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ABSTRACT 
 
A Software Communications Architecture (SCA) 
Waveform for space telemetry is being developed at the 
NASA Glenn Research Center.  The space telemetry 
waveform is implemented in a laboratory testbed consisting 
of general purpose processors, FPGAs, ADCs, and DACs.  
The radio hardware is integrated with an SCA Core 
Framework and other software development tools.  The 
waveform design is described from both the bottom-up 
signal processing and top-down software component 
perspectives.  Simulations and model-based design 
techniques used for signal processing subsystems are 
presented.  Testing with legacy hardware-based modems 
verifies proper design implementation and dynamic 
waveform operations. 
 The waveform development is part of an effort by 
NASA to define an open architecture for space based 
reconfigurable transceivers.  Use of the SCA as a reference 
has increased understanding of software defined radio 
architectures.    However, since space requirements put a 
premium on size, mass, and power, the SCA may be 
impractical for today's space ready technology.  Specific 
requirements for an SCA waveform and other lessons 
learned from this development are discussed. 
 
 

1. INTRODUCTION 
 
The Space Telecommunication Radio System (STRS) 
project team at the NASA Glenn Research Center is 
currently studying the Software Communications 
Architecture (SCA) to support the design effort of an open 
architecture for software defined radios in the space 
environment.  In order to better understand the application 
of such an architecture to space-based radios, the STRS 
waveform development team is currently working on a 
prototype SCA waveform that mirrors the functional 
characteristics of current NASA space telemetry [1].  The 

waveform’s basic characteristics are QPSK modulation, ½ 
rate Viterbi coding, and 1 Mbps user data throughput. 
 An SDR-3000 development platform, part of the testing 
and validation laboratory at NASA Glenn, was utilized for 
the waveform development.  The platform consists of a 
number of PowerPC multipurpose processors, field 
programmable gate arrays (FPGAs), digital-to-analog 
converters (DACs), analog-to-digital converters (ADCs), a 
real-time operating system, the Harris SCA core framework, 
and a communication board support package.  This platform 
was used to transmit and receive signals to other 
commercial satellite modems at 70 MHz intermediate 
frequency (IF) for testing and validation purposes. 
 Both a bottom-up and top-down design approach was 
implemented, as described in the next section.  Testing and 
validation methods and results are described in section 3.  
To conclude, a discussion of implications for space-based 
radio applications is in section 4.  Lessons learned are 
included throughout these sections. 
 
 

2. DESIGN & IMPLEMENTATION 
 
Knowing where to begin the development was a significant 
challenge, even with a basic understanding of the SCA.  
Developing this SCA waveform required experience in 
several different areas, such as middleware, object oriented 
embedded programming, FPGA design, digital signal 
processing, not to mention space communications.  On 
occasion industry software engineers were consulted to 
supplement the waveform team’s experience and 
knowledge.  Specifically, during the course of this effort, 
the team acquired knowledge in the following areas: 
• Use of the software development and monitor tools 
accompanying the core framework. 
• Use of the interface definition language (IDL) to define 
various interfaces for the components of a waveform. 
• The SCA domain profile specification and how to 
deploy and configure various parts of the waveform. 
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• How the core framework uses CORBA and how 
CORBA applies to the waveform. 
• The process path needed for developing the various 
components of the waveform and connecting them together. 
 
The waveform development process followed can be 
summarized in the following steps [2]: 

1. Identify the functionality that comprises the 
operation of the waveform. 

2. Identify the interfaces between the components 
3. Create and compile IDL for the waveform specific 

interfaces (e.g. PullPacket) 
4. Write CORBA Servant code 
5. Create XML 
6. Test and debug 

 
In parallel, the various waveform digital signal processing 
functions, such as the modulation mapping, were tested and 
debugged in a non-SCA waveform.  Then these functions 
were integrated with the corresponding SCA waveform 
software component. 
 The initial development tasks focused on how the 
waveform is managed by the SCA core framework, and 
how the various sections of the SCA handle deployment and 
operation of the waveform.  The SCA core framework 
provides a Domain Manager, Application Factory and 

