
 

USING DOMAIN-SPECIFIC MODELING AND MODEL DRIVEN DEVELOPMENT TO 

DEVELOP SOFTWARE DEFINED RADIO COMPONENTS AND APPLICATIONS 

 
        Dominick Paniscotti                                   Bruce Trask                                   Angel Roman 

              (PrismTech,                                         (PrismTech,                                     (PrismTech, 

Saddle Brook, NJ, 07633 USA              Saddle Brook, NJ, 07633 USA        Saddle Brook, NJ, 07633 USA  

         dp@prismtech.com )                              bt@prismtech.com )                        ar@prismtech.com ) 

 

                                                                          Vikram Bhanot 

                                                                             (PrismTech 

                                                              Saddle Brook , NJ, 07633 USA 

                                                                       vb@prismtech.com ) 

 
ABSTRACT 

 

Software Defined Radios are in a unique software domain 

within DRE systems.  This domain includes tackling 

complexities introduced from a number of quarters, 

including concerns dealing with systems that are embedded, 

real-time, high performance, heterogeneous, platform-

independent, portable, object-oriented, multi-threaded, 

distributed, component-based, programmable via both 

declarative and imperative programming mechanisms, and in 

many cases resource constrained.  Needless to say, domains 

as complicated as this stand to gain from the recent advances 

in Model Driven Development, Generative Programming 

and Agile Programming techniques.  Just as the domain is 

multi-faceted in nature so to need be the solutions, tools and 

techniques applied to them to ensure success. 

 

This paper will describe the application of these solutions, 

tools and techniques to the Software Defined Radio domain.  

It will include detailed descriptions of not only how Model 

Driven Development techniques and tools can be used but 

also descriptions of Generative Programming techniques 

that can be successful leveraged including domain-specific 

languages as applied to the SCA and the Software Radio 

Domain.    

 

 

1. GENERAL BACKGROUND 

 

For the past twenty years, there has been a continuous 

evolution in electronic communications equipment.  The 

evolution can be described as one of moving the radio 

functionality from being located in the hardware platform 

running with proprietary processors and circuitry to being 

located in firmware running on programmable logic and then 

to being located in software running on general purpose 

processors. The driving force behind this evolution has been 

the need to leverage the inherent greater malleability and 

configurability of software versus that of hardware.  As 

radio functionality continues to move into software, or 

looking at it another way, as that software moves “closer to 

the antenna”, it becomes more commercially viable to 

maintain, configure, test and reuse communications 

algorithms and functionality as well as the hardware on 

which it runs.  This evolution is very similar to that of the 

computer itself with today's PCs running applications, the 

bulk of which exist as software running on general purpose 

hardware. 

 

The communications industry has coined a term for this type 

of communications equipment: the Software Defined 

Radio[14].   

 

As the radio and communications domain moves into a 

software centric solution, it is only natural that it leverage 

advances in the software domain as part of its implementa-

tion.  These advances include object orientation, 

frameworks, component based design, middleware, in 

addition to imperative and declarative languages. More 

recently, the rise in abstraction level of the radio platform in 

the form of operating systems and middleware in 

combination with advances in modeling tools has opened the 

door to allow the evolution of communications software to 

enter the realm of model-driven development.  This is 

fortuitous as the complexity of these communications 

systems has increased so dramatically that the viability of 

these new systems now hinges on the increased productivity, 

correctness and robustness that model-driven development 

affords.   

 

This paper details the application of model-driven 

development, and more specifically, domain-specific 

modeling to the software defined radio domain.  This 

domain has very unique characteristics as its systems 

typically are a confluence of a number of typically 

challenging aspects of software development.  To name a 

few, these systems are usually described by modifiers such 

as, embedded, real-time, distributed, object-oriented, port-

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



able, heterogeneous, multithreaded, high performance, 

dynamic, resource-constrained, safety-critical, secure, 

networked, component based and fault-tolerant.  Each one of 

these modifiers by themselves carries with it a set of unique 

challenges but building systems characterized by all of these 

modifiers all at the same time makes for quite an adventure 

in software development.  In addition to all of these, it is 

quite common in these embedded systems for components to 

have multiple implementations that must run on disparate 

processing elements.  With all of this taken into account, it 

stands to reason that these systems could and should benefit 

greatly from advances in software technology such as 

domain-specific modeling and model-driven development. 

 

2. DETAILED BACKGROUND 

 

In 1999, a consortium of the leading U.S. military radio 

developer companies created the Software Communications 

Architecture (SCA)[1].  This is one of many possible 

software defined radio models that can be input into the 

Domain Specific Modeling process and techniques 

discussed in this paper.  We chose this one as concrete 

example of one such architecture since it is an open standard 

freely available to all. 

