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ABSTRACT 
 
This paper describes a case study examining two distinct 
design processes for implementation of FPGA-based 
software defined radio subsystems.  We compare a 
traditional RTL design approach with a model-based design 
flow involving automatic code generation using System 
Generator. Both design processes were applied to the 
development of a common SATCOM waveform: Mil-Std-
188-165a. Results indicate a 10:1 improvement in 
development efficiency using System Generator, based on 
quantitative comparison of the time consumed in developing 
system simulations, algorithm documentation, code design 
and debugging, hardware implementation, and algorithm 
verification.    The time savings associated with 
performance analysis using hardware co-simulation is also 
assessed.    
 
 

1. INTRODUCTION 
 
FPGAs have become widely used in the design of physical 
layer and baseband processing for software-defined radios.  
However, prevailing programming models, derived from 
design flows used to design ASICs, have traditionally 
limited accessibility of FPGA-based signal processing 
subsystems to designers with a background in chip design. 
This situation has been changing over the last five years 
with the emergence of a new class of FPGA programming 
flows based on high level modeling in MATLAB and 
Simulink.  The Xilinx System Generator for DSPTM, the 
first Simulink-based tool for FPGA design introduced in 
2000, and subsequent tools share the common purpose of 
bringing FPGA technology to a wider audience, while 
increasing designer productivity, especially in the area of 
modem development for software-defined radios (SDR).   
For the radio designer who lacks expertise in traditional 
ASIC hardware design flows, these tools provide a means 
for architecting, synthesizing, and validating high 
performance systems employing FPGAs.  For the more 
traditional FPGA designer, these tools can provide 
significant productivity improvements over traditional 
methods, e.g., by enabling better exploration of the 
architecture space and creation of more realistic and robust 
test harnesses.  Whilst productivity improvements have 

been reported anecdotally and in internal corporate 
documents, there have been few published results that 
attempt to quantify productivity improvements derived from 
new design flows [2].   
 
 In this paper we present a case study comparing a 
traditional VHDL-based design flow to a System Generator 
based FPGA design process, using a subset of the military 
SATCOM waveform Mil-Std-188-165a as test application.   
We compare the two design flows in terms of waveform 
specification and documentation, design and performance, 
and debugging effort (in both the simulation environment 
and hardware).  In addition, we identify ways in which 
traditional FPGA tools (e.g., logic synthesis) continue to 
play fundamental roles.  The notion of SCA Rapid 
Development is described, and we indicate areas in which 
FPGA tools must improve or expand in order to fully 
service the SDR community, especially regarding the 
hardware/software interface and the control plane (e.g., 
SCA compliance). 
 

2. FPGA DESIGN FLOWS 
 
Traditional FPGA design flows have historically mirrored 
processes originally developed for building application-
specific integrated circuits (ASICs).  An untimed system 
model is usually created in an imperative language like C or 
MATLAB.  This design phase represents the primary 
opportunity for algorithm exploration, and typically 
provides test vectors for validating the implementation.  The 
initial implementation is typically described in a hardware 
description language (HDL) like VHDL or Verilog at a 
register transfer level (RTL) that allows a behavioral (as 
opposed to purely structural) logic description.  The RTL 
description typically involves instantiation of reusable 
components called intellectual property (IP) blocks (e.g., 
Viterbi decoder, FFT), often provided by the FPGA vendor, 
to ensure efficient implementation of complex functions on 
a particular device fabric.  Functional conformance testing 
to the original system model is done using HDL simulation 
by creating an HDL test harness that imports test vectors 
provided by the system model.  This loose coupling 
between system model and implementation makes 
debugging difficult and time-consuming.  For example, test 
vectors provide only an input/output relation, so it is often 
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necessary to rework the system model (often written by an 
entirely different design team) in order to extract internal 
state or signals for debugging. 
 
