USING DOMAIN-SPECIFIC MODELING AND MODEL DRIVEN DEVELOPMENT TO
DEVELOP SOFTWARE DEFINED RADIO COMPONENTS AND APPLICATIONS

Dominick Paniscotti
(PrismTech,
Saddle Brook, NJ, 07633 USA
dp@prismtech.com)

Bruce Trask
(PrismTech,
Saddle Brook, NJ, 07633 USA
bt@prismtech.com)

Angel Roman
(PrismTech,
Saddle Brook, NJ, 07633 USA
ar@prismtech.com)

Vikram Bhanot
(PrismTech
Saddle Brook , NJ, 07633 USA
vb@prismtech.com)

ABSTRACT

Software Defined Radios are in a unique software domain
within DRE systems. This domain includes tackling
complexities introduced from a number of quarters,
including concerns dealing with systems that are embedded,

real-time, high performance, heterogeneous, platform-
independent, portable, object-oriented, multi-threaded,
distributed, component-based, programmable via both

declarative and imperative programming mechanisms, and in
many cases resource constrained. Needless to say, domains
as complicated as this stand to gain from the recent advances
in Model Driven Development, Generative Programming
and Agile Programming techniques. Just as the domain is
multi-faceted in nature so to need be the solutions, tools and
techniques applied to them to ensure success.

This paper will describe the application of these solutions,
tools and techniques to the Software Defined Radio domain.
It will include detailed descriptions of not only how Model
Driven Development techniques and tools can be used but
also descriptions of Generative Programming techniques
that can be successful leveraged including domain-specific
languages as applied to the SCA and the Software Radio
Domain.

1. GENERAL BACKGROUND

For the past twenty years, there has been a continuous
evolution in electronic communications equipment. The
evolution can be described as one of moving the radio
functionality from being located in the hardware platform
running with proprietary processors and circuitry to being
located in firmware running on programmable logic and then
to being located in software running on general purpose
processors. The driving force behind this evolution has been
the need to leverage the inherent greater malleability and
configurability of software versus that of hardware. As

radio functionality continues to move into software, or
looking at it another way, as that software moves “closer to
the antenna”, it becomes more commercially viable to
maintain, configure, test and reuse communications
algorithms and functionality as well as the hardware on
which it runs. This evolution is very similar to that of the
computer itself with today's PCs running applications, the
bulk of which exist as software running on general purpose
hardware.

The communications industry has coined a term for this type
of communications equipment: the Software Defined
Radio[14].

As the radio and communications domain moves into a
software centric solution, it is only natural that it leverage
advances in the software domain as part of its implementa-
tion. These advances include object orientation,
frameworks, component based design, middleware, in
addition to imperative and declarative languages. More
recently, the rise in abstraction level of the radio platform in
the form of operating systems and middleware in
combination with advances in modeling tools has opened the
door to allow the evolution of communications software to
enter the realm of model-driven development. This is
fortuitous as the complexity of these communications
systems has increased so dramatically that the viability of
these new systems now hinges on the increased productivity,
correctness and robustness that model-driven development
affords.

This paper details the application of model-driven
development, and more specifically, domain-specific
modeling to the software defined radio domain. This
domain has very unique characteristics as its systems
typically are a confluence of a number of typically
challenging aspects of software development. To name a
few, these systems are usually described by modifiers such
as, embedded, real-time, distributed, object-oriented, port-

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

able, heterogeneous, multithreaded, high performance,
dynamic, resource-constrained, safety-critical, secure,
networked, component based and fault-tolerant. Each one of
these modifiers by themselves carries with it a set of unique
challenges but building systems characterized by all of these
modifiers all at the same time makes for quite an adventure
in software development. In addition to all of these, it is
quite common in these embedded systems for components to
have multiple implementations that must run on disparate
processing elements. With all of this taken into account, it
stands to reason that these systems could and should benefit
greatly from advances in software technology such as
domain-specific modeling and model-driven development.

2. DETAILED BACKGROUND

In 1999, a consortium of the leading U.S. military radio
developer companies created the Software Communications
Architecture (SCA)[1]. This is one of many possible
software defined radio models that can be input into the
Domain Specific Modeling process and techniques
discussed in this paper. We chose this one as concrete
example of one such architecture since it is an open standard
freely available to all.

