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Many electronics applications are very compute-intensive 
(e.g., software-define radio, wireless communications, radar, 
and sonar). The challenge in developing these applications 
is to get the highest compute performance possible, while 
retaining tremendous flexibility to configure applications for 
specific functions. This increasing demand for compute 
capacity has challenged fixed instruction set processors.  To 
overcome this, designers have begun trying to off-load 
portions of their algorithms onto hardware accelerators 
using FPGA or ASIC devices. Software-configurable 
processors provide programmability through the 
simultaneous reconfiguration of functions in both hardware 
(custom instructions) and software. With an instruction set 
that can change dynamically, a single team of hardware / 
software developers can approach complex and compute-
intensive algorithms from a completely different 
perspective.  A software-configurable processor combines 
the ease of software development associated with GPPs and 
DSPs, with the parallelism and flexibility of FPGAs.  This 
paper will discuss how software-configurable programming 
differs from traditional software-only methodologies and 
mixed-language hardware/software methodologies by 
describing the implementation of several compute intensive 
functions using only the “C” programming language. 
 
 

1. INTRODUCTION 
 
The complexity of embedded systems, especially software 
define radio, has reached a point where hardware 
acceleration is often required in order to meet real-time 
processing requirements and market cost points.  
Introducing hardware acceleration provides the necessary 
performance increase but at the cost of increasing 
complexity and extending the overall design cycle. Given 
rapidly evolving and emerging standards, a flexible, 
scalable, and programmable architecture with most of the 
application software written in C/C++ is desired.   
 Developers have increased performance by 
partitioning an application across multiple processors.  This 
approach however, increases device size, power 
consumption, and application complexity, often exceeding 
cost and power budgets to meet minimum performance 
requirements.  A more recent approach has been to offload 
processing to an FPGA-based engine acting as a  
 

 
 
co-processor to assist in computations done on an 
application processor.  The primary disadvantage of this 
approach is that the heterogeneous nature of the architecture 
requires separate development environments.  Additionally, 
having to design additional interfaces between the processor 
and FPGA—including a hardware interface, data exchange 
mechanism, and processing overhead—increases design 
complexity and introduces unnecessary design constraints. 

In reality, hardware acceleration of an algorithm 
cannot begin until the algorithm has been completely 
designed in software.  What this does is merely reverses the 
traditional “hardware first, then software” design model.  
What developers really need in order to improve 
performance without completely undermining time-to-
market is concurrent software and hardware development.  
This is only possible if hardware and software are created at 
the same time. 
 Today developers have access to software-
configurable architectures which provide the flexibility of a 
general-purpose processor with the computational capacity 
of a DSP or ASIC.  Development is done entirely in 
software—both hardware and software functionality are 
described in C/C++, effectively enabling developers to 
design "hardware as software", resulting in reduced design 
complexity and speeding time-to-market. 
 Software-configurable architectures achieve this by 
abstracting hardware acceleration.  Four key aspects of 
design that provide an opportunity for substantial 
performance acceleration include operator fusion, 
vectorization, data bandwidth, and deep pipelining. 
 

2. OPERATOR FUSION 
 
Operator fusion must be designed from the ground up with 
these other three factors in mind to achieve optimal 
acceleration benefits.  Operator fusion is the combining of 
multiple computation operations into a single instruction.  
This custom instruction in affect transforms a generic 
instruction set architecture into a highly specialized set of 
operations specific to the application.   As a result, an entire 
function can be encapsulated as a single extension 
instruction.   
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3. VECTORIZATION 
 

Vectorization is one of the traditional first stages of 
hardware acceleration.  The ability to process multiple 
words of data with a single instruction (single instruction 
multiple data, SIMD architecture) is critical for improving 
performance without having to clock processors at higher 
frequencies that lead to greater manufacturing cost and 
increased power consumption. 
 One capability important to overall performance 
efficiency is the ability to work with different sizes and 
formats of data. A constraint of using standard instructions 
is that the choice of data width and format is limited.  For 
example, depending upon the application and task at hand, 
the ideal data size may be from one to several bytes, aligned 
or unaligned, sequential or streaming, or perhaps even bit-
reversed.  The advantage of a software-configurable 
architecture is that data size and format can be determined 
on an instruction-by-instruction basis.  It is unnecessary to 
convolute data to fit the size of the instruction; extension 
instructions are specifically designed to match data to 
reduce parsing overhead and facilitate maximum 
performance and optimal use of resources.  Additionally, 
management of data can be simplified by implementing 
circular-buffer load/stores, rotates, constants, and offsets as 
a part of an extension instruction to reduce the number of 
standard instructions required to preparing data for hardware 
acceleration. 
 