 

This SCA defines five primary aspects of next-generation 

communications equipment software 

• A standard component object model 

• A standard deployment and configuration 

framework 

• A standard declarative programming format for 

describing software components and how they are 

connected together 

• A standard portability layer upon which component 

run 

• A standard messaging format for intercomponent 

communication 

 

As a result, the SCA significantly furthers standardization of 

the software radio domain and thus brings many benefits to 

the domain such as interoperability, portability, reuse, and a 

level of architecture consistency.  However, the SCA 

specification does not solve all of the issues associated with 

implementing these complex systems. Some of the problems 

that remain include: 

• Labor intensive implementations of the SCA object 

model in 3GL languages 

• Lack of architectural consistency at various levels 

of implementations 

• The learning curve of the specification and lack of 

effective training materials 

• The technology gaps between software developers 

and radio domain experts 

• Ensuring correctness of implemented systems 

• The dynamic nature of the SCA, which opens the 

door to a host of runtime errors that would best be 

“left shifted” out of runtime into either modeling or 

compile time. 

• A complex set of XML descriptor files which are 

difficult to get correct by hand as there are many 

rules that govern them above and beyond being 

well formed 

• No formal meta-model or UML profile exists for 

the SCA 

• While the SCA definitely raises the level of 

abstraction with regard to radio component 

development, it does not inherently provide an 

automatic and configurable means to get back to 

the lower, executable levels of abstraction or to its 

declarative languages. 

 

3. ENTER DOMAIN-SPECIFIC MODELING 

 

In order to tackle and tame the complexity of these systems 

and of the new specification it was necessary to provide: 

 

• effective support under the SCA that allows users 

to program directly in the terms of the  language of 

the domain and specification, ideally in graphical 

and declarative form to the greatest extent possible 

• means to ensure that the programming is correct 

• means to automatically generate executable 3GL 

programming language implementations from these 

models 

• means to automatically generate additional 

software artifacts that are synchronized with the 

model 

 

Those familiar with Domain-Specific Modeling will 

recognize the above bullets as part of the sacred triad of 

Domain-Specific Modeling: Language, Editor, and 

Generator.  Couched in terms of Domain Specificity and at 

a finer granularity, these three elements map to: 

• a Domain-Specific Language (DSL) 

• a Domain-Specific Graphical Language and 

Domain Specific Views (DSGL, DSViews) 

• a Domain-Specific Constraint Language (DSCL) 

• a family of Domain-Specific Code Generators 

(DSG).   

 

Table 1 lists the activities used in tackling the complexity in 

domain and then leveraging Domain Specific Modeling 

techniques to it 

 

 

 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



General Approach Radio Domain 

Isolate the abstractions and how 

they work together 
The SCA 

Create a formalized grammar for 

these – DSL 

Create a formalize SCA 

meta-model 

 

Create a graphical 

representation of the grammar – 

GDSL 

Create a SCA specific 

graphical tool 

 

Provide domain-specific 

constraints – GDSCL,DSCL 

Program into the tool 

the constraints 

 

Attach generators for necessary 

transformations 

C++, C, Ada and 

VHDL generators 

 

Table 1 

 

One type of tool that can be used to develop the above 

software artifacts are what some refer to as Language 

Workbenches[2]; i.e. tools that allow a developer to define a 

domain-specific language and its graphical counter part, the 

editor, as well as a domain-specific generators that can 

iterate over the domain-specific model to produce 

executable artifacts.  Some language workbenches available 

today include the Eclipse Modeling Framework and the 

Eclipse Graphical Editor Framework (EMF/GEF)[3], the 

Generic Modeling Environment (GME)[4], Microsoft’s 

Visual Studio Team System Domain Specific Language 

Tools (VSTS DSL)[5], and MetaCase MetaEdit+ [8]. 

 

To allow users to run on multiple host platforms most easily 

and to integrate with addition eclipse tools and frameworks, 

we chose to use the EMF/GEF solution. 

 

4. DEFINING THE DOMAIN-SPECIFIC LANGUAGE 

 

The goal here is to provide a domain-specific higher level of 

abstraction with which both software and lay developers can 

program.  Key to this is not only raising the level of 

abstraction but also providing domain-specific abstractions.  

