

SDR-TARGETED DESIGN FLOW: FROM EXECUTABLE SPECIFICATION TO

SIGNAL PROCESSING SUBSYSTEM CODE GENERATION AND SCA-
FOCUSED TOOL INTEGRATION

Zoran Kostić (The MathWorks, Natick, MA, USA; wireless.sdr@mathworks.com)

Alex Rodriguez (The MathWorks, Natick, MA, USA; wireless.sdr@mathworks.com)

ABSTRACT

SDR-based radios rely on embedded software for code
portability, reuse, and upgradeability. This paper explores a
robust design process for SDR and embedded-code
generation, for different applications and for diverse
hardware and software platforms. The paper elaborates on
the methodology that is based on the executable
specification captured in mixed graphical/textual
environment. This design flow supports: 1) System
architecture exploration, 2) Communications performance
evaluation, 3) Partitioning of a complex communication
system into subsystems/components; 4) Automated portable
embedded code generation suitable for integration with
SCA components-based tools.
We present the design flow through an interactive example
of a communication system which contains complex signal
processing functionality, several levels of subsystems,
multi-sampling-rates and which is of interest to SDR
community. We show code structure and illustrate
flexibility in choosing automated code optimization
strategies targeted at execution speed, memory size or other
features. The ability of code to be integrated with
customized schedulers is illustrated. We discuss features of
the code structure that facilitate integration of the code into
SCA component-based tools.

1. INTRODUCTION

Industry and government have experienced an explosion in
the number of communication systems. Demand for
interconnectivity, portability, reuse and multi-standard
support is challenging the current paradigm of
communication radio architecture and design. Software
Defined Radio (SDR) has emerged as a promising
technology to solve these issues, and with support of U.S.
and international organizations, it is poised to become the
next breakthrough in wireless communications. SDR is a
major paradigm shift in the way engineers think of design
and deployment of communications radios. Software

defined radio (SDR) paradigm implies the ability to develop
systems and software once, run anywhere, and modify at the
highest possible conceptual level. In practice, SDR relies
on flexible re-targetable embedded software.
Recognizing that traditional text-based specifications are
incompatible with SDR hardware portability, The Joint
Tactical Radio System (JTRS) Joint Program Office (JPO)
has provided a series of guidelines in the Software
Communications Architecture (SCA) recommendations.
The guidelines suggest that the implementation of
executable specifications be based on an Implementation
Independent Model (IIM) and an Implementation Specific
Model (ISM). IIM and ISM have originally been proposed
by the Object Management Group (OMG). The SCA
interposes a core framework (CF) designed to provide
interoperability between waveforms (such as GSM, 802.11
air-interface standards) and programmable radio hardware.
The goal is to design waveforms in form of software
applications and be able to download them to any radio set
that supports the SCA specification.
The concepts of Model-Based Design and underlying
executable specifications are means of enabling the
realization of IIM and ISM paradigms. Model-Based Design
ensures design portability, code reuse, multi-standard
support, interconnectivity among applications and
platforms, and flexible, efficient and streamlined design and
deployment of SDR radios.
The paper shows how the concepts of executable
specification, IIM and ISM, originally proposed in the
context of the software architecture, have been extended to
the design, implementation and test of the Signal Processing
Subsystems. The paper discusses the rationale, requirements
and benefits of this design methodology. It elaborates on the
process of waveform development, automatic and portable
code generation for a variety of hardware platforms, and
closed loop development process. We present an example of
a design flow for implementing a modulation/demodulation
portion of the FM3TR reference waveform.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

mailto:wireless.sdr@mathworks.com
mailto:wireless.sdr@mathworks.com

1. TRADITIONAL SDR DESIGN

Every major increase in communications capability has
demanded enormous exertions on the part of hardware and
software developers, and SDR is no exception. Leading