4. DATA BANDWIDTH 
 
Sufficient data bandwidth is one of the most critical aspects 
of performance acceleration as it determines the degree of 
vectorization possible.  Typical embedded processors 
operate on fixed register widths, e.g. 32-bit registers.   
Providing registers the same width as a cache line fill and 
from which multiple data words can be extracted is required 
for meeting the data bandwidth requirements for software 
acceleration and vectorization.   
 

5. DEEP PIPELINING 
 
Deep pipelining is the ability of a processing architecture to 
execute multiple instructions simultaneously while making 
optimal use of the overall pipeline.  Different instructions 
require a variable number of pipeline stages to complete 
execution, especially as extension instructions become more 
complex and represent entire functions.  Managing timing 
and dependencies between variable-cycle instructions adds 
great complexity to the software development process.  To 
simplify code development, the compiler must schedule 
instructions efficiently to contain latency to achieve single-
cycle effective throughput for every instruction.  In this 
way, complexity is handled by the compiler and processor, 
rather than left as a burden to make design more complex 
for developers. 

 Deep pipelining is only possible when accelerated, 
extension instructions share the same pipeline and 
instruction decode unit as standard instructions.  When 
extension instructions are executed in a separate pipeline, it 
becomes extremely difficult to manage dependencies 
between standard and extension instructions.  Mechanisms 
must be put in place to manage these dependencies, 
increasing instruction latency and undermining deterministic 
processing performance.  Because a co-processor may 
require a variable number of cycles to complete an 
operation, developers must assume worst-case latency to 
simplify development and operation.  Additionally, 
overhead inefficiencies are introduced when extension 
instruction context must be passed to a co-processor with 
data to be processed and then passed back when processing 
is completed. 
 When extension instructions and standard 
instructions are logically the same to the main processor, 
passing context is a matter of passing a pointer to shared 
memory or, more often, leaving relevant values in state 
registers.  Dependencies can be managed by the pipeline, 
minimizing latency.  Such latency is also deterministic, and 
can be automatically accounted for by the compiler when 
generating application code. 
 An important aspect enabled by deep pipelining is 
that the implementation details of extension instructions in 
programmable logic are encapsulated in the same format as 
software instructions.  Architectures that use a separate 
FPGA device significantly complicate design by requiring 
developers to introduce a completely new development 
language, such as HDL or Verilog, and corresponding tool 
chain to the design process. 
 This is the basis of the "hardware as software" 
design model for software-configurable processors.  
Software instructions and hardware accelerated instructions 
are described in a high order language such as C/C++ and 
converted to software and hardware through an optimizing 
compiler.  Such a compiler is able to implement hardware 
acceleration in an optimal fashion, managing overall 
latency, the efficiency of pipelining, and maximizing the 
frequency with which can extension instructions can be 
issued. 
 Optimizing compilers can also improve 
performance and efficient use of resources in ways that are 
simply too time-consuming for a person to implement.  For 
example, the compiler can recognize shared structures 
between different extension instructions and implement 
them using the same programmable resources, preserving 
these valuable resources for either additional extension 
instructions or further accelerate those already existing.  
Additionally, the compiler can readily identify and track 
dependencies and context sharing instances that may not be 
readily apparent to developers.  As a consequence, register 
forwarding, multiplexing, and context save/restore functions 
can be minimized or even eliminated. 
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6. APPLICATION DEVELOPMENT 
 