This SCA defines five primary aspects of next-generation
communications equipment software
e A standard component object model
e A standard deployment and configuration
framework
e A standard declarative programming format for
describing software components and how they are
connected together
e A standard portability layer upon which component
run
e A standard messaging format for intercomponent
communication

As a result, the SCA significantly furthers standardization of
the software radio domain and thus brings many benefits to
the domain such as interoperability, portability, reuse, and a
level of architecture consistency. However, the SCA
specification does not solve all of the issues associated with
implementing these complex systems. Some of the problems
that remain include:
e Labor intensive implementations of the SCA object
model in 3GL languages
e Lack of architectural consistency at various levels
of implementations
e The learning curve of the specification and lack of
effective training materials
e The technology gaps between software developers
and radio domain experts
e Ensuring correctness of implemented systems

e The dynamic nature of the SCA, which opens the
door to a host of runtime errors that would best be
“left shifted” out of runtime into either modeling or
compile time.

e A complex set of XML descriptor files which are
difficult to get correct by hand as there are many
rules that govern them above and beyond being
well formed

e No formal meta-model or UML profile exists for
the SCA

e While the SCA definitely raises the level of
abstraction with regard to radio component
development, it does not inherently provide an
automatic and configurable means to get back to
the lower, executable levels of abstraction or to its
declarative languages.

3. ENTER DOMAIN-SPECIFIC MODELING

In order to tackle and tame the complexity of these systems
and of the new specification it was necessary to provide:

e cffective support under the SCA that allows users
to program directly in the terms of the language of
the domain and specification, ideally in graphical
and declarative form to the greatest extent possible

® means to ensure that the programming is correct

e means to automatically generate executable 3GL
programming language implementations from these
models

® means to automatically generate additional
software artifacts that are synchronized with the
model

Those familiar with Domain-Specific Modeling will
recognize the above bullets as part of the sacred triad of
Domain-Specific Modeling: Language, Editor, and
Generator. Couched in terms of Domain Specificity and at
a finer granularity, these three elements map to:
® a Domain-Specific Language (DSL)
e a Domain-Specific Graphical Language and
Domain Specific Views (DSGL, DSViews)
® a Domain-Specific Constraint Language (DSCL)
e a family of Domain-Specific Code Generators
(DSG).

Table 1 lists the activities used in tackling the complexity in
domain and then leveraging Domain Specific Modeling
techniques to it

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

General Approach Radio Domain

Isolate the abstractions and how

they work together The SCA
Create a formalized grammar for Creat;‘;g fnT(?élezle 5S¢4
these — DSL
Create a graphical Create a SCA specific
representation of the grammar — graphical tool

GDSL

Program into the tool

Provide domain-specific .
pecfi the constraints

constraints — GDSCL,DSCL

C++, C Ada and

Attach generators for necessary VHDL generators

transformations

Table 1

One type of tool that can be used to develop the above
software artifacts are what some refer to as Language
Workbenches[2]; i.e. tools that allow a developer to define a
domain-specific language and its graphical counter part, the
editor, as well as a domain-specific generators that can
iterate over the domain-specific model to produce
executable artifacts. Some language workbenches available
today include the Eclipse Modeling Framework and the
Eclipse Graphical Editor Framework (EMF/GEF)[3], the
Generic Modeling Environment (GME)[4], Microsoft’s
Visual Studio Team System Domain Specific Language
Tools (VSTS DSL)[5], and MetaCase MetaEdit+ [8].

To allow users to run on multiple host platforms most easily
and to integrate with addition eclipse tools and frameworks,
we chose to use the EMF/GEF solution.

4. DEFINING THE DOMAIN-SPECIFIC LANGUAGE

The goal here is to provide a domain-specific higher level of
abstraction with which both software and lay developers can
program. Key to this is not only raising the level of
abstraction but also providing domain-specific abstractions.
Developers of SCA applications typically program in 3GL
languages such as C, C++ and Ada. One of the goals of
domain specific modeling is simplified modeling and
programming in the problem space vs. complex modeling
and programming in the solution space. Figure 1 below
juxtaposes two possible ways to represent the same concept
in the SCA Software Defined Radio Domain. The left side
diagram shows a typical UML diagram for a trivial SCA
Component with two ports and two properties. The C++
source code is even more complicated. The right side
diagram shows the same entity in terms of a higher abstract

concept, a component with two ports and two properties,
that is much more readable and less complex

Figure 1

The raising of the level of abstraction is made possible
through the creation of a formalized metamodel expressed in
terms of the particular language workbench. In this case this
involves creating a metamodel that the Eclipse Modeling
Framework can understand. Fig 2 shows a greatly
simplified metamodel for the SCA. Naturally, the full meta-
model for the entire SCA is much more involved but for the
purposes of demonstration and saving space we have
presented a simplified version of it.