Developers of SCA applications typically program in 3GL 

languages such as C, C++ and Ada.  One of the goals of 

domain specific modeling is simplified modeling and 

programming in the problem space vs. complex modeling 

and programming  in the solution space.   Figure 1 below 

juxtaposes two possible ways to represent the same concept 

in the SCA Software Defined Radio Domain.  The left side 

diagram shows a typical UML diagram for a trivial SCA 

Component with two ports and two properties.  The C++ 

source code is even more complicated. The right side 
diagram shows the same entity in terms of a higher abstract 

concept, a component with two ports and two properties, 

that is much more readable and less complex 

     
Figure 1 

 
The raising of the level of abstraction is made possible 

through the creation of a formalized metamodel expressed in 

terms of the particular language workbench.  In this case this 

involves creating a metamodel that the Eclipse Modeling 

Framework can understand.  Fig 2 shows a greatly 

simplified metamodel for the SCA.  Naturally, the full meta-

model for the entire SCA is much more involved but for the 

purposes of demonstration and saving space we have 

presented a simplified version of it. 

 

  
Figure 2 

 

DT

myFunc1()

myFunc2()

myFunc3()

(f rom C++ Reverse Engineered).. .)

<<Interface>>

Port

connectPort()

disconnectPort()

(from CF)

<<Interface>>

DTPort
(from C++ Reverse Engineered)

<<Interface>>

POA_DTPort

POA_DTPort()

POA_DTPort()

<<virtual>> ~POA_DTPort()

_this()

<<static>> myFunc1_skel()

<<static>> myFunc2_skel()

<<static>> myFunc3_skel()

<<static>> connectPort_skel()

<<static>> disconn ectPort_skel()

(from C++ Reverse Engineered)

POA_DT

POA_DT()

POA_DT()

<<virtual>> ~POA_DT()

<<virtual>> _is_a()

_this()

<<abstract>> myFunc1()

<<static>> myFunc1_skel()

<<abstract>> myFunc2()

<<static>> myFunc2_skel()

<<abstract>> myFunc3()

<<static>> myFunc3_skel()

(from C++ Reverse Engineered)

PropertySet

configure()

query()

(f rom CF)

<<In terface>>
PortSuppl ier

getPort()

(f rom CF)

<<Interface>>

Li feCycle

initial ize()

releaseObject()

(f rom CF)

<<Interface>>

TestableObject

runTest()

(f rom CF)

<<Interface>>

DTUsesPort

m_ProvidesRefs : std::map<std::string, DT_var>

m_Name : std::string

m_HowManyConnectionsAllowed : unsigned long

m_HowManyConnectionsMade : unsigned long

DTUsesPort()

connectPort()

disconnectPort()

name()

numOfConnectionsMade()

myFunc1()

myFunc2()

myFunc3()

(from C++ Reverse Engineered)

Encoder

DTProvidesPort

m_pResource : ResourceNameIt*

DTProvidesPort()

myFunc1()

myFunc2()

myFunc3()

(f rom C++ Reverse Engineered)

FrequencyProp...SerialName

Resource

identifi er : stri ng

start()

stop()

(from.. .

<<In terface>>

Properties
(from.. .

<<CORBATypedef>>

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



As stated before, the SCA provides a general architecture 

and UML diagrams as well as text-based behavioral 

descriptions and requirements and annotated XML DTD 

documents. While these are very detailed they are not 

formalized sufficiently to serve as a useful meta-model by 

themselves.  The meta-model created and desribed here 

involved building upon the structure of the SCA and culling 

from the rest of the specification requirements, constraints 

and behaviors that together make up a complete and 

comprehensive meta-model characterizing the entire 

specification.  As is usual, the group of developers building 

the meta-model are experienced SCA and software defined 

radio developers as well as experienced modelers.  

 

It is from this meta-model that one provides the end user 

with the ability to program more directly in the domain.   

Additionally, end users are able to program more in the 

declarative than in the imperative; i.e. saying what they want 

to have, not specifying how it is to be done.  Listing 1 shows 

a simple example of the persistent form of the Domain 

Specific Language in accordance with the metamodel. 

 
<?xml version="1.0" encoding="ASCII"?> 

<com.prismtech.spectra.sdr.sca2_2.models:Asse

mbly  

xmi:version="2.0"     

xmlns:xmi="http://www.omg.org/XMI"  

 xmlns:com.prismtech.spectra.sdr.sca2_2

.models="http://com.prismtech.spectra.sdr.sca

2_2.models"> 

  <components Name="BitFlipper" 

organization="PrismTech" id="DCE:8f647411-

91a1-4295-bbc6-6d3eff4982f7"> 

     <ports 

xsi:type="com.prismtech.spectra.sdr.sca2_2.mo

dels:UsesPort" instanceName="TX" 

name="Data"/> 

<ports 

xsi:type="com.prismtech.spectra.sdr.sca2_2.mo

dels:ProvidesPort"                 

instanceName="RX" name="Data"/> 

  </components> 

</com.prismtech.spectra.sdr.sca2_2.models:Ass

embly> 

Listing 1 

 

While providing a higher level of abstraction this text  based 

language can still be labor intensive, error prone and hard to 

read.  This leads directly into the next step of Domain-

Specific Modeling. 

