
USING C TO ACCELERATE COMPUTE-INTENSIVE APPLICATIONS

Joe Hanson (Stretch Inc., Mountain View, CA, USA, hanson@stretchinc.com)
Bruce McNamara (Stretch Inc., Mountain View, CA, USA, bruce@stretchinc.com)

Many electronics applications are very compute-intensive
(e.g., software-define radio, wireless communications, radar,
and sonar). The challenge in developing these applications
is to get the highest compute performance possible, while
retaining tremendous flexibility to configure applications for
specific functions. This increasing demand for compute
capacity has challenged fixed instruction set processors. To
overcome this, designers have begun trying to off-load
portions of their algorithms onto hardware accelerators
using FPGA or ASIC devices. Software-configurable
processors provide programmability through the
simultaneous reconfiguration of functions in both hardware
(custom instructions) and software. With an instruction set
that can change dynamically, a single team of hardware /
software developers can approach complex and compute-
intensive algorithms from a completely different
perspective. A software-configurable processor combines
the ease of software development associated with GPPs and
DSPs, with the parallelism and flexibility of FPGAs. This
paper will discuss how software-configurable programming
differs from traditional software-only methodologies and
mixed-language hardware/software methodologies by
describing the implementation of several compute intensive
functions using only the “C” programming language.

1. INTRODUCTION

The complexity of embedded systems, especially software
define radio, has reached a point where hardware
acceleration is often required in order to meet real-time
processing requirements and market cost points.
Introducing hardware acceleration provides the necessary
performance increase but at the cost of increasing
complexity and extending the overall design cycle. Given
rapidly evolving and emerging standards, a flexible,
scalable, and programmable architecture with most of the
application software written in C/C++ is desired.
 Developers have increased performance by
partitioning an application across multiple processors. This
approach however, increases device size, power
consumption, and application complexity, often exceeding
cost and power budgets to meet minimum performance
requirements. A more recent approach has been to offload
processing to an FPGA-based engine acting as a

co-processor to assist in computations done on an
application processor. The primary disadvantage of this
approach is that the heterogeneous nature of the architecture
requires separate development environments. Additionally,
having to design additional interfaces between the processor
and FPGA—including a hardware interface, data exchange
mechanism, and processing overhead—increases design
complexity and introduces unnecessary design constraints.

In reality, hardware acceleration of an algorithm
cannot begin until the algorithm has been completely
designed in software. What this does is merely reverses the
traditional “hardware first, then software” design model.
What developers really need in order to improve
performance without completely undermining time-to-
market is concurrent software and hardware development.
This is only possible if hardware and software are created at
the same time.
 Today developers have access to software-
configurable architectures which provide the flexibility of a
general-purpose processor with the computational capacity
of a DSP or ASIC. Development is done entirely in
software—both hardware and software functionality are
described in C/C++, effectively enabling developers to
design "hardware as software", resulting in reduced design
complexity and speeding time-to-market.
 Software-configurable architectures achieve this by
abstracting hardware acceleration. Four key aspects of
design that provide an opportunity for substantial
performance acceleration include operator fusion,
vectorization, data bandwidth, and deep pipelining.

2. OPERATOR FUSION

Operator fusion must be designed from the ground up with
these other three factors in mind to achieve optimal
acceleration benefits. Operator fusion is the combining of
multiple computation operations into a single instruction.
This custom instruction in affect transforms a generic
instruction set architecture into a highly specialized set of
operations specific to the application. As a result, an entire
function can be encapsulated as a single extension
instruction.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3. VECTORIZATION

Vectorization is one of the traditional first stages of
hardware acceleration. The ability to process multiple
words of data with a single instruction (single instruction
multiple data, SIMD architecture) is critical for improving
performance without having to clock processors at higher
frequencies that lead to greater manufacturing cost and
increased power consumption.
 One capability important to overall performance
efficiency is the ability to work with different sizes and
formats of data. A constraint of using standard instructions
is that the choice of data width and format is limited. For
example, depending upon the application and task at hand,
the ideal data size may be from one to several bytes, aligned
or unaligned, sequential or streaming, or perhaps even bit-
reversed. The advantage of a software-configurable
architecture is that data size and format can be determined
on an instruction-by-instruction basis. It is unnecessary to
convolute data to fit the size of the instruction; extension
instructions are specifically designed to match data to
reduce parsing overhead and facilitate maximum
performance and optimal use of resources. Additionally,
management of data can be simplified by implementing
circular-buffer load/stores, rotates, constants, and offsets as
a part of an extension instruction to reduce the number of
standard instructions required to preparing data for hardware
acceleration.

