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ABSTRACT 
 
In this paper a distributed approach to mode identification 
and spectrum monitoring is studied. A Wireless Network 
composed by Cognitive Terminals is used to classify air 
interfaces present in the radio scene. The use of cooperative 
strategies and an advanced signal processing tool, Time 
Frequency analysis, allows to improve the radio awareness 
of device. Results in the terms of error probability, modeling 
the probability density function of considered features as 
Asymmetric Generalized and Generalized Gaussian 
functions, are compared to error rate showing good 
performance and coherence of theoretical model with 
experimental results. 
 

1. INTRODUCTION 
 

1.1 Why mode identification and spectrum monitoring 
is important 

The growing numbers of wireless standards are reducing the 
amount of unlicensed frequencies, making more and more 
difficult the use of spectrum for incoming and new wireless 
communication modes. However large part of licensed 
bands are unused both for large part of time and space: this 
means that, even if a particular range of frequencies is 
reserved for a standard, at a particular time and at a 
particular location it could be free and available. The 
Federal Communication Commission (FCC) estimates [1] 
that the variation of use of licensed spectrum ranges form 
15% to 85% whereas Defence Advance Research Projects 
Agency (DARPA) claims that only the 2% of the spectrum 
is in use in US at any given moment, even if all bands are 
allocated. It is then clear that the solution to these problems 
can be found dynamically looking at spectrum, as a function 
of time and space. This is the base of Cognitive Radios 
(CR): the paradigm, defined the first time by J. Mitola [2], 
foresees devices able to adapt themselves to spectrum 
environment and, in general, to external environment and to 
learn, as a biological cognitive process, from experience 
how to carry out this adaptation. CR brings to the definition 
of a completely adaptable physical layer where 
communication features, by sensing the spectrum, can 

change in relation to the conditions of the wireless channel, 
to the traffic status and to the users' requirements. In this 
process, in order to allow a representation of the external 
environment as close as possible to real world, a key role is 
played by mode identification and spectrum monitoring 
(MISM). By using MISM the terminal collect fundamental 
data from external environment, in particular from radio 
channel, and can carry out the adaptation typical of CR. 
 
1.2 What MISM is 
MISM is the join of a qualitative and quantitative analysis 
of reference band through the collection of information in 
terms of, respectively: 

• frequencies usage; 
• air interfaces classification. 

To evaluate the use of frequencies in a particular band some 
parameters have been studied, and energy level and 
interference temperature [3] are the most used; both 
qualitatively describe with good performance the occupation 
of a given frequencies band. Whereas to provide a 
quantitatively description of spectrum, air interfaces 
classification (also called mode  identification) is 
performed: an air interface (also called transmission mode) 
can be defined as the specification of the radio transmission 
between a transmitter and a receiver. It defines the 
frequencies or the bandwidth of the radio channels, and the 
encoding methods used such as FH-CDMA, DS-CDMA, 
TDMA, MC-CDMA, etc. [4]; thus mode identification 
process says which standard is present providing data about 
its nature. 
 
1.3 How MISM can be implemented 
In the state of the art some proposals can be found to 
implement radio sensing modules. The simpler and older 
solution is the use of the so called radiometer [5]: the idea is 
to extract energy in each sub-band identifying the presence 
of signals. The advantage is the computational load which is 
very low, but the drawback is that when signals temporally 
overlap on the same band, energy detection can be 
insufficient to discriminate the mode. Another work [6] 
presents the use of a radial basis function (RBF) neural 
network for a power spectral density estimation to identify 
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the communication standard. No superposition of signals is 
considered and different radio frequency stages are 
employed. In [7] a further integrated solution is proposed by 
means of two-stepped sensing module: a first energy 
detection to identify a void or occupied carrier; a following 
Radio Access Technologies (air interface) classification to 
detect GSM and UMTS signals. Also in this approach no 
superposition of modes are taken into account. The first 
procedure for sensing and identifying overlapping modes is 
presented in [8] where a time frequency analysis is 
combined with neural network to classify spread spectrum 
interfaces such as frequency hopping and direct sequence. 
The use of time frequency methods allows the study in time 
and frequency plane of spectrum in order to evaluate the so 
called 'white spaces' (or spectrum holes) also in time domain 
and moreover to discriminate two air interfaces using the 
same band. Approaches for spectrum sensing based on time 
frequency analysis have been proposed also in [5] with a 
complete and exhaustive analysis of cognitive radios. That 
paper proposes a procedure composed by interference 
temperature estimation and spectrum holes detection. One 
of the biggest effort in the field of spectrum sensing is given 
by DARPA’s neXt Generation program (XG Program) 
whose goals are the improvement in assured military 
communications through the dynamic assignment of 
allocated spectrum. In the Request for Comments (RFC) [9] 
a key function is given by sensing module which has to 
sample the channel in order to determine occupancy. The 
criteria for declaring a channel occupied are not specified 
but it is reported that the basic notion is to determine if there 
is a signal (frequencies usage), and if so, which the 
characteristics of the signal are (air interfaces 
classification).  
 