Application entities for deployment and control of the 
waveform.  The waveform developer only needs to 
concentrate on a set of basic application interfaces such as 
Port, PropertySet, Resource and others as described in the 
SCA specification.  Waveform components are developed 
with these base application interfaces and interact with the 
SCA deployment and control mechanism through 
information provided in the Software Assembly Descriptor 
XML file, and other supporting XML files [3]. 
 Identifying the functionality of the various components 
that would comprise the transmit portion of the space 
telemetry waveform produced the following four software 
components, (as shown in Figure 1): 

1. Data Generator – produces internally generated 
data patterns, and provides an interface with 
external data sources. 

2. Encoder – convolutionally at ½ rate and 
differentially encodes data. 

3. Modulation Mapper – converts the binary data to 
modulation symbol samples. 

4. Filter & UpConv – performs pulse shaped filtering 
and digital up conversion. 

 
To deploy these components within the SCA core 
framework, an additional component called the Assembly 
Controller is needed.  The SCA specification requires that 

Figure 1:  Transmit SCA software components and interfaces 
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all external configuration, control and query requests are 
relayed by the core framework and processed by the 
Assembly Controller.  For example, as shown in Figure 1, 
the Data Generator is a resource component which has 
properties DG_MODE and DG_SOURCE.  These 
parameters can be set by a user via an external interface that 
communicates through the core framework domain 
manager.  The domain manager passes the information 
along to the Assembly Controller.  The Assembly Controller 
has port connections to the various components to relay the 
property values to the proper destinations. 
 The Assembly Controller, the Data Generator, the 
Encoder and the Modulation Mapper are components that 
are to be deployed on general purpose PowerPC processors.  
The SCA specification requires that these components 
communicate using CORBA.  To minimize communication 
delays among distributed objects in the CORBA 
environment, the four components were collocated on the 
same processor.  Connections between the components are 
achieved by specifying SCA ports on each component. 
 A PullPacket interface is defined in IDL to encapsulate 
the transfer of a data packet using CORBA.  The 
PullPacket interface is used by the Modulation Mapper to 
transfer packetized data from the Encoder.  The Encoder, in 
turn transfers data from the Data Generator with the same 
type of interface.  In IDL, a PullPacketInterface is defined 
with a function called pullPacket.  An IDL compiler for 
C++ is used to create the code to support the 
PullPacketInterface within the CORBA communication 
environment.  The waveform components that support the 
PullPacketInterface must implement a pullPacket function. 
 The pullPacket function in the Data Generator creates a 
packet of data based upon the current DG_MODE setting.  
The data packet is passed back to the Encoder which adds 
its encoding and then passes the data packet back to the 
Modulation Mapper to prepare it for further processing.  In 
a similar fashion, the interface between the Filter & 
UpConv requests a data packet by using a different CORBA 
interface called RequestOut. 
 Up to this point the waveform components fit nicely 
within the SCA core framework because they are to be 
deployed on general purpose processors (GPP).  The filter 
and up converter functions however are deployed and 
executed inside an FPGA for performance reasons.  This 
currently requires a SCA component, shown as the Filter & 
UpConv block of Figure 1.  This represents the control part 
of the filter and up converter function, and resides on a GPP 
with a direct connection to the FPGA.  The hardware 
platform on which the waveform is deployed has a board 
support package with various SCA logical devices which 
allow specialized hardware to operate within the core 
framework.  The development platform uses flexFabric 
(platform specific RapidIO switched fabric) to quickly 
move data between various processors.  The control portion 

of the Filter & UpConv can receive parameter control 
information from the Assembly Controller and configure the 
FPGA appropriately.  Also, digital signal data packets from 
the Modulation Mapper can be directly sent over a 
flexFabric communication channel via a SCA port 
connection. 
 The WriteFabric interface between the Modulation 
Mapper and the filter & up converter functions on the 
FPGA uses a special mechanism to take advantage of the 
flexFabric interface to send data to the FPGA without 
CORBA.  This is important since the Modulation Mapper 
and the FPGA are on different physical processor boards 
and the CORBA communication delays via Ethernet would 
be too long for the waveform to function as it’s currently 
designed at a data rate of 1 Mbps. 
 A special association is needed to use the flexFabric to 
send data from the GPP to the FPGA.  There is an indirect 
connection made to a proxy allowing the WriteFabric port 
on the Modulation Mapper to obtain a handle from the core 

framework, as in item 1 below.  This handle is used to 
access the flexFabric to write data to the FPGA.  The 
implementation requires three XML connections in the 
software assembly descriptor (SAD) file, as Figure 2 
illustrates: 

1. From the GPP1 module (Modulation Mapper) to 
fabric proxy on the same device. 

2. From fabric proxy on GPP1 to fabric proxy on 
GPP2, the device with a direct connection to the 
FPGA. 

3. From GPP2 module (Filter & UpConv) to fabric 
proxy on the same device.  This connection is a 
placeholder to complete the connection, but the 
handle in the Filter & UpConv is not usable by the 
waveform. 