4. DATA BANDWIDTH

Sufficient data bandwidth is one of the most critical aspects
of performance acceleration as it determines the degree of
vectorization possible. Typical embedded processors
operate on fixed register widths, e.g. 32-bit registers.
Providing registers the same width as a cache line fill and
from which multiple data words can be extracted is required
for meeting the data bandwidth requirements for software
acceleration and vectorization.

5. DEEP PIPELINING

Deep pipelining is the ability of a processing architecture to
execute multiple instructions simultaneously while making
optimal use of the overall pipeline. Different instructions
require a variable number of pipeline stages to complete
execution, especially as extension instructions become more
complex and represent entire functions. Managing timing
and dependencies between variable-cycle instructions adds
great complexity to the software development process. To
simplify code development, the compiler must schedule
instructions efficiently to contain latency to achieve single-
cycle effective throughput for every instruction. In this
way, complexity is handled by the compiler and processor,
rather than left as a burden to make design more complex
for developers.

 Deep pipelining is only possible when accelerated,
extension instructions share the same pipeline and
instruction decode unit as standard instructions. When
extension instructions are executed in a separate pipeline, it
becomes extremely difficult to manage dependencies
between standard and extension instructions. Mechanisms
must be put in place to manage these dependencies,
increasing instruction latency and undermining deterministic
processing performance. Because a co-processor may
require a variable number of cycles to complete an
operation, developers must assume worst-case latency to
simplify development and operation. Additionally,
overhead inefficiencies are introduced when extension
instruction context must be passed to a co-processor with
data to be processed and then passed back when processing
is completed.
 When extension instructions and standard
instructions are logically the same to the main processor,
passing context is a matter of passing a pointer to shared
memory or, more often, leaving relevant values in state
registers. Dependencies can be managed by the pipeline,
minimizing latency. Such latency is also deterministic, and
can be automatically accounted for by the compiler when
generating application code.
 An important aspect enabled by deep pipelining is
that the implementation details of extension instructions in
programmable logic are encapsulated in the same format as
software instructions. Architectures that use a separate
FPGA device significantly complicate design by requiring
developers to introduce a completely new development
language, such as HDL or Verilog, and corresponding tool
chain to the design process.
 This is the basis of the "hardware as software"
design model for software-configurable processors.
Software instructions and hardware accelerated instructions
are described in a high order language such as C/C++ and
converted to software and hardware through an optimizing
compiler. Such a compiler is able to implement hardware
acceleration in an optimal fashion, managing overall
latency, the efficiency of pipelining, and maximizing the
frequency with which can extension instructions can be
issued.
 Optimizing compilers can also improve
performance and efficient use of resources in ways that are
simply too time-consuming for a person to implement. For
example, the compiler can recognize shared structures
between different extension instructions and implement
them using the same programmable resources, preserving
these valuable resources for either additional extension
instructions or further accelerate those already existing.
Additionally, the compiler can readily identify and track
dependencies and context sharing instances that may not be
readily apparent to developers. As a consequence, register
forwarding, multiplexing, and context save/restore functions
can be minimized or even eliminated.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

6. APPLICATION DEVELOPMENT

Developing applications for software-configurable
architectures follows the same process as the traditional
software development cycle. An integrated development
environment manages the project and acts as a front-end to
the development tool chain, including compiler, debugger,
and profiler. When it comes time to improve application
performance, however, rather than hand-coding assembly
language or, for FPGA coprocessor architectures, passing
the software algorithm to a second hardware development
team to implement the function in hardware, developers
instead identify "hot spots" within the program. This
enables the compiler to accelerate algorithmic code by
creating an extension instruction. Without requiring
additional programming from the developer, the compiler
creates an optimized configuration to be implemented in a
programmable fabric and schedules the instruction as it
would any other instruction. Developers can then profile
the performance of the extension instruction. If required,
the function can be characterized to process multiple data
words in parallel.
 A key benefit of the "hardware as software"
development flow is that it keeps design in a single
development environment that is well established and
familiar to software developers. FPGA-based architectures
require the use of the second development team and any
repartitioning of application code requires a re-architecting
of hand-optimized logic to match the new partitioning.
With a software-configurable processor, the compiler is
responsible for re-architecting. This means that even though
extension instructions are implemented in hardware /
programmable logic, developers design, create, and use
them entirely in a software context.
 Another important benefit of developing an
application entirely in software is that the code can be
compiled for targets other than the software-configurable
processor. For example, the compiler could create a
functionally equivalent code image for an x86 processor.
This allows developers to develop, test, and debug
application and algorithmic code while hardware is still
being developed.
 Together, all of these factors have a tremendous
impact on the way developers approach application design.
Not only can a single development team create an
application, development time is significantly reduced by
enabling concurrent software and hardware development
without time-consuming hand optimization.