Figure 1. Model Based Design

EST AND
RIFICATION
DESIGN IMPLEMENTATIONREQUIREMENTS
AND

SPECIFICATIONS

T
VE

Figure 2. Traditional Design Flow
defense contractors, electronics components suppliers,
systems integrators and others are hard at work developing
the next generation of SDRs which promise to transform
wireless communications by allowing all types of wireless
devices to interoperate with each other and to add new
features quickly with software downloads.
The challenge gets order of magnitude harder when there is
a need to support the ability to communicate with virtually
any imaginable waveform using software programs running
on flexible hardware. In today’s military and commercial
wireless platforms, the hardware has been optimized for the
waveform and, in particular, the RF section is optimized for
the narrow frequency band. Moving from specific to generic
involves compromises that can have a negative impact on
real-time performance, power consumption, and size. Until
now, SDR developers have largely used traditional design
methods. Specifications are conceptualized by systems
architects as text documents. These documents are used to
guide the work of project teams who specialize in areas
such as signal processing, RF, VLSI, testing. Project teams
specify hardware, design circuits, write software, run
simulations, perform tests, and generate mountains of data.
Obtained information is delivered back to the systems
architect who views the raw information and matches it up
against the specifications.
A key problem with this approach is that problems are not
detected until all of the different modules can be tested
together at the prototype stage. If the prototype results do
not match the specification, engineers need to go back and
take a close look to determine whether the requirements
were valid, if the requirements were properly coded,
whether the simulation models were correct, if the interface
was correct, or if the problem was with the target HW

platform. This weakness can increase development costs
because the cost of fixing a problem increases by an order
of magnitude as the design progresses through successive
stages.

All of these challenges, however, pale in comparison to the
need to develop for multiple targets. Digital signal
processing is at the heart of SDR and this function can be
accomplished using a range of hardware solutions including
general-purpose processors (GPPs), digital signal
processors (DSPs), and field programmable gate arrays
(FPGAs). Every major development program must consider
a wide range of different hardware options and hardware
selection is often not finalized until far into the development
process. Even after the hardware choice is made, developers
must be prepared for hardware upgrades and derivative
products that may take a completely different direction,
such as a switch from DSPs to FPGAs. The biggest problem
with traditional development methods is that they are

Model elaboration

DESIGN IMPLEMENTATION
REQUIREMENTS

AND
SPECIFICATIONS

TEST AND
VERIFICATION

EXECUTABLE
SPECIFICATIONS
Reduce ambiguity
Avoid re-work

AUTOMATIC
CODE
GENERATION
Minimizes
coding errors

CONTINUOUS
VERIFICATION
Detect errors
earlier

DESIGN WITH
SIMULATION
Rapid design
iterations

Continuous verification

Figure 3. Model Based Design

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

specific to particular hardware architecture, therefore
making it necessary to restart the development process.
Recognizing that traditional design methodologies have
slowed JTRS development significantly, the JTRS Joint
Program Office (JPO) has provided guidelines for a new
design methodology in which waveform specifications are
defined in the form of an Implementation Independent
Model (IIM), which is independent of the hardware
specification, and an Implementations Specific Model
(ISM), which is specific to the hardware implementation.
The intent of guidelines is to enable porting of waveforms
on multitude of HW/SW platforms.

2. IMPLEMENTATION INDEPENDENT AND
IMPLEMENTATION SPECIFIC MODEL

An Implementation Independent Model includes
information to define, characterize and validate how the
waveform behaves, which can be verified and traced to the
waveform requirements documents. The signal flow, control
flow, and networking aspects of the waveform are defined
using information such as waveform subsystem boundaries,
subsystem jitter, latency and timing requirements,
subsystem processing requirements, and signal port sample
times. An executable IIM provides a test bench to verify
waveform functional blocks or systems against system
requirements and validate their performance (Figure 1).
An Implementation Specific Model, on the other hand,
reflects the details of an intended implementation as ported
to a specific radio set architecture. It contains information
about the allocations of process components to various
processor resources, enabling a detailed understanding of
the implementation. It includes a model of execution timing
on the target processors, latencies, memory, and queue
sizes, allowing the developer and subsequent porting efforts
to understand the impact of changes in resource capability
on the system level behavior, such as throughput, jitter,
latency, memory consumption, power, and real-time
performance.

3. MODEL-BASED DESIGN
ENABLES IIM AND ISM IMPLEMENTATION

Model-Based Design helps engineers and designers
overcome the difficulties of traditional development
approaches. Comprehensive, system-level mathematical
models form the basis of Model-Based Design. Models
serve as executable specifications, replacing ambiguous text
documents. Model-Based Design eliminates ambiguity and
allows communication throughout an organization and to
customers, contractors, and suppliers. Using Model-Based
Design, algorithm developers, RF designers, software, and
hardware engineers can cooperate to make tradeoffs and
evaluate solutions, thus enhancing performance and

reducing costs, as illustrated in Figure 3. Designers can
simulate and iterate as many times as necessary to refine the
model to meet the constraints of the target environment, and
to validate the system behavior against the requirements.
Once the design is validated, designers can automatically
generate code from the model, eliminating the need for hand
coding and the errors that manual coding introduces.
Engineers can ensure quality throughout the development
process by integrating tests into models. This continuous
verification and simulation helps identify errors early, when
they are easier and less expensive to fix.