 In contrast, design flows based on System Generator 
and similar tools derive a hardware realization directly from 
the system model via automatic code generation [1][3].  
Sometimes referred to as model-based design [4], such high 
level design approaches aim to increased productivity (from 
higher levels of abstraction) and reliability (from automatic 
code generation and more robust test methodologies).  
System Generator provides a more attractive programming 
model than HDLs for a signal processing engineer, as well 
as a greater ability to explore architecture and debug 
complex algorithms realized in hardware.  Embedded in 
Simulink [5], System Generator provides abstractions and 
tool interfaces expressly designed to facilitate hardware 
design [7].  System Generator provides libraries of Simulink 
blocks (the Xilinx Block Set) with bit and cycle true 
simulation for a wide range of functions ranging from 
communication algorithms (e.g., Viterbi decoder, 
interleaver), DSP algorithms (e.g., FFT, FIR filter), down to 
lower level building blocks for memories, arithmetic 
structures, and logic.  Since the system model is captured in 
Simulink, the debugging capabilities of that tool can be 
brought to bear, including data visualization and test 
harness creation.   
 
 System Generator also extends Simulink through 
standard APIs to interface directly to HDL simulation tools 
(enabling import of HDL modules) and directly to hardware 

platforms (hardware co-simulation).   In System Generator, 
hardware co-simulation entails automatic generation of an 
FPGA bitstream from Simulink, as well as its incorporation 
back into Simulink itself.  This allows the user to exploit 
FPGAs to significantly accelerate simulation, while also 
providing the ability to validate a design working in 
hardware, all without necessarily having to invoke a 
traditional FPGA tool explicitly. 

  
3. CASE STUDY RESULTS 

 
3.1 Problem Description and Motivation 
 
BAE Systems CNIR, a developer of advanced military 
communication radio systems, continually evaluates tools 
and design processes that offer potential for improved 
efficiency.   A project to implement a SATCOM waveform 
on the BAE C4ISR radio offered an ideal opportunity to 
evaluate a new model-based design approach using System 
Generator.  This design flow made extensive use of the 
system model including design capture, system simulation, 
and auto-generation of RTL VHDL, providing opportunity 
for significant time and cost savings.  Two parallel 
development efforts were performed.  The waveform was 
implemented to the same set of requirements using both a 
traditional and a model-based development flow.  Each 
design was carried through to implementation on hardware.  
Effort for each design was measured in man-hours, and each 
developer noted activities that were particularly easy or 
troublesome.  Upon completion, the developers compared 
notes and noted advantages or disadvantages to their 
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Figure 3.1 – Generic Block Diagram of the SATCOM Waveform 
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particular design flow, as described below. 
 
A block diagram of the waveform is given in Figure 3-1.  
Elements that are implemented include: 
scrambling/descrambling, differential encoding/decoding, 
Reed Solomon encoding/decoding, interleaving/de-
interleaving, convolutional encoding/Viterbi decoding, and 
RS frame synchronization.   A subset of the standard 
requirements was implemented, limiting the uncoded data 
rates to 16, 64, 256, and 8096 kbps, rates achievable by 
varying the input clock, and requiring only a single set of 
modulation and coding parameters: 
 

• QPSK 
• Reed Solomon (219, 201) 
• Viterbi ½ rate 

 
To clarify the evaluation, it was decided to separate the 
effort into the following distinct categories, each covered 
separately in sections that follow. 
 

• Signal Processing Chain 
• Clock generation and issues 
• Hardware interfaces 

 
A single individual worked each effort, one handling the 
traditional RTL development, and another the model-based 
RTL development.   Developer productivity can vary 

significantly between individuals, but we believe both were 
evenly matched in the abilities brought to bear on this 
problem.   The individual using traditional methods was a 
highly experienced RTL designer, having over 15 years 
experience in the field, including experience in the 
implementation of communication links.   The individual 
employing model-based methods was also an experienced 
RTL developer and an expert in using System Generator, 
but had no prior experience in the implementation of 
communication links. 
 