7. RGB-TO-YCbCr COLOR SPACE CONVERSION
EXAMPLE

Perhaps the most efficient means for quantifying the impact
of a software-configurable architecture on performance is
providing a straightforward real-world example such as an

implementation of a color space conversion algorithm. This
example will use the Stretch software-configurable
processor to illustrate the impact of “hardware as software”
acceleration.

The software-configurable processor combines a
RISC processor with a configurable fabric known as the
Instruction Set Extension Fabric (ISEF). Extension
instructions are implemented in the ISEF using field
programmable technologies and provide performance
comparable to custom hardware implementations. The
primary distinction of the software-configurable processor is
that extension instructions are coded in C/C++ and can be
tuned to match a specific application. New extension
instructions can be introduced at any time during application
development if a developer has such a need.
 The base processor of the software-configurable
processor is a standard five-stage pipeline Tensilica Xtensa
V RISC core with 32 KBytes of both instruction and data
cache, memory management unit, and 24 DMA channels
(see Figure 1). The ISEF is interlocked to the instruction
pipeline of the Xtensa core and provides a large array of
computational resources (4096 arithmetic unit bits and 8912
multiplier unit bits) that can be used at any bit width, thus
conserving resources. The RISC core and ISEF exchange
data via a 128-bit wide register (WR).
 Figure 2 shows the base mathematical expression
for the conversion of red, green, and blue (RGB) pixel data
to Luminance and Chrominance (YCbCr). As it stands, this
function converts a single RGB pixel during each loop
iteration. If implemented as part of an application in this
form, this function would consume over 3.5 million cycles
to convert a large block of pixel data (see Table 1).
 Figure 3 shows the process of accelerating this
function using extension instructions. It has been rewritten
for the software-configurable processor using Stretch C.
The use of "SE_FUNC" informs the compiler that this
function should be implemented in the ISEF. The extraction
operator in Stretch C maps the variables R, G, and B to
specific bits within the WR; concatenation operators map Y,
Cb, and Cr results back to the WR.
 Note that the coding of the algorithm itself has not
changed. The compiler, however, has implemented all of
the additions and multiplies in a single extension
instruction. As a result, all of these mathematical operations
are completed within two pipelined clock cycles and an
overall 15X performance improvement (see Table 1).
 The 128-bit wide-registers between the RISC core
and ISEF enable the passing of five pixels simultaneously,
enabling the conversion of multiple pixels in parallel (see
Figure 4). While the RGB data extraction is coded to
resemble a loop, the compiler is able to directly extract
values without using any ISEF compute resources. As a
result, the computation has not changed other than that now
five values are computed in parallel. Results can be stored
in a single operation, again requiring no compute resources.
Thus, 15 bytes are loaded and stored for each iteration of the

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

program loop, increasing performance further for a final
improvement in performance of over 80X compared to the
original function (see Table 1).

8. CONCLUSION

Through the use of software-configurable processors,
developers can implement hardware acceleration for
compute-intensive algorithms through the use of extension
instructions coded in C/C++. Extension instructions provide
the performance of hardware implementations with the
flexibility of software design. Specialized computations on
specialized application data sizes and formats increases
flexibility and optimize the use of computational resources.
By describing software and hardware functionality using a
single programming language and development tool chain, a

single development team can design hardware and software
concurrently, significantly reducing time-to-market.
 The flexibility of software-configurable processors
also enables developers to further improve performance by
developing functions that are able to process multiple data
in parallel. Wide registers provided sufficient data
bandwidth to keep computational resources fed and
maximize parallelism. Finally, because hardware and
software are described simultaneously, the software
compiler is able to implement and schedule extension
instructions to achieve maximum performance (80X in the
colorspace example) by keeping the processor pipeline
optimally filled.