Model-Based Design captures both conceptually
high-level model descriptions of Implementation
Independent Models, as well as fine nuances of the
Implementation Specific Models.
The executable specification of the waveform is initially
defined at a high conceptual level using graphical
descriptions with pre-built primitives/blocks that can
describe both simple and complex functions and algorithms.

As per needs of the model or the designer, subcomponents

Table 1. Generated Code Fragment for Demodulator

 1 /*
 2 * File: Demodulator.c
 13 */

 15 #include "Demodulator.h"
 16 #include "Demodulator_private.h"

 18 /* Block signals (auto storage) */
 19 BlockIO_Demodulator Demodulator_B;

 21 /* Block states (auto storage) */
 22 D_Work_Demodulator Demodulator_DWork;
 23
 24 /* External inputs (root inport signals
with auto storage) */
 25 ExternalInputs_Demodulator Demodulator_U;

 27 /* External output (root outports fed by
signals with auto storage) */
 28 ExternalOutputs_Demodulator
Demodulator_Y;

 46 /* This function implements a
deterministic rate-monotonic multitasking
scheduler for a system with 2 rates. The
function is called by the generated step function
 50 */
 51 static void
rate_monotonic_scheduler(void)

 66 /* Model step function for TID0 */
 67 void Demodulator_step0(void)
 71 rate_monotonic_scheduler();

 86 /* Model step function for TID1 */
 87 void Demodulator_step1(void)
/* Sample time: [0.00004s, 0.0s] */

 445 /* Model initialize function */
 446 void Demodulator_initialize(boolean_T
firstTime)

 564 /* Model terminate function */
 565 void Demodulator_terminate(void)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

of the model can be incorporated into the block-based
Model-Based Design model in programming languages
such as C,C++, Fortran, MATLAB® or HDL. Custom
and/or legacy code is embeddable using interfacing/API
rules. The specification can then be executed to determine
the performance that would be delivered by incorporated
components. By performing detailed simulations of the
system behavior under different conditions, parameter
values, and inputs, engineers can quickly identify, isolate,
and fix system design problems. Designers can make
changes by adding, subtracting, or moving blocks or
changing parameters and immediately assessing the impact
of the changes. Designers can evaluate the effects of
quantization from floating-point, typically used during the
early stages of design, to fixed-point representations,
typically used in hardware implementation.
In a text-based approach, implementation of hardware or
software is typically done by manual recoding. This process
is time-consuming and error-prone. Model-Based Design
incorporates both the IIM and the ISM. The IIM consists of
hardware-independent functional blocks while the ISM
consists of blocks that have been optimized for a particular
hardware implementation. The model increases in detail as
it moves from the specifications phase, through design,
implementation and into the overall system validation and
testing but remains a single, unambiguous representation of
the system throughout the development process. While a
model maintains the intellectual property, it can be used to
automatically generate code for a wide range of hardware
platforms, including C code for general purpose processors,
C and assembly for digital signal processors, and HDL for
FPGAs. Automatic code generation provides a coding
standard for the generated code, because the same
constructs are used with every build. This approach
eliminates hand-coding errors and limits potential error
sources between the simulation code and the embedded
code. Since the code is directly traceable to the simulation,
errors must either be in the interface or in the execution
under real-time constraints. Because the model is developed
independently of an embedded hardware target, it can easily
be retargeted to different platforms and re-used in future
systems.

Throughout the process, quality is ensured by integrating
tests into the model. The model has a test suite of cases with
baseline results. This continuous verification and validation
helps identify errors early, when they are easier and less
expensive to fix. The system-level model developed by the
system architect can be used later in the design process to
incorporate realistic data generated by simulation or testing
to validate the design.

4. FM3TR REFERENCE WAVEFORM

Future Multi-Band, Multi-Waveform, Modular, Tactical
Radio (FM3TR) is a reference waveform chosen by the
SDR Forum for as a test and demonstration vehicle [2].The
waveform contains modulation, channel coding, speech
coding and data framing as representatives of important
communications functionalities. In this paper, we focus on
the lowest physical layer– modulation and demodulation.
We demonstrate Model-Based Design and show the
following: high-level conceptual design capture, simulation
and evaluation, elaboration and refinement in the domain of
fixed-point analysis, code generation for different
software/hardware platforms and code optimization
approaches. We illustrate the organization of the generated
code for purposes of integration with SCA component
paradigm.