3.2. Performance Comparison 
 
3.2.1. Signal Processing  
To facilitate accurate measurement of the hours spent in 
producing a working design, we have partitioned the 
waveform into functional blocks, with each developer 
recording or estimating the time spent on that function 
separately.    Additionally, the development process was 
broken into sub-categories capturing the typical sequence of 
tasks involved in RTL development.   As given in Table 3.1, 
these categories are: 
 
-- Algorithm & Interface Specification /Documentation 
-- Module Design 
-- Modeling, Simulation & Design Verification 
-- VHDL Coding 
-- VHDL Behavioral Verification 

    Table 3.1 – Comparison of Development Man-Hours: Traditional versus Rapid Development Approach 
   

  Development Time -- Signal Processing Chain (man-hours)
Traditional Approach

Algorithm 
Interface 
Specification / 
Documentation

Module Design 
Definition

Modelling, 
Simulation & 
Design 
Verification VHDL Coding

VHDL Code 
Behavioral 
Verification

Hardware 
Integration & 
Lab Testing Notes

Reed Solomon RS Encode 40 40 0 40 60 20 Integrate purchased IP
Reed Solomon Decode 20 80 0 60 100 20 Integrate purchased IP
Scrambler / Descrambler 1 1 0 1 6 3
Convolutional Encode 1 1 0 1 1 1
Viterbi Decode

8 8 0 8 16 24
Integrate in-house IP, 
development not shown

Differential Encoder / Decoder 1 1 0 1 4 2
Interleaver / Deinterleaver 40 16 0 16 36 60
PSK modulator ( 2,4,8) 5 5 0 4 3 3
RS frame Sync 4 6 0 4 6 4

TOTALS: 120 158 0 135 232 137 782

Rapid Development Approach
Algorithm 
Interface 
Specification / 
Documentation

Module Design 
Definition

Modelling, 
Simulation & 
Design 
Verification VHDL Coding

VHDL Code 
Behavioral 
Verification

Hardware 
Integration & 
Lab Testing

Reed Solomon RS Encode 1 0.25 2 0 0 * Integrate Xilinx Core
Reed Solomon Decode 1 0.5 3 0 0 * Integrate Xilinx Core
Scrambler / Descrambler 0 0.25 3 0 0 *
Convolutional Encode 0 0.25 1.5 0 0 *
Viterbi Decode 0 0.5 2 0 0 * Integrate Xilinx Core
Differential Encoder / Decoder 0 0.25 1 0 0 *
Interleaver / Deinterleaver 0 0.5 2 0 0 * Integrate Xilinx Core
PSK modulator ( 2,4,8) 1 0.5 4 0 0 *
RS frame Sync 1 4 16 0 0 *

TOTALS: 4 7 34.5 0 0 45.5
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-- Hardware Integration & Lab Test 
These columns require some explanation.   The first column 
contains the time spent up front in architecting the overall 
design, defining, for example, memory types and placement 
between modules, clocking requirements, state machines for 
control, etc.   In addition, this column includes time defining 
the interface requirements between modules.  The second 
column, ‘Module Design’, contains time expended in 
architecting and designing the individual modules.  For 
example consider the design of the interleaver, a module 
involving double buffering, addressing and/or reordering, 
etc., all decisions requiring time and thought to produce.   
The column ‘Modeling, Simulation & Design Verification’ 
covers the work to simulation test the module prior to 
VHDL coding to verify that the algorithm is designed and 
operating properly.  The next, ‘VHDL Coding’, is self 
explanatory.   ‘VHDL Behavioral Verification’ is the effort 
to test the VHDL by performing a behavioral simulation, 
verifying that the input-output behavior matches the results 
expected.   Finally, ‘Hardware Integration & Lab Testing’ is 
that time spent verifying the operation of each module on 
the part itself, a step that is done to ensure that neither 
propagation delays nor timing errors are altering the 
behavioral operation. 
 