 

 

5. DEFINING THE DOMAIN-SPECIFIC GRAPHICAL 

LANGUAGE (DSGL) AND VIEWS (DSV) 

 
What is needed next is a way to express the Domain Specific 

Language graphically or visually. This involves working 

within your Language Workbench of choice to adorn the 

Domain-Specific Language with graphical and visual 

artifacts that allow the user to program quickly and correctly 

and in a way that communicates correctly the essence of the 

architecture and design. 

 

 

 

Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3 

 
Figure 3 shows the PrismTech Spectra SDR PowerTool 

modeling tool. This modeling tool allows end users to 

quickly and acurrately build software defined radio 

components and connect them together.  The DSGL is built 

and based on the underlying meta-model described earlier 

and can be persisted in textual form for processing by other 

programs.  It is through this DSGL that end users program 

with very intuitive icons, images, tools, artifacts and 

property sheets.  Just as UML provides different views to 

describe various aspects of object-oriented systems so to 

does this tool provide Domain Specific Views that allow 

users to design, express and communicate domain specific 

aspects of their designs.  Additionally, the Domain-Specific 

Modeling tool provides the end user with ability to program 

in the declarative versus the imperative. 

 

6. THE DOMAIN-SPECIFIC CONSTRAINT 

LANGUAGE (DSCL) 

 

Almost as important as what you see in the graphical tool 

illustrated in Figure 3 is what you don’t see.   The very fact 

that the DSGL is based on the meta-model means that it 

restricts programming to within the bounds of the meta-

  <components Name="BitFlipper" 

organization="PrismTech" 

id="DCE:8f647411-91a1-4295-bbc6-

6d3eff4982f7"> 

<ports 

xsi:type="com.prismtech.spectra.sdr

.sca2_2.models:UsesPort"  

    instanceName="TX" name="Data"/> 

<ports 

xsi:type="com.prismtech.spectra.sdr

.sca2_2.models:ProvidesPort" 

instanceName="RX" name="Data"/> 

</components> 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



model.  In other words, the tool is meta-model-centric as 

opposed to GUI-centric.  In this case, the GUI itself forces 

the user to abide by the structural and creational aspects of 

the meta-model.  This goes extremely far in allowing the 

developer to program quickly and correctly in terms of their 

domain.  Additional constraints can be added via various 

programming facilities of the language workbench being 

used.  Concrete SCA-unique examples of these types of 

constraints include not being able to connect ports that 

support different interfaces or not exceeding connection 

thresholds of output ports.  These are errors that are 

typically allowed to creep into the runtime system which 

lead to expensive integration and support problems.  By “left 

shifting” these potential defects into the 

modeling/compilation phase, we can simultaneously harness 

the dynamic nature of the SCA runtime component 

deployment, configuration and connection paradigm and do 

so in a correct and robust fashion. The DSCL enforces 

structural compositional, directional, etc. constraints, pre-

conditions, post-conditions and invariants 

 

7. DOMAIN-SPECIFIC GENERATORS 

 

Ultimately, the tool must be able to transform the domain 

specific language into an executable or imperative format, or 

to a form that can be transform easily by other compilers 

into an executable form.  This is achieved through the 

connection of Domain Specific Generators to the Domain 

Specific Editors.   Embedded systems are frequently targeted 

at disparate processing elements (e.g. general-purpose 

processors, digital signal processors, field programmable 

gate arrays (FPGA)) and as such the tool needs to be able 

plug in multiple domain specific code generators that can 

iterate over the model and produce multiple types of 

executable code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

 

Figure 4 shows examples of the software artifacts coming 

from the domain-specific generators.   Having the key 

information captured in the model, changes in the model are 

instantly reflected in the generated code.   

 

The SCA architecture is most effectively implemented using 

a number of industry standard Design Patterns. Most notably 

are the Extension Object Pattern[6], Extension Interface 

Pattern[7] and the Component Configurator Pattern[7].  

