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ABSTRACT 
 
Orthogonal Frequency Division Modulation (OFDM) 
technology has been adopted by a variety of standards 
which include the European Telecommunications Standards 
Institute (ETSI) for Terrestrial TV, the IEEE 802.11a/g 
standard for wireless LANs operation at bit rates up to 
54Mb/s and the IEEE 802.16a/d/e for wireless MANs at bit 
rates up to 72.61Mb/s. In this paper, the use of a digital 
signal processor is explored for OFDM communication 
systems with the goal of increasing flexibility. We discuss 
the hardware and software architecture of the implemented 
SDR baseband platform for the OFDM communication 
systems, considerations for re-configurability, and test 
results. We will also address practical issues for real-time 
processing and optimization schemes of DSP modem 
software, and provide detailed measurement results of DSP 
performance over the OFDM communication systems. 
 

1. INTRODUCTION 
 
Wireless LAN, Home Network, Digital broadcast, and the 
like as well as the 2G and 3G provide service users with 
ample convenience, but on the other hand, a wide variety of 
standards and protocols cause the service users a lot of 
confusion. Moreover, the circumstances that an individual 
can choose are need. In these conditions infested with data, 
text, image, audio, video, and so forth, a software Defined 
radio system that can support multi-mode and multi-
standard is demanded. 
 The hardware needs to be designed to have open 
architecture so that the SDR system has flexibility to meet 
diverse standards now being used and developed. Analog 
front-end and Application Specific Integrated Circuits 
(ASIC) have been used to follow fixed standards in design 
of the existing terminals, but reconfigurable Digital Signal 
Processors, reconfigurable Filed Programmable Gate Arrays 
(FPGA), and digital types of front-ends called digital 
intermediate frequency converter will be used instead. The 
SDR systems expand the range of digital signal processing 
to the IF from the baseband. Moreover, the performance of 

Analog-to-Digital (AD), digital-to-analog (DA) converters 
are being improved, and on the RF side, various tunable RF 
circuit design methods are being suggested so that the RF 
part can support multi-mode and multi-band. These facts 
will also help commercialization of the SDR [1]. 
 The first SDR was the Speakeasy system developed for 
the military purpose in the US. There have been numerous 
researches since then, and the military and commercial 
purpose products based on the SDR are being released. 
 Wideband wireless OFDM communication systems 
have gained in popularity due to the spectral efficiency and 
capability of OFDM to transmit high data rates over 
broadband radio channels with frequency selective fading 
[2]. Because of its benefit, OFDM technology has been 
adopted by a variety of standards which include the IEEE 
802.11a/g standard for wireless LANs operation at bit rates 
up to 54Mb/s and the IEEE 802.16a/d for wireless MAN at 
bit rates up to 72.61Mb/s.  
 In this paper, the implementation of the SDR baseband 
platform for OFDM communication system that is suitable 
for IEEE802.16a and IEEE802.11a environment is 
described. The rest of this paper is organized as follows. In 
section 2, we give description of IEEE802.16a and 
IEEE802.11a standard. The hardware architecture of the 
implemented SDR baseband platform and the software 
implementation are described in section 3 and section 4, 
respectively. In section 5, the experimental results of the 
implemented SDR baseband platform are justified and the 
concluding remarks are made in section 6. 
 

2. SYSTEM PARAMETERS 
 
IEEE802.16a WMAN has variable transmission data rate 
depending on the channel bandwidth (BW), the modulation 
type employed - quaternary PSK (QAM), 16-quadrature 
amplitude modulation (QAM) or 64-QAM , the amount of 
error-correcting code overhead (1/2, 2/3 or 3/4 overall 
coding rate) and the ratio of Cyclic Prefix (CP) time to 
useful time. Figure 1 shows the basic block diagram and the 
variable transmission data rate from 16.13Mb/s to 
72.61Mb/s with 20MHz channel BW specified in 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



IEEE802.16a standard. An OFDM symbol consists of a 
useful part and a CP. Here, the useful part is generated from 
192 data symbols, 56 frequency nulls and 8 pilot subcarriers. 
A 256 point IFFT converts the frequency domain symbol 
into a sequence of complex time domain samples. The 
baseband time domain sampling frequency is 160/7 MHz. 
The subcarrier frequency spacing is 89.28 kHz [3]. 

Figure 1. The functional block diagram of the IEEE802.16a 
 
 As the 5GHz WLAN standard, IEEE802.11a WLAN 
also has variable transmission rate from 6Mbps to 54Mbps. 
It utilizes a 64 point IFFT with 48 data symbols, 12 
frequency nulls, and 4 pilot subcarriers. The baseband time 
domain sampling frequency is 20MHz and the subcarrier 
frequency spacing is 312.5KHz. Figure 2 shows the basic 
block diagram of the IEEE 802.11a WLAN and the other 
specific parameters [4]. 