3.1.1.1 Interpretation of Results 
The accumulated hours are shown at the right side of the 
table (encircled): 782 hours for the traditional versus 45.5 
hours for model-based design.   As stated, both designs 
were carried through to implementation on hardware.   The 
traditional design was implemented on a BAE custom radio, 
consuming 137 hours for integration and test.  The model-
based design was loaded directly onto a WildCard3000, a 
PCMCIA card containing a Xilinx 2V3000, and 
consequently no time was required.  To be fair, if one 
removes the 137 hours spent on hardware integration, we’re 
left with 645 hours, which is still well over a 10:1 
improvement – a remarkable result.   
 
 Some of the key differences between these two design 
methodologies are revealed by where the hours were spent.  
Note that with the tradition flow, significant time is spent in 
the first two columns, architecting the overall design, the 
interfaces, and in designing the individual modules.  It 
should be noted that both designs had the benefit of the 
following cores: 
 
-- Reed Solomon Encoder 
-- Reed Solomon Decoder 
-- Viterbi Decoder 
 
Thus neither had an unfair advantage due to significant 
development associated with these functions.  Nevertheless 
the traditional designer spent considerable time on the Reed 

Solomon functions.   This occurred due to the effort 
required to construct the non-integer based clocks and clock 
enables required by this module.   This did not occur with 
System Generator as it includes an algorithm used to 
generate clock enables automatically (without human 
intervention) based on the various clock domains present in 
the design.    
 

Also noted is the small amount of time consumed by 
the model-based designer in these same categories.   In this 
application the modules provided by System Generator met 
the needs of the user, and no time was required to study and 
understand the inner workings of the block, or to create a 
custom block.  This was not the case, however, with the RS 
Frame Sync, which required some custom development 
(construction of the algorithm using foundational building 
blocks such as registers, multiplies, logic, etc.)  and testing. 
 
 Another key observation is revealed in the third 
column.  Notice that no time was spent by the traditional 
designer to model and simulation test the modules upstream 
of VHDL coding.   Often this step is skipped because of 
time constraints and very tedious work required to model 
the algorithm faithfully, in a bit-true and cycle-true fashion.   
And when all this work is done, there is no direct 
connection to the final product, so it is perceived as a less-
essential, less-productive step.   Errors in the design must 
then be caught at the VHDL Behavioral Verification stage.   
 
 On the other hand, when following the model-based 
process, the designer is inclined (actually required) to build 
a complete, bit-true, cycle-true behavioral model, because 
that model represent his final product.   The discovery and 
removal of errors and bugs at that step occurs as a 
consequence.   Notice that this step consumed the greatest 
number of hours when using System Generator and model-
based design.   This is typically a process of “build a little, 
test a little”.  As modules are brought into the design, time 
is required to “get it to work” properly.   Why is this 
advantageous?  Debugging at this stage is faster and easier 
than at the VHDL stage.  Errors are discovered upstream of 
compilation and within a graphical user environment.  
Debugging VHDL behavioral models requires synthesis of 
the VHDL (i.e. a compilation) and is less intuitive.  Thus, 
considerable time is spent waiting for synthesis to complete 
and in locating and correcting bugs.   This is evidenced in 
the “Behavioral Verification” column of the Traditional 
Development effort, where more time was spent than any 
other category, time avoided with model-based design flow 
which forces one to address errors prior to VHDL coding 
(column 3).       
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3.2.2. Clocking 
 System Generator determines a clock running at the highest 
rate and builds enabling logic to throttle any number of 
lower rates as needed [7].  Thus, the task of deriving 
multiple clocks is removed from the designer by default.   
On the other hand, with traditional design, the designer is 
responsible for generating all clocks, which in the present 
application was complicated by the multiple clocks needed 
to handle non-integer data rates across the Reed Solomon 
coder/decoder.   Carrying clock enables through by hand is 
often difficult for a human, and well suited for machine 
generation. 
 