These patterns are typically repeated over and over again in 

an SCA implementation with minor paramaterization to 

account for the context in which they are used.  The pre-

validated implementations of these patterns can be generated 

directly from the domain specific generators.  Many of these 

patterns capture infrastructure scaffolding, behavior required 

by the SCA specification as well as middleware concerns 

that can be difficult for radio developers to understand and 

get correct.  Additional artifacts are generated from the 

model including, the XML descriptors, Unit Test Cases, 

documentation etc.   The constraints of the tool straddle the 

editor and the generators.  By using the generated code, the 

users can rely on prevalidated logic and patterns written by 

experts in the domain and thus they are “constrained”, if you 

will, to being correct in their implementation.    

 

8. BENEFITS OF DOMAIN-SPECIFIC MODELING 

AS APPLIED TO SOFTWARE DEFINED RADIOS 

 

A number of notable benefits become extremely apparent as 

a result of providing a domain modeling tool and all its 

constituent parts to the software defined radio domain. 

• Increased productivity – users can program at a 

much higher level of abstraction and use generators 

to automatically get to lower levels that can 

thereafter be transformed and executed.  The 

increased level of abstraction is coupled with the 

fact that the DSL is much more declarative in 

nature and so the users become less concerned with 

how actions are done and more concerned with that 

they are done.  Users of the tool report a minimum 

of 500% increases in productivity and compare the 

magnitude of gains to be analogous to using a 

compiler to generate assembly code from higher 

order languages. 

• Increased correctness – the generators provides 

prevalidated logic and other artifacts 

• Synchronization of software artifacts.  Since the 

artifacts are generated directly from the model, the 

maintenance burden of maintaining them all is 

greatly reduced 

• Involvement of lay programmers and increased 

communication amongst company teams.  Since the 

model is expressed in problem domain terms and 

Translate from declarative 

 to imperative 

VHDL 

C++ 

Test  Cases 

Code Coverage 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



not solution domain terms, the communication of 

the model encompasses more disciplines beyond 

software engineering to include hardware and 

systems engineering and management teams. 

• Lower cost of entry.  As much of the infrastructure 

detail is captured in the metamodel, editor and 

generators, the learning curve of developing 

software defined radios for a particular domain is 

greatly reduced.  

• Architectural consistency at the implementation 

level.  While the SCA mandates architectural form 

at the interface level it does not at the 

implementation level.  This opens the door to many 

different architectural implementations.  While this 

is necessary in some uses cases, in many it is not 

and results in unnecessary complexity and 

maintenance burdens.  The degree to which the 

applications have architectural consistency in their 

implementations determines the ease of 

maintenance by a central maintenance body. 

• “Left shifting” of defects from runtime to modeling 

time.  This provides orders of magnitude of cost 

savings across the development cycle 

 

9. SUMMARY AND CONCLUSION 

 

The history of software has seen the continued process of 

raising the level of programming abstraction while 

simultaneously providing an automatic and configurable 

means to traverse to lower levels of more executable forms 

of programs.   Additionally, this evolution has included the 

continued introduction of ways and means to express 

domain concepts effectively so that the end user can 

program more directly in the problem space and not  in the 

solution space.    Using Model Driven Development and 

Domain-Specific Modeling via existing Language 

Workbenches is another effective step in this direction.  

Application of these techniques to the Software Radio 

Domain has yielded orders of magnitude of increase in 

productivity, correctness and robustness of these systems 

and can serve as the foundation for a graceful evolution of 

its products. 

 

10. REFERENCES 

 

[1]http://jtrs.army.mil/sections/technicalinformation/fset_tec

hnical_sca.html 

 

[2]http://www.martinfowler.com/articles/languageWorkbenc

h.html  

 

[3] http://www.eclipse.org  

 

[4] http://www.isis.vanderbilt.edu/Projects/gme/ 

 

[5]http://msmvps.com/vstsblog/archive/2005/07/02/56408.as

px 

 

[6] http://www.smallmemory.com/almanac/Gamma98.html 

 

[7] http://www.cs.wustl.edu/~schmidt/POSA/ 

 

[8] http://www.metacase.com/  

 

[9] http://www.objectmentor.com/resources/articles/ocp.pdf  

 

[10] http://www.aw-

bc.com/catalog/academic/product/0,1144,0321278658,00.ht

ml  

 

[11] http://www.aw-

bc.com/catalog/academic/product/0,1144,0321146530,00.ht

ml  

 

[12] http://www.aw-

bc.com/catalog/academic/product/0,1144,0201485672,00.ht

ml  

 

[13] http://www.aw-

bc.com/catalog/academic/product/0,1144,0321213351,00.ht

ml 

 

[14] http://web.it.kth.se/~jmitola/

 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



�Spectra Software Defined Radio Products

Using DomainUsing Domain--Specific Modeling and Specific Modeling and 

Model Driven Development to Develop Model Driven Development to Develop 

Software Defined Radio Components Software Defined Radio Components 

and Applicationsand Applications

SDR ‘05
2005 Software Defined Radio Technical 
Conference and Product Exposition

Orange County, CA USA Nov 14-18, 2005

Dominick Paniscotti 

Bruce Trask

Angel Roman 

Vikram Bhanot

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 22 Copyright Copyright ©© PrismTech 2005PrismTech 2005

What is a Domain Specific Language?