Developing applications for software-configurable 
architectures follows the same process as the traditional 
software development cycle.  An integrated development 
environment manages the project and acts as a front-end to 
the development tool chain, including compiler, debugger, 
and profiler.  When it comes time to improve application 
performance, however, rather than hand-coding assembly 
language or, for FPGA coprocessor architectures, passing 
the software algorithm to a second hardware development 
team to implement the function in hardware, developers 
instead identify "hot spots" within the program.  This 
enables the compiler to accelerate algorithmic code by 
creating an extension instruction.  Without requiring 
additional programming from the developer, the compiler 
creates an optimized configuration to be implemented in a 
programmable fabric and schedules the instruction as it 
would any other instruction.  Developers can then profile 
the performance of the extension instruction.  If required, 
the function can be characterized to process multiple data 
words in parallel. 
 A key benefit of the "hardware as software" 
development flow is that it keeps design in a single 
development environment that is well established and 
familiar to software developers.  FPGA-based architectures 
require the use of the second development team and any 
repartitioning of application code requires a re-architecting 
of hand-optimized logic to match the new partitioning.  
With a software-configurable processor, the compiler is 
responsible for re-architecting.  This means that even though 
extension instructions are implemented in hardware / 
programmable logic, developers design, create, and use 
them entirely in a software context. 
 Another important benefit of developing an 
application entirely in software is that the code can be 
compiled for targets other than the software-configurable 
processor.  For example, the compiler could create a 
functionally equivalent code image for an x86 processor.  
This allows developers to develop, test, and debug 
application and algorithmic code while hardware is still 
being developed.   
 Together, all of these factors have a tremendous 
impact on the way developers approach application design.  
Not only can a single development team create an 
application, development time is significantly reduced by 
enabling concurrent software and hardware development 
without time-consuming hand optimization. 
 
 

7. RGB-TO-YCbCr COLOR SPACE CONVERSION 
EXAMPLE 

 
Perhaps the most efficient means for quantifying the impact 
of a software-configurable architecture on performance is 
providing a straightforward real-world example such as an 

implementation of a color space conversion algorithm.  This 
example will use the Stretch software-configurable 
processor to illustrate the impact of “hardware as software” 
acceleration. 

The software-configurable processor combines a 
RISC processor with a configurable fabric known as the 
Instruction Set Extension Fabric (ISEF).  Extension 
instructions are implemented in the ISEF using field 
programmable technologies and provide performance 
comparable to custom hardware implementations.  The 
primary distinction of the software-configurable processor is 
that extension instructions are coded in C/C++ and can be 
tuned to match a specific application.  New extension 
instructions can be introduced at any time during application 
development if a developer has such a need. 
 The base processor of the software-configurable 
processor is a standard five-stage pipeline Tensilica Xtensa 
V RISC core with 32 KBytes of both instruction and data 
cache, memory management unit, and 24 DMA channels 
(see Figure 1).  The ISEF is interlocked to the instruction 
pipeline of the Xtensa core and provides a large array of 
computational resources (4096 arithmetic unit bits and 8912 
multiplier unit bits) that can be used at any bit width, thus 
conserving resources.  The RISC core and ISEF exchange 
data via a 128-bit wide register (WR). 
 Figure 2 shows the base mathematical expression 
for the conversion of red, green, and blue (RGB) pixel data 
to Luminance and Chrominance (YCbCr).  As it stands, this 
function converts a single RGB pixel during each loop 
iteration.  If implemented as part of an application in this 
form, this function would consume over 3.5 million cycles 
to convert a large block of pixel data (see Table 1).    
 Figure 3 shows the process of accelerating this 
function using extension instructions.  It has been rewritten 
for the software-configurable processor using Stretch C.  
The use of "SE_FUNC" informs the compiler that this 
function should be implemented in the ISEF.  The extraction 
operator in Stretch C maps the variables R, G, and B to 
specific bits within the WR; concatenation operators map Y, 
Cb, and Cr results back to the WR. 
 Note that the coding of the algorithm itself has not 
changed.  The compiler, however, has implemented all of 
the additions and multiplies in a single extension 
instruction.  As a result, all of these mathematical operations 
are completed within two pipelined clock cycles and an 
overall 15X performance improvement (see Table 1). 
 The 128-bit wide-registers between the RISC core 
and ISEF enable the passing of five pixels simultaneously, 
enabling the conversion of multiple pixels in parallel (see 
Figure 4).  While the RGB data extraction is coded to 
resemble a loop, the compiler is able to directly extract 
values without using any ISEF compute resources.  As a 
result, the computation has not changed other than that now 
five values are computed in parallel.  Results can be stored 
in a single operation, again requiring no compute resources.  
Thus, 15 bytes are loaded and stored for each iteration of the 
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program loop, increasing performance further for a final 
improvement in performance of over 80X compared to the 
original function (see Table 1). 
 