2. AIM AND STRUCTURE OF THE PAPER 
 
The aim of this paper is to present mode identification and 
spectrum monitoring procedure based on distributed 
network of cognitive terminals. Cognitive terminals can act 
as wireless sensors to create a wireless network (Figure 1): 
each radio gathers data about spectrum and by means of 
distributed detection theory [10] estimates which type of air 
interfaces are present. The same signal processing tool 
(Time Frequency Analysis) used in [8] is employed as part 
of a more general classification framework where multiple 
devices, instead of a single one, cooperate to the solution of 
a MISM problem. Each device carries out the steps of 
cognitive cycle working together other cognitive terminals 
to obtain a radio scene analysis more detailed and correct 
than in the stand alone scenario. To explain how this 
objective is reached, two air interfaces, Direct Sequence 
Code Division Multiple Access (DS-CDMA) and Frequency 
Hopping Code Division Multiple Access (FH-CDMA) are 
classified. Two cases of study are considered: IEEE WLAN 

802.11b and Bluetooth. The choice of these two standards 
stems from three factors: first, they are based on DS-CDMA 
and FH-CDMA, the chosen modes; second, they use the 
same bandwidth (Industrial Scientific Medical (ISM) Band) 
allowing the design of a unique RF conversion stage, as 
ideally required for an SDR platform [4]; third, the growing 
interest in them on the market for their wireless 
connectivity, especially for communications in coexistent 
environment.   
The paper is organized as follows: in the next Section an 
introduction about distributed perspective for cognitive 
radio is presented; then, in Section 4 the general and 
proposed framework are shown. Details of each part of the 
system are analyzed in Sections 5 and 6, with more attention 
to Distributed Classification (Subsection 6.1 ). Results and 
conclusion are then explained in Sections 7 and 0. 
 

 
Figure 1. General Scenario. 

 
 

3. DISTRIBUTED COGNITIVE PERSPECTIVE 
 
Many cognitive radio researchers have adopted the Oxford 
English Dictionary definition of "cognitive" as pertaining to 
cognition, or to the action or process of knowing and 
"cognition" as  the action or faculty of knowing taken in its 
widest sense, including sensation, perception, conception, 
etc., as distinguished from feeling and volition. From this 
definition it is possible to define a cognitive radio as a 
terminal able to sense the external world, analyze the 
gathered data, compute them in order to take a decision 
about which actions have to be carried out to modify its 
internal and external states. These tasks can be summarized 
in what Mitola calls radio cognitive cycle [12]: during 
which [...]cognitive radio continually observes the 
environment, orients itself, creates plans, decides, and then 
acts[...].  
To figure out how these functionalities can be used together 
in the same terminal can be difficult and a real application is 
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nowadays impossible: the solution proposed in this paper is 
a network of cooperative cognitive terminals sharing 
information and procedures in order to augment the 
awareness of the network itself. Due to different location of 
terminals and different nature of implemented 
functionalities, the gathered information are different and, if 
used in a cooperative framework, can improve the 
consciousness; in this paper the attention is focused on 
spectrum sensing and how distributed approach can solve 
the problem of radio awareness, getting better the 
probability of detect air interfaces and also the estimation of 
frequency usage.  
 