Figure 1 Stretch S5 Engine

void RGB2YCBCR (
signed char r, signed char g, signed char b,
signed char *y, signed char *cb, signed char *cr)
{
*y = (77*r + 150*g + 29*b) >> 8;
*cb = (-43*r - 85*g + 128*b + 32768) >> 8;
*cr = (128*r - 107*g - 21*b + 32768) >> 8;
}
Program Loop:
for (…) {
/* Convert 1 RGB Pixel to 1 YCbCr pixel */
RGB2YCBCR (RGB[i], RGB[i+1], RGB[i+2], &YCC[i], &YCC[i+1], &YCC[i+2]);
}}

Figure 2 Color Space Conversion - C Code

Wide Register File
 128-bit wide
 32 entries

Load/store unit
 128-bit load/store
 Auto increment/decrement
 Immediate, indirect, circular
 Variable-byte load/store
 Variable-bit load/store

ISEF
 3 inputs and 2 outputs
 Pipelined, bypassed,

interlocked
 32 16-bit MACs and 256

ALUs
 Bit-sliced for arbitrary bit-

width

RISC Processor
 Tensilica – Xtensa V
 32 KB I & D Cache
 On-Chip Memory, MMU
 24 Channels of DMA, FPU

C
on

tr
ol

128-BIT WRF

MMU

32-BIT RF

ISEF
INSTRUCTION SET

EXTENSION FABRIC

I-Cache
32KB

D-Cache
32KB

SRAM
256KB

DATA RAM
32KB

ALU
FPU

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

SE_FUNC /* Tells Stretch C-Compiler to reduce this function to an instruction */
void RGB2YCBCR (WR A, WR *B) /* Data Bandwidth – Move 24 bits in Single Register */
{

se_sint<8> r, g, b, y, cb, cr;
 r = A(7,0); g = A(15,8); b = A(24,16); /* Extract Data; No Compute Cycles */

 y = (77*r + 150*g + 29*b) >> 8;
 cb = (-43*r - 85*g + 128*b + 32768) >> 8;
 cr = (128*r - 107*g - 21*b + 32768) >> 8;

 B = (cr,cb, y); / pack YCbCr to B; No Compute Cycles*/
}

Program Loop:
for (…) {
 WRGET0(&A, 3); /* Load 3 bytes (1 RGB pixels) */
 RGB2YCBCR(A, &B); /* Convert 1 pixel */
 WRPUT0(B, 3); /* Store 3 bytes (1 YCbCr pixel */
}

Figure 3 Application Specific Instruction

SE_FUNC /* Extension instruction converting pixels */
void RGB2YCBCR (WR A, WR *B) { /* Data Bandwidth – Move 96 bits */
 se_sint<8> r[5], g[5], b[5], y[5], cb[5], cr[5];
 int i, j;
 /* Unpack A to RGB Data, Does Not Use Any Compute Cycles */
 for (i = 0; i < 5; i++, j = i*24) { r[i] = A(j+7, j); g[i] = A(j+15, j+8); b[i] = A(j+23, j+16) }
 /* Convert 5 pixels */
 for (i = 0; i < 5; i++) {
 y[i] = (77*r[i] + 150*g[i] + 29*b[i]) >> 8;
 cb[i] = (-43*r[i] - 85*g[i] + 128*b[i] + 32768) >> 8;
 cr[i] = (128*r[i] - 107*g[i] - 21*b[i] + 32768) >> 8;
 } /* pack YCbCr to B; Does Not Use Any Compute Cycles */
 *B = (cr[4],cb[4],y[4], cr[3],cb[3],y[3],cr[2],cb[2],y[2],cr[1],cb[1],y[1],cr[0],cb[0],y[0]);
}

Program Loop:
for (…) {
 WRGET0(&A, 15); /* Load 15 bytes (5 RGB pixels) */
 RGB2YCBCR(A, &B); /* Convert 5 pixels */
 WRPUT0(B, 15); /* Store 15 bytes (5 YCbCr pixels */
}

Figure 4 Application Specific Instruction – with Vectorization

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Table 1 Software Acceleration Results

√

√

√

Instruction
Pipeline

78219√√√Compiler Optimization

40442√√√Compiler Optimization
429

2307
3458

17092

Cycle
(K Cycles)

√

√

ISEF
(Bit-Width)

40√√Data Parallelism

7
5
1

Factor

Operator Specialization
Compiler Optimization

RGB2YCC ANSI – C Only
Software

√√

ISEF
(State Reg.)