3.2.3. Hardware Interfaces 
Hardware interfacing is one of the more often difficult 
aspects of system integration.   In this application all of the 
interfaces were the Low Voltage Differential Signaling 
(LVDS) type.  At the time this paper was written, neither 
design was implemented through to the LVDS interfaces; 
however, it is anticipated that neither would exhibit an 
advantage, and that both would require the same amount of 
time to implement.    One should note that with System 
Generator, some COTs vendors provide interface blocks, 
allowing the easy connection of a Simulink model with a 
System Generator segment targeted to run concurrently on 
their FPGA card, with no effort required in developing 
driver interfaces. 
 
3.2.5 Hardware Co-simulation Benefits  
The System Generator version of this waveform design, 
implemented on a Virtex-II Pro 20 (2VP020) consumed 
27% of the part and ran easily at 100 MHz (far exceeding 
the 8 MHz clock rate required to achieve the specified data 
rates).  Hardware co-simulation in free-running clock mode 
[6] increased the waveform simulation speed by roughly 
three orders of magnitude over a pure software simulation. 
 

4.  SCA COMPLIANCY 
 
The Joint Tactical Radio System is a prime driver of 
software defined radio technologies [8].  For this system, 
the software layer controlling the system is known as the 
Software Communication Architecture (SCA) [9].  In this 
study a SATCOM waveform was built using System 
Generator and run on generic co-simulation hardware.  It 
was not SCA compliant.  Implementation within an SCA-
compliant radio would require the addition of “wrapper 
code” adhering to the SCA standard, which represents a 
significant effort by a designer knowledgeable and skilled in 
the SCA.   It is therefore of considerable interest to explore 
extensions to the design flow that generates SCA-compliant 
code automatically, using System Generator for 
development of embedded hardware and firmware and 

Real-Time Workshop (MathWorks) for generation of 
application C code. 
 
 Many waveform developers would prefer to remain 
insulated from the intricacies of the SCA, in part because .  
there are no clear design guidelines in this regard today.     
The current JTRS endorsed specification (SCA Version 2.2) 
does not specify all aspects of waveform implementation 
involving FPGAs and DSP processors.   Version 3.0 was 
intended to address this issue, particularly the Specialized 
Hardware Supplement, but it is not clear at the time of 
writing whether or not Version 3.0 will be adopted by JTRS 
or industry.  Other proposals, e.g., OCP-IP, have also been 
proposed. 
 
 Such uncertainty in the specification presents an 
opportunity for a toolset that can automatically generate 
VHDL component-level wrapper code for FPGAs or 
equivalent C code for DSP processors. Such tools could 
improve waveform developer productivity and significantly 
lower the cost of development, test and verification 
associated with an SCA-compliant radio. Furthermore, a 
tools-based approach would be far more scalable than an 
approach requiring each waveform developer to track the 
emerging specification and to write SCA-specific code for 
each waveform.   A tool such as this would take the output 
from System Generator and automatically generate the code 
necessary to make the waveform SCA-compliant.  The onus 
of ensuring SCA compliance would then fall on the tool 
supplier rather than the waveform developer. 
 
 Future extensions of the current work include 
exploration of SCA rapid development approaches.  We 
envision a proposal to build an open-source tool as 
described above.  A further outcome of this study would be 
design guidelines for development of SCA-compliant 
waveforms.  We expect to report on this work at a future 
SDR Forum Workshop or Technical Conference. 
 

5. CONCLUSIONS 
 
We have presented a detailed case study performed to 
quantify benefits of adopting a System Generator design 
flow for FPGA-based signal processing systems.  In the 
development of even a simplified MILSAT waveform, we 
observed a 10:1 productivity improvement over a traditional 
RTL / IP core design flow.  As system complexity and 
device complexity continue to grow, the need for higher 
level tool flows for embedded hardware and software 
systems will become increasingly important.  It is expected 
that industry case studies such as this should continue to 
provide considerable value in sharing knowledge of the 
“state-of-the-art”.  
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