4. GENERAL AND PROPOSED DISTRIBUTED 
COGNITIVE FRAMEWORK 

 
The approach is a generalization of the one proposed in [8] : 
cognitive terminals (CT) CTi, with i=1,2,...,N, move in an 
indoor environment to observe the 'external world' by 
analyzing spectrum, searching for radio sources to be 
localized and identified. Each CTi is able to extract 
information from the external world, to analyze it, to decide 
and act in relation to a pre-defined cognitive cycle [2]. More 
precisely, each CTi captures the observation Oi(t), processes 
it and extracts from it a vector of features v(t) = {v1,v2,...,vF} 
which represents Oi in a synthetic form useful to the 
decision and action procedures.  Each device performs a 
classification Ci(t) based on available features and 
cooperative strategies. The classification  can be defined as 
a mapping between a features space V and a classification 
space C. V is the space of possible values assumed by 
features extracted by each CT during the observation. C, 
according to pattern recognition methods is basically a label 
space where labels identify different regions in the V space 
associated with different problem solutions. In the general 
framework the classification is oriented to solve a air 
interface classification problem combined with the location 
estimation of sources. 
The air interface classification and location problem is 
defined as follows :let's consider (Figure 1) that a set of 
CTs, {CT}={CTi: i=1,...,N} is present within the horizon of 
a number of radio sources RSk, k=1,...,K, where the horizon 
is the surface which contains all the areas of coverage of 
RSs. Let's associate with each RSk a position xRSk in a space 
X and a mode m in a space of possible radio modes 
corresponding to different air interfaces, let us say, for 
example M. Let us suppose that each CTi is associated with 
a position xi in the space X where radio sources are. Finally 
let's suppose that not null discrete quantized observations 
Oik(t), at each time t, for each CTi, are available as effects of  
radio source RSk over terminal CTi, i.e. the sensibility of 
each terminal CTi is such that can detect the presence of 
each radio source RSk if only that radio source is present, 
supposing that all radio sources in RS space lie in the 

horizon of each terminal in CT. Then the mode 
identification, spectrum monitoring and location problem is 
defined as the capability of the set T of cognitive terminals 
to carry out a set of classification Ci(t) about the presence of 
the transmission mode and the position of a set of Radio 
Sources RS which lie in the horizon of CT. 
When dim{CT}=1 a stand alone scenario is fixed, i.e. a 
single cognitive terminal is considered. If dim (X) =1 and 
the position of the stand alone CT1, are fixed, then a mono-
dimensional space and horizon are considered as the world 
domain of the problem (Figure 2). A situation with 
dim{CT}=1 and dim(X)=1 was considered in [8], where a 
feature vector v1(t, x1) based on time-frequency analysis of 
the observed spectrum, O1(t, x1) with CT1 at position x1, was 
analyzed. A problem with dim(RS)=2, i.e. with two radio 
sources was there analyzed with the additional constraint 
that xRS1 and xRS2, i.e. the positions of the radio sources, were 
fixed. However, that problem even though it allows an 
insight in the complexity due to the overlapping nature of 
the observations Oi(t, xi) in relation to different xi (where the 
overlapping effects of sources can give rise to difficult 
pattern recognition problem), is by many cases too simple to 
reflect more direct situations of interest. In particular, in this 
paper some working hypothesis done in [8] are relaxed, by 
using dim{CT}>1 and, without loosing generality, 
dim{CT}=2, where CT={CT1,CT2} is composed by a set of 
two smart sensors. Let us fix dim(X)=1 and again 
dim(RS)=2 where positions of the two sources RSk are 
known and then the problem of localization is not present, 
whereas the mode identification remains the main objective 
of the study. 
 
 

 
 
 
 
 
 
 

 
Figure 2. Stand Alone Scenario. 