8. CONCLUSION 
 
Through the use of software-configurable processors, 
developers can implement hardware acceleration for 
compute-intensive algorithms through the use of extension 
instructions coded in C/C++.  Extension instructions provide 
the performance of hardware implementations with the 
flexibility of software design.  Specialized computations on 
specialized application data sizes and formats increases 
flexibility and optimize the use of computational resources.  
By describing software and hardware functionality using a 
single programming language and development tool chain, a 

single development team can design hardware and software 
concurrently, significantly reducing time-to-market. 
 The flexibility of software-configurable processors 
also enables developers to further improve performance by 
developing functions that are able to process multiple data 
in parallel.  Wide registers provided sufficient data 
bandwidth to keep computational resources fed and 
maximize parallelism.  Finally, because hardware and 
software are described simultaneously, the software 
compiler is able to implement and schedule extension 
instructions to achieve maximum performance (80X in the 
colorspace example) by keeping the processor pipeline 
optimally filled. 
 
 

 
Figure 1  Stretch S5 Engine 
 
void RGB2YCBCR ( 
signed char r, signed char g, signed char b, 
signed char *y, signed char *cb, signed char *cr) 
{ 
*y  = (  77*r + 150*g  +   29*b              ) >> 8; 
*cb = ( -43*r  -   85*g  + 128*b + 32768) >> 8; 
*cr  = (128*r -  107*g   -   21*b + 32768) >> 8; 
} 
Program Loop: 
for (…) { 
/* Convert 1 RGB Pixel to 1 YCbCr pixel */ 
RGB2YCBCR (RGB[i], RGB[i+1], RGB[i+2], &YCC[i], &YCC[i+1], &YCC[i+2]); 
}} 
 
Figure 2  Color Space Conversion - C  Code 
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SE_FUNC /* Tells Stretch C-Compiler to reduce this function to an instruction */  
void RGB2YCBCR (WR A, WR *B)   /* Data Bandwidth – Move 24 bits in Single Register */ 
{ 
   
se_sint<8> r, g, b, y, cb, cr; 
      r = A(7,0); g = A(15,8); b = A(24,16); /* Extract Data; No Compute Cycles */ 
                   
      y  = (  77*r + 150*g  +   29*b    ) >> 8; 
     cb = ( -43*r  -   85*g  +  128*b + 32768) >> 8; 
     cr  = ( 128*r - 107*g  -    21*b +  32768) >> 8; 
  
    *B = (cr,cb, y);                 /* pack YCbCr to B; No Compute Cycles*/ 
}  
 
Program Loop: 
for (…) { 
 WRGET0(&A, 3);      /* Load 3 bytes (1 RGB pixels)  */ 
 RGB2YCBCR(A, &B);   /* Convert 1 pixel              */ 
 WRPUT0(B, 3);       /* Store 3 bytes (1 YCbCr pixel */ 
} 
 
Figure 3  Application Specific Instruction  

 
SE_FUNC /* Extension instruction converting pixels */ 
void RGB2YCBCR (WR A, WR *B)  {       /* Data Bandwidth – Move 96 bits */ 
  se_sint<8> r[5], g[5], b[5], y[5], cb[5], cr[5]; 
  int i, j; 
  /* Unpack A to RGB Data, Does Not Use Any Compute Cycles */ 
  for (i = 0; i < 5; i++, j = i*24) { r[i] = A(j+7, j); g[i] = A(j+15, j+8); b[i] = A(j+23, j+16) } 
  /* Convert 5 pixels */ 
  for (i = 0; i < 5; i++) { 
     y[i]  = (  77*r[i] + 150*g[i] +   29*b[i]             ) >> 8; 
    cb[i] = (-43*r[i] -     85*g[i] + 128*b[i] + 32768) >> 8; 
    cr[i]  = (128*r[i] -  107*g[i] -    21*b[i] + 32768) >> 8; 
  }  /* pack YCbCr to B; Does Not Use Any Compute Cycles */ 
  *B = (cr[4],cb[4],y[4], cr[3],cb[3],y[3],cr[2],cb[2],y[2],cr[1],cb[1],y[1],cr[0],cb[0],y[0]); 
} 
 
