2004, pp. C-3-C-8.

[7] J. M. Chapin, "The Future of JTRS and its SCA:
Lessons from Ada," COTS Journal Online, 2004.

[8] T. Ball and S. K. Rajamani, "Automatically validating
temporal safety properties of interfaces,” in Proc. SPIN
Workshop on Model Checking of Software, 2001, pp.
103-122.

[9] H. Krawczyk, M. Bellare, and R. Canetti, "IETF RFC
2104: HMAC: Keyed-Hashing for Message
Authentication," 1997.

[10] W. Stallings, "The HMAC Algorithm," Dr. Dobb’s
Journal, vol. 24, pp. 46, 1999.

[11] T. Dierks and C. Allen, "IETF RFC 2246: The TLS
Protocol: Version 1.0," 1999.

[12] F. I. P. S. P. 180-2, "Secure Hash Standard," 2002.
[13] R. L. Rivest, "IETF RFC 1321: The MD5 Message-

Digest Algorithm," 1992.
[14] B. Schneier, "One-Way Hash Functions," Dr. Dobb’s

Journal, vol. 16, pp. 148-151, 1991.
[15] B. Schneier, Applied Cryptography, 2nd ed., New

York: John Wiley & Sons, 1996.
[16] E. English and S. Hamilton, "Network security under

siege: the timing attack," Computer, vol. 29, pp. 95-97,
1996.

[17] T. S. Messerges, E. A. Dabbish, and R. H. Sloan,
"Examining smart-card security under the threat of
power analysis attacks," IEEE Trans. Computers, vol.
51, pp. 541-552, 2002.

[18] A. Raghunathan, S. Ravi, S. Hattangady, and J. J.
Quisquater, "Securing mobile appliances: new
challenges for the system designer," in Proc. Design,
Automation and Test, 2003, pp. 176-181.

[19] J. Miller, "The “Ham and SDR Sandwich”: Innovation
and Enforcement Issues for Free and Open-Source
Software on Software-Defined Radio Devices," 33rd
TPRC, 2005.

[20] R. M. Kling, “Intel Motes: Advanced Sensor

Network Platforms and Applications,’’ IEEE

Proc. IMS, 2005.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