Figure 2. The functional block diagram of the IEEE802.11a 
 

3. HARDWARE ARCHITECTURE OF THE SDR 
BASEBAND PLATFORM 

 
The developed SDR baseband platform consists of three 
Texas Instrument’ TMS320C6416 fixed point DSP 
processors operating at the frequency of 720MHz, one 
Altera’ EP1S40B968C6 Stratix filed programmable gate 
array (FPGA), two ADS5500 analog to digital converters 
(ADCs) for 14-bit digitization with 125 MHz, one dual 
digital to analog converter (DAC), DAC2904, operates up 

to 125 MHz with 14-bit resolution, PLX9054 for PCI 
interface, several memories such as Flash ROM, dual-port 
SRAM and external interfaces for connection to the extra 
DSP daughter module and to control a RF transceiver. 
Figure 3 shows the block diagram of the SDR baseband 
platform.  
 Considering the characteristics of the SDR baseband 
platform, there are the PLX9054 for the PCI interface, a 32-
bit local bus, and HPI (Host Port) bus for downloading the 
execution code for the three DSP processors. The 
configuration files in the EPC16 configuration device is 
selected by the DSP (Tx) for re-configuring the FPGA’s 
functionality. The processing resources of the DSP 
processor can be extended simply when they are in short 
through the external connector to the extra DSP daughter 
modules. The data exchanges between PCI interface and 
DSP processors are done through dual-port asynchronous 
SRAM (IDT70V657S12DR) and the data exchanges 
between FPGA and DSP processors are done through dual-
port synchronous SRAM (ITD70V3599S133DR). Figure 4 
shows the implemented SDR baseband platform. 

 
Figure 3. The block diagram of the baseband platform. 

 

Figure 4. The block diagram of the baseband platform. 
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4. SOFTWARE IMPLEMENTATION 
 

The algorithms specified in the IEEE802.16a and 
IEEE802.11a, including randomizer, shortened-and-
punctured Reed-Solomon encoder, convolutional encoder, 
interleaver/de-interleaver, mapper/de-mapper, IFFT/FFT 
and synchronization algorithms are implemented by DSP 
software. 

Considering the development of DSP software, DSP 
manufacturers provide their users with various optimization 
schemes for their own DSPs. Texas Instruments (TI) 
recommends using intrinsics to replace the complicated C 
code. Intrinsics are special functions that map directly to 
inlined instructions to optimize the C code quickly. Many 
instructions that are not easily expressed in C code are 
supported as intrinsics. TI also recommends using wider 
memory access for smaller data widths to maximize data 
throughput on the DSP and using the linear assembly 
code[5-7].  

The TMS320C6416 DSP processor has Viterbi 
Decoder Coprocessor (VCP) and Turbo Decoder 
Coprocessor (TCP) for channel coding, which speed up 
decoding operation. The need procedures for decoding 
convolutional code are de-puncturing, branch metric 
calculation and EDMA configuration. The VCP is used to 
decode the convolutional code [8]. 
 The shortened-and-punctured Reed-Solomon encoder 
and decoder are developed in linear assembly code and 
measured cycle counts to process are shown in Table 1[9-
10]. 
 
Table 1. Measured cycle counts for shortened-and-punctured 
Reed-Solomon Encoding/decoding 

 
 The DSP software for the transmission and the 
reception is developed employing one DSP processor (DSP 
Tx) and two DSP processors (DSP Rx1, DSP Rx2 – 
indicated in Figure 2 and Figure 3) respectively. A summary 
of the cycle counts measured to implement the various 
functionality of the transceiver for processing one OFDM 
symbol (IEEE802.16a) is shown in Table 2. 

The FPGA carries out the sampling rate conversion 
between the baseband time domain sampling rates of 160/7 
MHz (IEEE802.16a) and 20MHz (IEEE802.11a) and 
ADCs/DAC sampling rate 80MHz. Figure 5 shows the 

functional block diagram of the FPGA and the internal 
resource usage is shown in Table 3. 

 
Table 2. Measured cycle counts for processing one OFDM symbol. 

 

Figure 5. The functional block diagram of the FPGA 
 
Table 3. FPGA internal resource usage 
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5. TEST RESULTS 
 

We tested the implemented SDR baseband platform in a 
personal computer (PC). Its functionality is experimented 
by baseband loop-back connection of the transmitter and 
receiver at DAC-ADC. In this section, we show some 
measured data with IEEE802.16a software. 
 The preamble and power spectrum of the transmitted 

signal are shown in Figure 6 and Figure 7.  
Figure 6. The preamble structure of IEEE802.16a 

Figure 7. The signal spectrum of the IEEE802.16a 
 
 Figure 8-(a) shows the constellation of received signal 
with phase noise and Figure 8-(b) shows the channel 
compensated constellation. 

Figure 8. The constellation of received signal 

6. CONCLUSIONS 
 

A SDR baseband platform for OFDM communication 
systems has been developed using three TI’ TMS320C6416 
fixed point DSP processor operating at the frequency of 
720MHz and one Altera’ EP1S40B968C6 Stratix FPGA. 
The DSP software for transmission was developed 
employing one DSP processor, and its achieved total cycle 
counts for one OFDM symbol (IEEE802.16a) generation is 
4,695 cycles as shown in table 2. In receiver part, the DSP 
software developed using two DSP processors for real-time 
implementation. Synchronization algorithms (Frame and 
Symbol Detection, Channel Estimation) is done by DSP 
Rx1 processor and one received OFDM symbol 
(IEEE802.16a) is processed in 9,226 cycles by DSP Rx1 
and Rx2 processors, as shown in table 2. Now, we are 
working on improvement of the developed SDR baseband 
platform and DSP software optimization for real-time 
implementation. 
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