WR

√

√

√

Instruction
Pipeline

78219√√√Compiler Optimization

40442√√√Compiler Optimization
429

2307
3458

17092

Cycle
(K Cycles)

√

√

ISEF
(Bit-Width)

40√√Data Parallelism

7
5
1

Factor

Operator Specialization
Compiler Optimization

RGB2YCC ANSI – C Only
Software

√√

ISEF
(State Reg.)

WR

 2005 Stretch Inc. All rights reserved.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2005 Stretch Inc. All Rights Reserved. Stretch, the Stretch logo, and Extending the Possibilities are trademarks of Stretch Inc.

Accelerating Compute Intensive Functions
Using “C” and

Software-Configurable Processors
SDR Forum, November, 2005

Joe Hanson, Director of Business Development

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2© 2005 Stretch Inc. All Rights Reserved.

Agenda

Software-Configurable Processor
Development Flow
Example
Summary

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3© 2005 Stretch Inc. All Rights Reserved.

CPU

Software-Configurable Processor

New Approach to Computing Applications
RISC

PROCESSOR
PROGRAMMABLE LOGIC

FOR APPLICATION-SPECIFIC
INSTRUCTIONS

Faster Time-to-Performance
H/W Compute Performance within a Software Design Flow

Greater Algorithm Flexibility and Control
Software Design Methodology in C/C++

Delivers Faster Time–to–Market
Integrated Programmable Solution

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

4© 2005 Stretch Inc. All Rights Reserved.

S5 Engine
Wide Register File (WRF)
• 32 Wide Registers (WR)
• 128-bit Wide
Load/Store Unit
• 128-bit Load/Store
• Auto Increment/Decrement
• Immediate, Indirect, Circular
• Variable-byte Load/Store
• Variable-bit Load/Store

ISEF
• Instruction-Set Extension Fabric
• Compute Intensive
• Arbitrary Bit-width Operations
• 3 Inputs and 2 Outputs
• Pipelined, Bypassed, Interlocked
• Random Logic Support
• Internal State Registers

RISC Processor
• Tensilica – Xtensa V
• 32 KB I & D Cache
• On-Chip Memory, MMU, FPU
• 24 Channels of DMA

ALU
FPU

32-BIT RF

C
O

N
TR

O
L 128-BIT WRF32-BIT RF

ALU
FPU

S5 ENGINE

ISEF
Instruction-Set

Extension
Fabric

DATA RAM
32KB

SRAM
256KB

D-CACHE
32KB

I-CACHE
32KB

MMU

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5© 2005 Stretch Inc. All Rights Reserved.

Profile Code
Identify “Hotspots”

Specialized
Instructions

Implement ‘C’ Functions
in Single Instructions
Bit-Width Optimizations

Software Compiler
Instruction Generation
Instruction Scheduling

Multiple Data (WR)
Perform Operations in
Parallel

Efficient Data
Movement

Intrinsic Load Store
Operations
20+ DMA Channels

APPLICATION
C/C++

COMPILED
MACHINE

CODE

Compiler

Instruction
Definition

NEW INSTRUCTIONS

INSTRUCTION
GENERATION

TAILOR ISEF
TO APPLICATION

AUTOMATIC

Software Acceleration Development Flow

C
O

N
TR

O
L

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

6© 2005 Stretch Inc. All Rights Reserved.

Sources of Software Acceleration
Operator Fusion

Resource Sharing, Operator Merging
Constant Propagation, Partial Evaluation
Bit Width Optimization

Vectorization
Operate on Multiple Data Objects in Parallel

Data Bandwidth
Wide Data Registers – 128-bit Cache Line Width
Rich Load/Store Instructions

Deep Pipelining
Instruction Scheduling by Compiler
Hardware Interlocks

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

7© 2005 Stretch Inc. All Rights Reserved.