Program Loop: 
for (…) { 
 WRGET0(&A, 15);      /* Load 15 bytes (5 RGB pixels)  */ 
 RGB2YCBCR(A, &B);    /* Convert 5 pixels              */ 
 WRPUT0(B, 15);        /* Store 15 bytes (5 YCbCr pixels */ 
} 
 

Figure 4   Application Specific Instruction – with Vectorization 
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Table 1 Software Acceleration Results 
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Sources of Software Acceleration
Operator Fusion

Resource Sharing, Operator Merging
Constant Propagation, Partial Evaluation
Bit Width Optimization

Vectorization
Operate on Multiple Data Objects in Parallel

Data Bandwidth
Wide Data Registers – 128-bit Cache Line Width
Rich Load/Store Instructions
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ANSI – C Plus Limited Set of Extensions 
Defined in <stretch.h>
Extensions Imply ISEF Usage

“SE_FUNC” Identifies a Function to Compile into Extension Instruction
Data Types – All Standard Integer Data Types Plus

se_uint<n> Defines an Unsigned Word of N-bits
se_sint<n> Defines a Signed Word of N-bits
WR Defines a Wide Register File Variable (se_uint<128>)

Operators - All Standard Operators Except Divide and Modulus Plus
Extraction:     R =  A(7,0) G = A(15,8) B = A(24,16)
Concatenation: *Y = (B,G,R)

Specialized WR Load/Store Instructions
Functionally Correct for ANY C++ Compiler (GCC Etc.)

No Presumed C++ Dynamic Memory Structures

Stretch C Extensions
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Example C: RGB → YCbCr Conversion
Color Conversion Function:
void rgb2ycc(

signed char r, signed char g, signed char b, 
signed char *y, signed char *cb, signed char *cr)

{
*y  = (  77*r + 150*g  +   29*b              ) >> 8;

*cb = ( -43*r  - 85*g  + 128*b + 32768) >> 8;
*cr = (128*r - 107*g   - 21*b + 32768) >> 8;

}

Program Loop:
for (…) {

/* Convert 1 RGB Pixel to 1 YCbCr pixel */

rgb2ycc(RGB[i], RGB[i+1], RGB[i+2], &YCC[i], &YCC[i+1], &YCC[i+2]);
}}
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RGB → YCbCr - Operator Fusion
Color Conversion Function:
SE_FUNC /* Tells Stretch C-Compiler to reduce this function to an instruction */ 
void RGB2YCC (WR A, WR *B)   /* Data Bandwidth – Move 24 bits in Single Register */
{
se_sint<8> r, g, b, y, cb, cr;
int i;

r = A(7,0); g = A(15,8); b = A(24,16); /* Extract Data; No Compute Cycles */

y  = ( 77*r + 150*g  +   29*b ) >> 8;
cb = ( -43*r  - 85*g  +  128*b + 32768) >> 8;
cr = ( 128*r - 107*g  - 21*b +  32768) >> 8;

*B = (cr,cb, y);                 /* pack YCbCr to B; No Compute Cycles*/
}

Program Loop:
for (…) {

WRGET0(&A, 3);      /* Load 3 bytes (1 RGB pixels)  */
RGB2YCC(A, &B); /* Convert 1 pixel              */
WRPUT0(B, 3);       /* Store 3 bytes (1 YCbCr pixel */

}
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RGB → YCbCr - Vectorization
Color Conversion Function:
SE_FUNC /* Extension instruction converting pixels */
void RGB2YCC (WR A, WR *B)  {       /* Data Bandwidth – Move 120 bits */
se_sint<8> r[5], g[5], b[5], y[5], cb[5], cr[5];
int i, j;
/* Unpack A to RGB Data, Does Not Use Any Compute Cycles */
for (i = 0; i < 5; i++, j = i*24) { r[i] = A(j+7, j); g[i] = A(j+15, j+8); b[i] = A(j+23, j+16) }
/* Convert 5 pixels */
for (i = 0; i < 5; i++) {

y[i]  = (  77*r[i] + 150*g[i] +   29*b[i]             ) >> 8;
cb[i] = (-43*r[i] - 85*g[i] + 128*b[i] + 32768) >> 8;
cr[i]  = (128*r[i] - 107*g[i] - 21*b[i] + 32768) >> 8;