� In order to understand DSLs, one must 

understand levels of modeling

� DSLs are defined using Meta-Models

� Meta-Models are defined using even higher 

level models

So, a Domain Specific Language is…

� A language targeted to a particular problem

� Such as Software Radios

� Not a general purpose language aimed at 

any kind of problem

� Such as UML

Voice

CODEC

UML 

Interface

Meta Object

Format

instance of

instance of

Object

instance of

Model

Meta-Model

MetaMeta-Model

ID: string

Type: string

CF::Resource

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 33 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Domain Specific Modeling

�DSLs allow simplified modeling in the Problem 

Space vs. complex modeling in the Solution 

Space
DT

myFunc1()

myFunc2()

myFunc3()

(from C++ Reverse Engineered)...)

<<Interface>>

Port

connectPort()

disconnectPort()

(from CF)

<<Interface>>

DTPort
(from C++ Reverse Engineered)

<<Interface>>

POA_DTPort

POA_DTPort()

POA_DTPort()

<<virtual>> ~POA_DTPort()

_this()

<<static>> myFunc1_skel()

<<static>> myFunc2_skel()

<<static>> myFunc3_skel()

<<static>> connectPort_skel()

<<static>> disconnectPort_skel()

(from C++ Reverse Engineered)

POA_DT

POA_DT()

POA_DT()

<<virtual>> ~POA_DT()

<<virtual>> _is_a()

_this()

<<abstract>> myFunc1()

<<static>> myFunc1_skel()

<<abstract>> myFunc2()

<<static>> myFunc2_skel()

<<abstract>> myFunc3()

<<static>> myFunc3_skel()

(from C++ Reverse Engineered)

PropertySe t

configure()

query()

(from CF)

<<Interface>>
PortSupplier

getPort()

(from CF)

<<Interface>>

Li feCycle

initial ize()

releaseObject()

(from CF)

<<Interface>>

TestableObject

runTest()

(from CF)

<<Interface>>

DTUsesPort

m_ProvidesRefs : std::map<std::string, DT_var>

m_Name : std::string

m_HowManyConnectionsAllowed : unsigned long

m_HowManyConnectionsMade : unsigned long

DTUsesPort()

connectPort()

disconnectPort()

name()

numOfConnectionsMade()

myFunc1()

myFunc2()

myFunc3()

(from C++ Reverse Engineered)

Encoder

DTProvidesPort

m_pResource : ResourceNameIt*

DTProvidesPort()

myFunc1()

myFunc2()

myFunc3()

(from C++ Reverse Engineered)

FrequencyProp...SerialName

Resource

identi fi er : stri ng

start()

stop()

(from...

<<In terface>>

Propertie s
(from...

<<CORBATypedef>>

Solution Space Modeling Problem Space Modeling

Single CF::Resource with 2 Port and 2 PropertiesSingle CF::Resource with 2 Port and 2 Properties

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 44 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Domain Specific Modeling

Language

Editor

Generator

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 55 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Model Driven Software Development

�Model Driven Development
�Models are used to express the design of a system

�Models are transformed to create implementations

�Model Driven approaches combined with Generative 
Programming technologies allow developers to “create 
designs that write code”

�Developers use Domain Specific Languages and
Models to efficiently and automatically map to 
platform-specific technologies

�Model Driven approaches allow us to effectively and 
practically move from making one-time concrete systems 
to families of systems
� Since the meta-models capture the system family rules

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 66 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Model Driven Software Development

� Allows developers to weave various aspects of the solution domain 
together automatically

� Increases productivity and correctness in complex systems by 
simplifying development

� Puts tools in the hands of developers so they can properly capture 
the commonalities and variabilities of their domain

� Captures the “sweet-spot” of many areas of software development

� Including modeling, code generation, coding, testing

� Could program in assembly or C++, what is the best combination of 
software tools to get the job done and done correctly

� Supports the creation of development processes for the domain 

� Explain exactly what is meant here

� Supports the creation of Domain Specific Tools

� These Tools further eliminate the complexities associated with 
development in a particular domain

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 77 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Levels of Abstraction

DT

myFunc1()

myFunc2()

myFunc3()

(from C++ Reverse Engineered)...)