 
 The bottom-up design approach focused on developing 
the waveform functions independent of the SCA, yet 

Figure 2:  XML connections to FPGA 
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cognizant of the waveform’s top-level module boundaries 
and interfaces.  For example, GPP code was written for the 
data generator function that was independent of the 
encoding and mapping routines instead of being highly 
integrated.  Likewise the FPGA code was written with SCA 
control delays in mind, in terms of buffering data to deal 
with relatively lengthy CORBA calls. 
 A model-based design approach was employed with the 
FPGA circuit development.  Simulations of the digital up 
converter allowed parameters to be set properly for the 
given waveform specifications before testing on the 
hardware.  VHDL code was auto-generated from the 
working simulations, and then brought into the FPGA 
synthesis CAD tool.  The platform provided FPGA wrapper 
VHDL code was integrated with the application code.  
Figure 3 shows a functional block diagram of the platform 
FPGA wrapper with the transmit waveform functions.  The 
block labeled “DUC” contains the auto-generated code from 
the simulation model. 

 
 

3. TESTING & VALIDATION 
 
Testing was focused to learn whether SCA waveforms can 
be used for space applications.  Although the SCA start and 
stop methods were designed for normal use, testing and 
debugging was accomplished more efficiently using the 
runTest method.  This allows a variety of tests to be invoked 
without changing the waveform.  
 The SCA components in the waveform inherit from the 
SCA CF::Resource interface which inherits the runTest 
method from the TestableObject interface.  The runTest 
method was implemented in the SCA components to test 
passing data between components.  The data in the XML 
preferences was used to control what data was sent for those 
components tested.  A large value for the property NTIMES 
was entered to repeat the test for the corresponding number 
of packets where each packet was 4096 bytes long.  Timing 
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was kept and the lapse time was computed for the pertinent 
tests. Thus, debugging of different portions of the 
waveform’s functionality was possible by changing 
property values with the user interface.   
 Referring to Figure 1, a test of the Modulation Mapper 
pulling a packet from the Encoder which pulls the packet 
from the DataGenerator and sends the packet over the 
flexFabric to the FPGA was performed.  It took 2.05 
milliseconds to send each packet.  The results for the test of 
the Filter & UpConv requesting a packet from the 
Modulation Mapper which pulls the packet from the 
Encoder which pulls the packet from the DataGenerator and 
sends the packet over the flexFabric to the FPGA was 3.09 
milliseconds per packet.  The difference of about 1 
millisecond is the time to send a request from the Filter & 
UpConv to the Modulation Mapper.  This relatively 
significant delay is due to using CORBA between different 
boards in the SDR.  There will be more about the 
implications of this in the next section. 
 A challenge in waveform testing and debugging was 
the time it takes to make a simple change before it can be 
debugged.  The process of making a code change, 
recompiling, rebooting the hardware, loading the core 
framework, and starting the user interface usually takes at 
least 15 minutes.  This time delay makes the debug process 
cumbersome and inefficient by today’s standards.  
Additional challenges encountered were timeout errors, 
insufficient error messages from the core framework, 
system hang ups, and limited documentation.  

Several COTS legacy hardware modems were used in the 
validation testing of the waveform.  Some of these modem 
specifications are proprietary, such as the synchronization 
technique and forward error correction details, so 
interoperability with this equipment became a challenge.  A 

few of the original waveform specifications needed to be 
changed along the way as the testing revealed some of the 
differences with the legacy modems.  In particular the 
addition of differential encoding became necessary to allow 
phase ambiguity resolution in the commercial receivers.  
The original waveform design was a unique word method of 
synchronization, but this was not possible given the 
proprietary nature of the COTS modems. 
 The transmit waveform has been successfully tested 
with legacy modem receivers using pseudo random bit 
sequence data and differential encoding.  Additive white 
Gaussian noise was added at the 70 MHz IF yielding the 
BER performance plotted in Figure 4.  Some degradation 
from theoretical for differentially encoded QPSK is 
observed [4].  This is due in part to the unmatched pulse-
shaped filtering between the transmit waveform and the 
commercial receiver.  The proprietary nature of the legacy 
modem receivers makes matching the filter difficult. 
 