 
In the previous framework the two CTs, are composed by 
different blocks (Figure 3) which can be grouped in Sensing 
Modules and in Analysis Modules. The sensing procedures 
is performed by directly sampling the received signal and 
representing it in a bilinear space, the Time Frequency (TF) 
plane; once TF matrixes, W1 and W2, are obtained the 
analysis procedures begin: from Wi, i={1,2} the features 
vector vi is computed and sent to the classification module  
which, by means of a cooperative strategy, extracts the 
classification Ci(t), which in this case, as M=2 and 
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dim{RS}=2, could be one of four possible choices 
(RSM=22=4) and in particular:  
 
• absence of signal, when all sources (RS1 and RS2) are 

switched off and can be present only environmental 
Noise (Noise class);  

• presence of WLAN signal (WLAN class), RS1 is 
switched on and RS2 switched off; 

• presence of Bluetooth signal (Bluetooth  (BT) class), 
RS1 is switched off and RS2 switched on; 

• presence of WLAN and Bluetooth signals 
(WLAN+Bluetooth class), RS1 and RS2 are switched on. 

 

 
Figure 3. Proposed System. 

 
5. SENSING PROCEDURES 

 
Sensing modules are the same used in [8], namely Radio 
Frequency (RF) stage and A/D conversion and Time 
Frequency (TF) block. The bilinear nature of the TF 
transforms provides a methodology to process time-varying 
and superimposed signals as the ones considered in this 
work. As TF distribution, the Wigner-Ville transform has 
been chosen [10]. For more details see [8]. 
 

6. ANALYSIS PROCEDURES 
 
The first part of this modules, (Feature Extraction) is the 
same used in [8], then features are two, namely standard 
deviation of the instantaneous frequency and maximum time 
duration of signal. Once these two values are computed the 
new part of system is used: Parameters Reduction and 
Classification blocks which are completely re-studied and 
designed . 
To simplify the problem, decreasing the dimension of 
features space, the Karhunen-Loeve (K-L) method [13] has 
been performed. Once new feature, linear combination of 
previous ones, simpler probability density functions (pdf) 
can be computed. In the case of WLAN, Bluetooth and 
Noise class the pdf can be expressed as a Asymmetric 
Generalized Gaussian (AGG) pdf [14].In case of 
WLAN+Bluetooth signal the pdf can be modeled as a 
Generalized Gaussian distribution (GG) [14]. 
Once pdfs of feature are modeled the detection process can 
be carried out. In following Section steps to reach 
distributed classification modules are explained.  

 
6.1 Distributed Classification 
As already stated in Sections 2 and 3, to improve the 
performances of a MISM module, in addition to an 
advanced signal processing technique, i.e. Time-Frequency 
analysis, a distributed classification algorithm is inserted in 
the system.  
Different strategies can be thought to implement a 
cooperative detection, each one characterized by advantages 
and disadvantages, mostly based on information exchange 
on a wireless radio channel. In the present paper a strategy 
which minimize the on-line exchanged information, in order 
to prevent possible interferences with the radio scene has 
been chosen: the information is exchanged in an a priori 
stage, when no device is immersed in the environment and 
no one is sensing the radio scene. The information is 
exchanged under the form of probabilistic maps of  features, 
which link the radio scene information with the position of 
the terminal. 

Figure 4. : Distributed Classification System 
 
The chosen strategy finds a theoretical framework in the 
distributed Bayesian detection by Varshney [10]. This study 
foresees the application of this approach with some changes 
to the considered scenario. 
Among the four situations to be classified (explained in 
Section 4), each Cognitive Terminal CTi, has to extract one 
of the four classes from C space composed as follows: 
 
C={{Noise,Noise},{Noise,WLAN},{BT,Noise},{BT,WLAN}}  
 
where the first component of each class is the status of RS1 
and the second one of RS2, and Noise means the 
corresponding source is switched off and only the 
environmental noise is present. To simplify the 
classification process, it’s possible to reduce the problem to 
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a binary classification test. In fact, a binary tree can be built 
taking into account the position of the CT. 
Let’s then consider a binary phenomena, i.e. two possible 
hypothesis are present, H0 and H1, which represent a 
possible couple of the previously described classes, with 
associated the own a-priori probability P0 and P1,. Being y1 
and y2 the observed features relative to the two cognitive 
terminals (CT), taken at the correspondent distance x1 and 
x2, the local classification Ci, with i = {1; 2} (where i 
denotes which device makes the classification), are given 
by:  