ANSI – C Plus Limited Set of Extensions
Defined in <stretch.h>
Extensions Imply ISEF Usage

“SE_FUNC” Identifies a Function to Compile into Extension Instruction
Data Types – All Standard Integer Data Types Plus

se_uint<n> Defines an Unsigned Word of N-bits
se_sint<n> Defines a Signed Word of N-bits
WR Defines a Wide Register File Variable (se_uint<128>)

Operators - All Standard Operators Except Divide and Modulus Plus
Extraction: R = A(7,0) G = A(15,8) B = A(24,16)
Concatenation: *Y = (B,G,R)

Specialized WR Load/Store Instructions
Functionally Correct for ANY C++ Compiler (GCC Etc.)

No Presumed C++ Dynamic Memory Structures

Stretch C Extensions

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

8© 2005 Stretch Inc. All Rights Reserved.

Example C: RGB → YCbCr Conversion
Color Conversion Function:
void rgb2ycc(

signed char r, signed char g, signed char b,
signed char *y, signed char *cb, signed char *cr)

{
*y = (77*r + 150*g + 29*b) >> 8;

*cb = (-43*r - 85*g + 128*b + 32768) >> 8;
*cr = (128*r - 107*g - 21*b + 32768) >> 8;

}

Program Loop:
for (…) {

/* Convert 1 RGB Pixel to 1 YCbCr pixel */

rgb2ycc(RGB[i], RGB[i+1], RGB[i+2], &YCC[i], &YCC[i+1], &YCC[i+2]);
}}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

9© 2005 Stretch Inc. All Rights Reserved.

RGB → YCbCr - Operator Fusion
Color Conversion Function:
SE_FUNC /* Tells Stretch C-Compiler to reduce this function to an instruction */
void RGB2YCC (WR A, WR *B) /* Data Bandwidth – Move 24 bits in Single Register */
{
se_sint<8> r, g, b, y, cb, cr;
int i;

r = A(7,0); g = A(15,8); b = A(24,16); /* Extract Data; No Compute Cycles */

y = (77*r + 150*g + 29*b) >> 8;
cb = (-43*r - 85*g + 128*b + 32768) >> 8;
cr = (128*r - 107*g - 21*b + 32768) >> 8;

B = (cr,cb, y); / pack YCbCr to B; No Compute Cycles*/
}

Program Loop:
for (…) {

WRGET0(&A, 3); /* Load 3 bytes (1 RGB pixels) */
RGB2YCC(A, &B); /* Convert 1 pixel */
WRPUT0(B, 3); /* Store 3 bytes (1 YCbCr pixel */

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

10© 2005 Stretch Inc. All Rights Reserved.

RGB → YCbCr - Vectorization
Color Conversion Function:
SE_FUNC /* Extension instruction converting pixels */
void RGB2YCC (WR A, WR *B) { /* Data Bandwidth – Move 120 bits */
se_sint<8> r[5], g[5], b[5], y[5], cb[5], cr[5];
int i, j;
/* Unpack A to RGB Data, Does Not Use Any Compute Cycles */
for (i = 0; i < 5; i++, j = i*24) { r[i] = A(j+7, j); g[i] = A(j+15, j+8); b[i] = A(j+23, j+16) }
/* Convert 5 pixels */
for (i = 0; i < 5; i++) {

y[i] = (77*r[i] + 150*g[i] + 29*b[i]) >> 8;
cb[i] = (-43*r[i] - 85*g[i] + 128*b[i] + 32768) >> 8;
cr[i] = (128*r[i] - 107*g[i] - 21*b[i] + 32768) >> 8;

} /* pack YCbCr to B; Does Not Use Any Compute Cycles */
*B = (cr[4],cb[4],y[4],cr[3],cb[3],y[3],cr[2],cb[2],y[2],cr[1],cb[1],y[1],cr[0],cb[0],y[0]);

}

Program Loop:
for (…) {

WRGET0(&A, 15); /* Load 15 bytes (5 RGB pixels) */
RGB2YCC(A, &B); /* Convert 5 pixels */
WRPUT0(B, 15); /* Store 15 bytes (5 YCbCr pixels */

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

11© 2005 Stretch Inc. All Rights Reserved.

Software Profiling Results

Software (RGB2YCC)
WR ISEF

(Bit-Width)
Instruction
Pipeline

Cycle
(K

Cycles)

√
√
√

3458
Operator Fusion √ √ 219 15
Vectorization √ √ √ 42 80

Factor

ANSI – C Only 1

ISEF
(State
Reg.)