<<Inte rface>>

Port

connectPort()

disconnectPort()

(from CF)

<<Interface>>

DTPort
(from C++ Reverse Engineered)

<<Interface>>

POA_DTPort

POA_DTPort()

POA_DTPort()

<<virtual>> ~POA_DTPort()

_this()

<<stati c>> myFunc1_skel()

<<stati c>> myFunc2_skel()

<<stati c>> myFunc3_skel()

<<stati c>> connectPort_skel()

<<stati c>> disconnectPort_skel( )

(from C++ Reverse Engineer ed)

POA_DT

POA_DT()

POA_DT()

<<virtual>> ~POA_DT()

<<virtual>> _is_a()

_th is()

<<abstract>> myFunc1()

<<static>> myFunc1_skel()

<<abstract>> myFunc2()

<<static>> myFunc2_skel()

<<abstract>> myFunc3()

<<static>> myFunc3_skel()

(from C++ R everse Engineered)

PropertySet

configure()

query()

(f rom CF)

<<In terface>>
PortSupplier

getPort()

(f rom CF)

<<Inte rface>>

Li feCyc le

in itialize()

re leaseObject()

(from CF)

<<Interface>>

TestableObject

runTest()

(from CF)

<<In terface>>

DTUsesPort

m_Provi desRefs : std::map<std::st ring, DT_var>

m_Name : std::st ring

m_HowManyConnectionsAllowed : unsigned long

m_HowManyConnectionsMade : unsigned long

DTUsesPort()

connectPort()

disconnectPort()

name()

numOfConnectionsMade()

myFunc1()

myFunc2()

myFunc3()

(f rom C++ Reverse Engineered)

Encoder

DTProvidesPort

m_pResource : ResourceNameIt*

DTProvidesPort()

myFunc1()

myFunc2()

myFunc3()

(from C+ + Reverse Engineered)

FrequencyProp...SerialName

Resource

identifi er : stri ng

start()

stop()

(from...

<< In terface>>

Properties
(from...

<<CORBATypedef>>

Higher Order Languages

Assembly

Opcodes

Custom Hardware

Less Flexible More Productive

More Flexible Less Productive

F
lexib

ility

P
ro
d
u
ctivity

Middleware

Operating

Systems

Programming Platform

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 88 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Generative Programming

�The process of moving from a higher level 
abstraction to a lower level abstraction 
automatically

�Specification of transformation rules support 
this paradigm
e.g. C++ to Assembly to Opcodes.

�Domain Specific Models and Languages 
work in concert with generative technologies
�The whole is the worth more than the sum of the 
parts

�Thereby increasing the productivity

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 99 Copyright Copyright ©© PrismTech 2005PrismTech 2005

To summarize…

�Model driven development defines higher levels 
of domain specific abstractions and combines 
these with generators that automatically 
transform these abstractions to lower level 
executable artifacts

�An Engineering Trade-Off
�Sacrificing flexibility for productivity 

�Not a value judgment
�Its payback is in the cost reduction found in 
developing Families Of Systems vs. Single 
Concrete System

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1010 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Families Of Systems

�Focus on System Families allows one to 
identify the commonalities and variablities found 
across family members 

�And develop DSLs to: 
�Factor out common behavior into paramaterizable 
abstractions 

�Provide extension mechanisms to incorporate 
variation points found across family members

�And further develop generators to synthesize 
concrete functionality for a particular family 
member

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1111 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Radio Families

� Commonalities
� Properties

� Tests 

� Life Cycle

� Communications Path

� Deployment

� Functionality (Routing, Networking)

� Basic architecture

� Variabilities

� Functionality

� RF or SiS characteristics

� Processing Elements (HW)

� Size weight and power constraints

Radio Family Members

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1212 Copyright Copyright ©© PrismTech 2005PrismTech 2005

What the SCA has done … and has not

�SCA isolated the commonalities and variabilities but did 

not provide a DSL in which to program these things

�No generators

�So to really complete the picture, need generators to 

handle practical use and to map against the variabilities

�The SCA provides the necessary abstractions and 

framework of patterns (Extension Object with 

component Configurator) as well as the deployment and 

configuration engine.