}  /* pack YCbCr to B; Does Not Use Any Compute Cycles */
*B = (cr[4],cb[4],y[4],cr[3],cb[3],y[3],cr[2],cb[2],y[2],cr[1],cb[1],y[1],cr[0],cb[0],y[0]);

}

Program Loop:
for (…) {

WRGET0(&A, 15);      /* Load 15 bytes (5 RGB pixels)   */
RGB2YCC(A, &B); /* Convert 5 pixels               */
WRPUT0(B, 15);       /* Store 15 bytes (5 YCbCr pixels */

}
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Software Profiling Results
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Extension Instructions for Convolutional Encoder
#include <stretch.h>
#define K   (7)
#define M   (48)
#define M12 (48)
#define M23 (32)
#define M34 (48)
#define M56 (40)
static se_uint<K> code0, code1;
static se_uint<K-1> hist;

SE_FUNC void CONVEN_INIT(unsigned char c0, unsigned char c1)
{

code0 = c0; code1 = c1;
hist = 0;

}

SE_FUNC void CONVEN(SE_INST CONVEN12,
SE_INST CONVEN23,
SE_INST CONVEN34,
SE_INST CONVEN56,
WRA *d0)

{
int i;
/* up to M new input bits + K-1 history bits */
se_uint<M+K-1> dIn = ( (se_uint<M>)(*d0), hist );
/* 2 convolutions per input bit */
se_uint<1>     X[M], Y[M];
/* For each input bit, do two convolutions (length <= K)
* to produce two output bits. */
for (i = M-1; i >= 0; i--) {

X[i] = (code0(0) & dIn(i+0)) ^
(code0(1) & dIn(i+1)) ^
(code0(2) & dIn(i+2)) ^
(code0(3) & dIn(i+3)) ^
(code0(4) & dIn(i+4)) ^
(code0(5) & dIn(i+5)) ^
(code0(6) & dIn(i+6));

Y[i] = (code1(0) & dIn(i+0)) ^
(code1(1) & dIn(i+1)) ^
(code1(2) & dIn(i+2)) ^
(code1(3) & dIn(i+3)) ^
(code1(4) & dIn(i+4)) ^
(code1(5) & dIn(i+5)) ^
(code1(6) & dIn(i+6));

}
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/* 1/2 rate: no puncturing */
if (CONVEN12) {

hist = (se_uint<K-1>)((*d0)(M12-1,M12+1-K));
*d0 = 0;
for (i = M12/1 - 1; i >= 0; i--) {

*d0 = (*d0, Y[i], X[i]);
}

}

/* 2/3 rate: puncture using (Y1, Y0, X0) (drop X1) */
else if (CONVEN23) {

hist = (se_uint<K-1>)((*d0)(M23-1,M23+1-K));
*d0 = 0;
for (i = M23/2 - 1; i >= 0; i--) {

*d0 = (*d0, Y[2*i+1], Y[2*i], X[2*i]);
}

}

/* 3/4 rate: puncture using (X2, Y1, Y0, X0) (drop Y2 & X1) */
else if (CONVEN34) {

hist = (se_uint<K-1>)((*d0)(M34-1,M34+1-K));
*d0 = 0;
for (i = M34/3 - 1; i >= 0; i--) {

*d0 = (*d0, X[3*i+2], Y[3*i+1], Y[3*i], X[3*i]);
}

}

/* 5/6 rate: puncture using (X4, Y3, X2, Y1, Y0, X0)
* (drop Y4, X3, Y2 & X1) */
else { /* CONVEN56 */

hist = (se_uint<K-1>)((*d0)(M56-1,M56+1-K));
*d0 = 0;
for (i = M56/5 - 1; i >= 0; i--) {

*d0 = (*d0, X[5*i+4], Y[5*i+3], X[5*i+2],
Y[5*i+1], Y[5*i],   X[5*i]  );

}
}

}
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Summary

Software-Configurable Processors and Stretch “C”
New Technology Addressing Compute Intensive Functions

Software Development Flow
Enables Hardware Performance from “C” Software
No Hardware Development Required

Tune the Instruction Set to the Applications
Run-time Configurable, Dynamically Loadable
Fast and Easy to Develop
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Accelerating Compute Intensive Functions 
Using “C” and 

Software-Configurable Processors
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