Over 80x Performance Improvement From C/C++

CPU Cycles for RGB to YCC Conversion

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

1© 2005 Stretch Inc. All Rights
Reserved.

Extension Instructions for Convolutional Encoder
#include <stretch.h>
#define K (7)
#define M (48)
#define M12 (48)
#define M23 (32)
#define M34 (48)
#define M56 (40)
static se_uint<K> code0, code1;
static se_uint<K-1> hist;

SE_FUNC void CONVEN_INIT(unsigned char c0, unsigned char c1)
{

code0 = c0; code1 = c1;
hist = 0;

}

SE_FUNC void CONVEN(SE_INST CONVEN12,
SE_INST CONVEN23,
SE_INST CONVEN34,
SE_INST CONVEN56,
WRA *d0)

{
int i;
/* up to M new input bits + K-1 history bits */
se_uint<M+K-1> dIn = ((se_uint<M>)(*d0), hist);
/* 2 convolutions per input bit */
se_uint<1> X[M], Y[M];
/* For each input bit, do two convolutions (length <= K)
* to produce two output bits. */
for (i = M-1; i >= 0; i--) {

X[i] = (code0(0) & dIn(i+0)) ^
(code0(1) & dIn(i+1)) ^
(code0(2) & dIn(i+2)) ^
(code0(3) & dIn(i+3)) ^
(code0(4) & dIn(i+4)) ^
(code0(5) & dIn(i+5)) ^
(code0(6) & dIn(i+6));

Y[i] = (code1(0) & dIn(i+0)) ^
(code1(1) & dIn(i+1)) ^
(code1(2) & dIn(i+2)) ^
(code1(3) & dIn(i+3)) ^
(code1(4) & dIn(i+4)) ^
(code1(5) & dIn(i+5)) ^
(code1(6) & dIn(i+6));

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2© 2005 Stretch Inc. All Rights
Reserved.

/* 1/2 rate: no puncturing */
if (CONVEN12) {

hist = (se_uint<K-1>)((*d0)(M12-1,M12+1-K));
*d0 = 0;
for (i = M12/1 - 1; i >= 0; i--) {

*d0 = (*d0, Y[i], X[i]);
}

}

/* 2/3 rate: puncture using (Y1, Y0, X0) (drop X1) */
else if (CONVEN23) {

hist = (se_uint<K-1>)((*d0)(M23-1,M23+1-K));
*d0 = 0;
for (i = M23/2 - 1; i >= 0; i--) {

*d0 = (*d0, Y[2*i+1], Y[2*i], X[2*i]);
}

}

/* 3/4 rate: puncture using (X2, Y1, Y0, X0) (drop Y2 & X1) */
else if (CONVEN34) {

hist = (se_uint<K-1>)((*d0)(M34-1,M34+1-K));
*d0 = 0;
for (i = M34/3 - 1; i >= 0; i--) {

*d0 = (*d0, X[3*i+2], Y[3*i+1], Y[3*i], X[3*i]);
}

}

/* 5/6 rate: puncture using (X4, Y3, X2, Y1, Y0, X0)
* (drop Y4, X3, Y2 & X1) */
else { /* CONVEN56 */

hist = (se_uint<K-1>)((*d0)(M56-1,M56+1-K));
*d0 = 0;
for (i = M56/5 - 1; i >= 0; i--) {

*d0 = (*d0, X[5*i+4], Y[5*i+3], X[5*i+2],
Y[5*i+1], Y[5*i], X[5*i]);

}
}

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

1© 2005 Stretch Inc. All Rights Reserved.

Summary

Software-Configurable Processors and Stretch “C”
New Technology Addressing Compute Intensive Functions

Software Development Flow
Enables Hardware Performance from “C” Software
No Hardware Development Required

Tune the Instruction Set to the Applications
Run-time Configurable, Dynamically Loadable
Fast and Easy to Develop

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2005 Stretch Inc. All Rights Reserved. Stretch, the Stretch logo, and Extending the Possibilities are trademarks of Stretch Inc.

Accelerating Compute Intensive Functions
Using “C” and

Software-Configurable Processors
SDR Forum, November, 2005

Joe Hanson, Director of Business Development

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