⎩
⎨
⎧

=
presentdeclaredisHif
presentdeclaredisHif

Ci
1

0
1
0

  (1) 

the local classification Ci is based on the local observation 
yi, at a given position xi, if no communication link is present 
between the two terminals. The cost assigned to each case of 
classification is given by Cijk, i, j, k = {0; 1} and it 
represents the cost of CT1 classifying Hi, CT2 classifying Hj 
when Hk is present. The target is to obtain a classification 
rule which minimize the average cost of the classification 
making [10] for the considered positions of the two 
detectors, i.e. x1 and x2. The following bayesian risk 
function is used for this purpose: 

 
 

         (2) 
 
 

where the dependence from the distance X ={xi,  i = 1, 2} is 
added to [10]. 
It’s hence possible to derive a classification rule for device 1 
which can be expressed as a likelihood ratio test [10]: 
 
 
 

(3) 
 

 
 
where Λ(y1) is the bayesian likelihood function for detector 
1 and it’s possible to note that it is also a function of C2, i.e. 
the classification rule for terminal 2. 
The right-hand side of the prvious formula can be reduced 
to a threshold: 
 

(4) 
 
 

 
it’s also possible to show explicitly that t1 is a function of 
p(C2 = 0 | y2, x2) which represent the classification rule for 
CT2. A similar conclusion can be obtained for the threshold 
of CT2. 

The proposed general definition and optimization of the 
system involve the existence of two coupled thresholds even 
if there is no communication link between the two detectors; 
but for the setup considered in the present paper an offline 
exchange of information consisting in probabilistic map of 
features is performed (See Fig. 4). 
Having computed ln(Λ(yi)) a closed form for Error 
Probability conditioned to each class can be defined and 
computed: 
 

 
 

 (5) 
 
 

 
In the following paragraph the simulation environment, 
based on previously described assumptions, the theoretical 
error probability for the moving terminal CTi and the 
relative error rate obtained in the on-line phase, are shown. 
 

7. RESULTS 
 
The general scenario is implemented by using 
Matlab/Simulink. In particular two cognitive devices are 
used, moving around a room of 15 X 15 meters. The radio 
scene to be detected can be composed by either one of two 
possible modes (Direct Sequence Code Division Multiple 
Access (DS-CDMA) or Frequency Hopping Code Division 
Multiple Access (FH-CDMA)), or both or none of them. 
The two modes are implemented taking into account all 
parameters defined in the standards [15],[16], except for 
protocols higher than the physical layer. The radio channel 
is modeled as indoor multipath with AWGN. Multipath 
model is Rice fading with delay spread of 60 ns and root 
mean square (rms) delay spread of 30 ns [17]. A path loss 
term has been inserted: it follows the model proposed in 
[18]. The received signals, corrupted by AWGN and 
multipath and attenuated as reported above, are 
demodulated and sampled. The feature extraction and 
reduction methods explained in section are hence applied 
and their pdf are modeled as AGG and GG. With these data 
the detection can be carried out computing the Error 
Probability. An online phase test is performed, evaluating 
the error rate of the distributed classification system. 
In Figure 5 the comparison, between the Error Probability, 
and the Error Rate obtained in the simulated system, are 
shown: the considered case is relative to confuse 
WLAN+Bluetooth class with WLAN class. In this situation 
due to overlapping of feature after K-L reduction both Error 
Probability and Error Rate present performance sufficient 
(between 10-4 and 10-2) up to 7 meters from the WLAN 
source. After this distance optimal results are obtained; 
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during this test the Error Rate follows the theoretical 
behavior. 

  
Figure 5. : Error Probability and Error Rate computed for the classes 

WLAN+Bluetooth adn WLAN 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6. Error Probability and Error Rate computed for the classes 
WLAN+Bluetooth and Noise 

 
The same comparison has been performed for the case of 
classifying WLAN+Bluetooth while only environmental 
Noise is present. In the Figure 6 is clear that the simulated 
system has optimal performances except between 8.5 and 
9.5 meters but in this case too the behavior of the simulated 
system are similar to the theoretical model showing the 
coherence of assumptions. 
 