�What is needed now are the remaining artifacts to make 

this particular solution complete.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1313 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Providing the remaining steps

�Allow programmers to program in the 

higher order domain by

�Providing a domain specific grammar

�Graphical representations of this grammar

�Automatic constraint engines to ensure the use 

of the grammar is correct

�Automatic generations engines 

�transform the resulting model to various 

targets along varying dimensions

�Weave together various complex aspects of 

the domain

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1414 Copyright Copyright ©© PrismTech 2005PrismTech 2005

The steps

Isolate the abstractions and 

how they work together
The SCA

Create a formalized 

grammar for these - DSL

Create a formalize SCA 

meta-model

Create a graphical representation 

of the grammar – GDSL

Create a SCA specific 

graphical tool

Attach generators for 

necessary transformations

C++, C and VHDL 

generators

Provide domain-specific 

constraints – GDSCL, DSCL

Program into the tool the 

constraints

In general In our domain

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1515 Copyright Copyright ©© PrismTech 2005PrismTech 2005

The SCA

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1616 Copyright Copyright ©© PrismTech 2005PrismTech 2005

The Metamodel

In addition to the structural constraints of the SCA, we can

• further expand the meta-model to include the many additional 

requirements  and constraints within the SCA

• constraints that assist in locating errors at modeling time vs. runtime

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1717 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Domain Specific Language

<?xml version="1.0" encoding="ASCII"?>

<com.prismtech.spectra.sdr.sca2_2.models:Assembly 

xmi:version="2.0" 

xmlns:xmi="http://www.omg.org/XMI" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:com.prismtech.spectra.sdr.sca2_2.models="http://com.prismtech.spectra.sdr.sca

2_2.models">

<components Name="BitFlipper" organization="PrismTech" id="DCE:8f647411-91a1-4295-bbc6-

6d3eff4982f7">

<ports xsi:type="com.prismtech.spectra.sdr.sca2_2.models:UsesPort" 

instanceName="TX" name="Data"/>

<ports xsi:type="com.prismtech.spectra.sdr.sca2_2.models:ProvidesPort" instanceName="RX" 

name="Data"/>

</components>

</com.prismtech.spectra.sdr.sca2_2.models:Assembly>

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1818 Copyright Copyright ©© PrismTech 2005PrismTech 2005

A Graphical Domain-Specific Language

Images, layout, 

organization based on 

meta-model

<components Name="BitFlipper" organization="PrismTech" 

id="DCE:8f647411-91a1-4295-bbc6-6d3eff4982f7">

<ports xsi:type="com.prismtech.spectra.sdr.sca2_2.models:UsesPort" 

instanceName="TX" name="Data"/>

<ports xsi:type="com.prismtech.spectra.sdr.sca2_2.models:ProvidesPort" 

instanceName="RX" name="Data"/>

</components>

</com.prismtech.spectra.sdr.sca2_2.models:Assembly>

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 1919 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Declarative Specification/Programming

�Both the DSL and GDSL are declarative in 
nature

�Involves programming by setting properties, 
making connections and establishing 
relationships
�Versus imperative sequential procedural 
instructions1

�“Declarative programming improves 
productivity and quality because it is 
another form of reuse of preprogrammed, 
prevalidated logic”1

1 Model Driven Architecture D. Frankel, Wiley 2003

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 2020 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Processing the Declarative Specification

�Constraining its input

�Interpreting it as it is entered

�After interpretation, have the declarative 

specification drive code generators which will 

transform the model into an executable form 

for a given platform

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 2121 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Domain-Specific Constraints

Enforce structural 

compositional, directional, 

etc constraints.  

Preconditions, 

postconditions and invariants

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 2222 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Generators

C++
VHDL

Test Cases

Code CoverageTranslate from 

declarative to imperative

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 2323 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Generators, continued

C++ Test Cases

Application of Design 

Patterns Automatically

• Replicated production of Design Pattern(s) 

implementations

• Can be more effective than dealing with the replication 

using 3GL language features, particularly in DRE Systems

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 2424 Copyright Copyright ©© PrismTech 2005PrismTech 2005

� The SCA
� portability 

� standardized development 

� Meta-model – Domain Specific Language
� more productivity

� GDSL
� easy to use and communicate to others

� Constraints 
� left shift defects from run-time to modeling time

� Harness the inherent flexibility provided by the SCA

� Generators 
� Productivity

� Portability

� Correctness

� Architectural consistency

� A coordinated set of design patterns1

� Requirements traceability

� Synchronization of software artifacts 

� e.g.documentation

� Automated testing = increased robustness

� Allow the marriage of design artifacts with development artifacts

The Benefits

1 Model Driven Architecture D. Frankel, Wiley 2003

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Slide Slide 2525 Copyright Copyright ©© PrismTech 2005PrismTech 2005

Contact Info

www.prismtech.com

Dominick - dp@prismtech.com

Bruce – bt@prismtech.com

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved


	Search by Author
	Search by Session/Paper