 

4. IMPLICATIONS FOR SPACE BASED SDR 
 
Certain aspects of the SCA are important when considering 
deployment, especially those that relate to size, weight, and 
power for a space-based radio.  Development of this space 
telemetry waveform has brought forth issues regarding 
FPGAs, memory, and waveform file system complexity. 
 This development effort intentionally placed as many 
waveform functions as possible in the GPP [1].  The FPGA 
was used for remaining functions that would not meet data 
rate performance in the GPP.  In actual space radio 
applications FPGAs are favored over GPPs because of 
performance and power efficiency.  Optimization is key for 
limited resource space-based radios.  The model-based 
design approach offers portability but is not yet optimal 
from a performance standpoint.  A standard FPGA wrapper 
would help with reusability and portability of optimized 
code.  Since there is no standard FPGA wrapper, there is a 
porting challenge for each new radio, having a different 
FPGA implementation.  Unfortunately, the SCA does not 
currently address FPGA application interfaces adequately.  
Although there is on going work in this area, it is 
recommended that industry and the standards bodies 
increase their efforts. 
 The bottom-up waveform development approach 
produced a non-SCA waveform, which allows an interesting 
comparison with the SCA waveform in terms of resources.  
The non-SCA waveform is a combination of all the data 
flow functions, such as encoders and upconverters, running 
without any SCA infrastructure. 
 As an estimate of the effort involved and resources 
required, the SCA waveform consisted of 69 files: 22 “.h” 
files, 25 “.cpp” files, 18 XML files, and 4 IDL files, 
whereas the non-SCA waveform consisted of 15 “.c” files.  

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 3 6 9 12
Eb/No (dB)

B
ER

testing
theory

Figure 4:  BER performance with legacy modem 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



The previous SCA waveform file count does not include 44 
additional files, 11 generated for each IDL file.  The SCA 
and non-SCA waveforms each consist of about 11600 lines 
of code.  Although these numbers of lines appear to be 
similar, the SCA waveform is much more complex. It 
contains implementations of the CF::Resource interface 
methods, and CORBA for data transfer, whereas the non-
SCA waveform contains extra test programs required for 
bottom-up testing. 
 In terms of memory footprint, there are significant 
differences for the SCA and non-SCA waveforms.  The 
SCA waveform consisted of 6.3 MB generated in 7 “*.out” 
files whereas the non-SCA waveform consisted of 0.5 MB 
generated in 2 “.out” files.  The SCA waveform is almost 13 
times as large as the non-SCA waveform, even before the 
core framework and CORBA are included in the SCA 
environment.  On the test platform's GPPs, the core 
framework took over 35 MB of memory, which includes 6 
MB for the XML parser alone.  The XML files are used for 
dynamic deployment, which may not be necessary on a 
space-base radio due to the static nature of the mission 
requirements.  In addition, the ACE/TAO ORB took about 
12 MB.  Although there are other much smaller ORBs 
available, the core framework and ORB would still consume 
a significant proportion of the required resources.  Current 
reconfigurable space radios have only about 2 MB of 
memory to do everything, including the operating system.  
The processing power in terms of GPP speed and FPGA 
gates is also at a premium, so it would be difficult to fly 
such an SCA waveform on space transceivers in the near 
term.  However, a viable “light weight” version of the SCA 
may enable the SCA to fly on future missions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 In the meantime, NASA is developing an open 
architecture radio infrastructure that parallels the SCA in 
many aspects but is small enough to fly on near-term 
missions.  Tradeoffs with the flexibility the SCA offers and 
the constraints of the space-based radios are a major part of 
the architecture design.  The SCA space telemetry 
waveform effort reported on in this paper has enabled the 
NASA architecture team to understand and assess the use of 
the SCA for space.  Many subtle aspects were only 
discovered through this hands-on development.  Future 
plans involve a port of the SCA space telemetry waveform 
to the new NASA software radio infrastructure as one of the 
first test cases.   
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