 

8. CONCLUSION 
 
The paper deals with a distributed decision approach to 
solve the problem of Mode Identification and Spectrum 
Monitoring for Cognitive Terminals. Two air interfaces are 
classified, namely Frequency Hopping Code Division 
Multiple Access and Direct Sequence Code Division 
Multiple Access. A binary and distributed likelihood test has 
been computed obtaining a closed form for Error 

Probability; it has been compared with error rate showing 
coherence of theoretical model and good performances. On 
going research are centered on the resolution of multiple 
hypothesis distributed decision test taken into account new 
air interfaces such as multi carrier techniques, and new 
methodologies for a joint estimation of position and modes. 
 

REFERENCES 
 

[1] FCC, Spectrum Policy Task Force Report, Federal 
Communications Commission, ET Cocket, 02-155, Nov. 2002. 
[2] J. Mitola, “Cognitive Radio: making software radio more 
personal”, IEEE Pers. Comm., Vol. 06, No. 04, pp. 48-52, Aug. 
1999. 
[3] S. Haykin, “Cognitive Radio: brain-empowered wireless 
communications”, IEEE JSAC, Vol. 23, No. 02, pp. 201-220, Feb. 
2005. 
[4] J. Mitola, Software Radio Architecture: Object-Oriented 
Approaches to Wireless Systems Engineering, John Wiley and 
Sons, New York, NY, USA, 2000. 
[5] H. Urkowitz, “Energy Detection of unknown deterministic 
signals”, Proceedings of IEEE, Vol. 55, No. 04, pp. 523-531, Apr. 
1967. 
[6] J. Palicot, C. Roland, “A new concept for wireless 
reconfigurable receivers”, IEEE Comm. Mag., Vol. 41, No. 07, pp. 
124-132, Jul. 2003. 
[7] G. Vardoulias and J. Faroughi-Esfahani,  Mode Identification 
and Monitoring of Available Air Interfaces, pp. 329-352 in M. 
Dillinger, et Al., Software Defined Radio; Architectures, System 
and Functions, John Wiley and Sons Ltd, Apr. 2003. 
[8] M. Gandetto, M. Guainazzo and C. S. Regazzoni, “Use of 
Time-Frequency Analysis and Neural Networks forMode 
Identification in a Wireless Software-Defined Radio Approach”, 
Eurasip JASP, Special Issue on Non Linear Signal Processing and 
Image Processing, Vol. 13, pp. 1778-1790, Oct. 2004. 
[9] BBN Technologies, XG Architectural Framework RFC, 
Cambridge, Massachusetts, USA, 2003, 
[10] P.K. Varshney, Distributed Detection and Data Fusion, ch. 3 – 
Distributed detection without fusion, Springer-Verlag, 1996. 
[11] L. Cohen, Time Frequency Analysis : Theory and Applications 
, Prentice Hall PTR, ISBN 0135945321, New York, 1994. 
[12] J. Mitola, Cognitive Radio: An Integrated Agent Architecture 
for Software Defined Radio, PhD Dissertation, KTH, May 2000. 
[13] K. Fukunaga, Introduction to Statistical Pattern Recognition, 
Academic Press Inc., II Ed., ISBN 0122698517,1990. 
[14] A. Tesei, C.S. Regazzoni, “HOS-based generalized noise pdf 
models for signal detection optimization” , Signal Processing, Vol. 
65, No. 02, pp. 267-2811, Mar. 1998. 
[15] IEEE, IEEE 802.11b, Wireless LAN MAC and PHY 
specifications: higher speed physical layer (PHY) extension in the 
2.4GHz band, supplement to 802.11 edition, 1999. 
[16] Bluetooth SIG, Inc., Bluetooth standard, Specification of the 
Bluetooth System, v 1.2 edition, November 2003. 
[17] T.A. Wysocki, H.J. Zepernick, Characterization of the indoor 
radio propagation channel at 2.4 GHz, Journal of 
Telecommunications and Information Technology, vol. 1, no. 3-4, 
pp. 8490, 2000. 
[18] A. Kamerman, Coexistence between Bluetooth and IEEE 
802.11 cck solutions to avoid mutual interference, Tech. Rep., 
Lucent Technologies, Bell Laboratories, Jan. 1999. 
 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved


	Search by Author
	Search by Session/Paper