A. MODEL OF FM3TR MOD/DEMOD

An illustration of the FM3TR modulation/demodulation is
shown in Figure 4. The model implements the MLSE-based
MSK receiver as proposed by Rimoldi [3, 4]. The model is
capable of simulations with arbitrary fixed point
specifications, for evaluating DSP or VLSI SW or hardware
architectures. This is a representative of executable
specifications and IIM, in that the model fully captures
functional aspects of the design.

B. CODE GENERATION AND OPTIMIZATION

From the IIM model of the previous section, a large number
of ISM models can be built in automatic fashion, by means
of generating code – either generic C or one of many
targeted processors. A selection of target SW/HW platforms
is illustrated in Table 3. Generated code can run as a part of
the IIM, or can be run as a part of the external SW/HW
platform. An arbitrary subsystem of the original IIM model
can be selected for transformation into the ISM model. For
instance, one can select the whole demodulator for code
generation, or only a part of the demodulator running at the
symbol rate. Whatever segment is chosen for generation is
fully controllable by the ISM-level model, and any
modifications or errors can be traced back, evaluated and

De

De

er

De

De

De

rt
Table 2. Code Generation Files for Demodulator

modulator.c

modulator_data.c

t_main.c

modulator.h

modulator_private.h

modulator_types.h

wtypes.h
corrected for at the conceptually high level IIM model.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Automatic code generation is controllable through code
optimization. Exemplary optimization options include
storage reuse, parameter inlining, loop unrolling,
initialization options, C or C++ interfacing, memory
mapping specification, custom library calls and other.

As an example, choosing the demodulator for generation of
embeddable generic C-code would generate functions listed
in Table 2. Fixed-point IIM model is shown in Figure 5.
Fragments of generated code are shown in Table 1.

C. ADAPTING CODE FOR INTEGRATION INTO

SCA COMPONENTS

Code generated automatically from Simulink Model-Based
Design Platform (RTW or Embedded Coder products), in a
default version, contains the following basic functions: a)
initialization, b) update/output – which contain the main
algorithmic functionality, and c) terminate. On the other
hand, SCA recommendations require the existence of the
following functions: a) initialize, b) start, c) stop, d) release,
e) afterConfigure, f) beforeQuery, g) run, and h) test. To
properly support SCA-requirements, proper interface
functionality needs to be built. Component-based
specifications in SCA space are currently lacking precise

timing management functionality description, which also
introduces a need to accommodate needs of timing-critical
communications operations. Customized templates and state
machines that can parse SCA commands and control timing-
critical functions can be means of creating and managing
the interface software. State machine can parse SCA calls
into function calls recognizable by blocks carrying
communications functionality, as well as provide control to
timing-critical physical layer functions. In the presentation,
we discuss means of utilizing a tool called Stateflow for
purposes of semi-automatic generation of interface code.

Table 3. Code Targets

CONCLUSION

Model-Based Design is a key component in the
development approach necessary for the realization of
SDRs. It supports the process of automatic code-generation
and code portability across hardware, software, and SCA
core-framework platforms. Model-Based Design
streamlines development through the creation of executable
specifications and IIM and ISM models, maintaining
traceability to the original waveform specifications and
ensuring continuous verification throughout the
development process. SDR design and deployment using
Model-Based Design is significantly simpler and more
robust than traditional design processes. The outcome is the
improvements in cost, performance and reliability of SDR
systems.

REFERENCES

[1] Acquisition Guidance to the JTRS Software Communication

Architecture (SCA) Specification JTRS-5000 SP V3.0 30
June 2004

[2] R. N. Smith, “Description of the FM3TR Proposed Reference
Waveform,” Document number SDRF-01-I-0056-V0.00,
August 30, 2001.

[3] Bixio Rimoldi, "A Decomposition Approach to CPM," IEEE
Trans. on Information Theory, March 1998.

[4] H. Leib and S. Pasupathy, "Error-Control Properties of MSK,"
IEEE Communications Magazine, Jan 1993.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Figure 4. Model of the Modulator and Demodulator

Figure 5. Fixed point Model

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