H Componant

.| e Esing

E tactory
m Ty
rrrrrr rc propertic (I
T: N n ' o mare bsteng
resone $2.
" pen
| ProvidasPort | | | UsasFort
Figure 2

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

As stated before, the SCA provides a general architecture
and UML diagrams as well as text-based behavioral
descriptions and requirements and annotated XML DTD
documents. While these are very detailed they are not
formalized sufficiently to serve as a useful meta-model by
themselves. The meta-model created and desribed here
involved building upon the structure of the SCA and culling
from the rest of the specification requirements, constraints
and behaviors that together make up a complete and
comprehensive meta-model characterizing the entire
specification. As is usual, the group of developers building
the meta-model are experienced SCA and software defined
radio developers as well as experienced modelers.

It is from this meta-model that one provides the end user
with the ability to program more directly in the domain.
Additionally, end users are able to program more in the
declarative than in the imperative; i.e. saying what they want
to have, not specifying how it is to be done. Listing 1 shows
a simple example of the persistent form of the Domain
Specific Language in accordance with the metamodel.

<?xml version="1.0" encoding="ASCII"?>
<com.prismtech.spectra.sdr.sca2 2.models:Asse
mbly
xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.prismtech. spectra.sdr.sca2 2
.models="http://com.prismtech.spectra.sdr.sca
2 2.models'">

<components Name="BitFlipper"

organization="PrismTech" id="DCE:8f647411-
91al1-4295-bbc6-6d3eff4982£7">

<ports
xsi:type="com.prismtech.spectra.sdr.sca2 2.mo
dels:UsesPort" instanceName="TX"
name="Data"/>

<ports
xsi:type="com.prismtech.spectra.sdr.sca2 2.mo
dels:ProvidesPort"
instanceName="RX" name="Data"/>

</components>
</com.prismtech.spectra.sdr.sca2_2.models:Ass
embly>
Listing 1

While providing a higher level of abstraction this text based
language can still be labor intensive, error prone and hard to
read. This leads directly into the next step of Domain-
Specific Modeling.

5. DEFINING THE DOMAIN-SPECIFIC GRAPHICAL
LANGUAGE (DSGL) AND VIEWS (DSV)

What is needed next is a way to express the Domain Specific
Language graphically or visually. This involves working

within your Language Workbench of choice to adorn the
Domain-Specific Language with graphical and visual
artifacts that allow the user to program quickly and correctly
and in a way that communicates correctly the essence of the
architecture and design.

<components Name="BitFlipper"

organization="PrismTech"
id="DCE:8£647411-91al-4295-bbc6—-
6d3eff4982£7">
<ports
xsi:type="com.prismtech.spectra.sdr
.sca2_2.models:UsesPort"

instanceName="TX" name="Data"/>
<ports
xsi:type="com.prismtech.spectra.sdr
.sca2_2.models:ProvidesPort"

instanceName="RX" name="Data"/>

Ghovidestor | [ikeon) </components>

Figure 3

Figure 3 shows the PrismTech Spectra SDR PowerTool
modeling tool. This modeling tool allows end users to
quickly and acurrately build software defined radio
components and connect them together. The DSGL is built
and based on the underlying meta-model described earlier
and can be persisted in textual form for processing by other
programs. It is through this DSGL that end users program
with very intuitive icons, images, tools, artifacts and
property sheets. Just as UML provides different views to
describe various aspects of object-oriented systems so to
does this tool provide Domain Specific Views that allow
users to design, express and communicate domain specific
aspects of their designs. Additionally, the Domain-Specific
Modeling tool provides the end user with ability to program
in the declarative versus the imperative.

6. THE DOMAIN-SPECIFIC CONSTRAINT
LANGUAGE (DSCL)

Almost as important as what you see in the graphical tool
illustrated in Figure 3 is what you don’t see. The very fact
that the DSGL is based on the meta-model means that it
restricts programming to within the bounds of the meta-

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

model. In other words, the tool is meta-model-centric as
opposed to GUI-centric. In this case, the GUI itself forces
the user to abide by the structural and creational aspects of
the meta-model. This goes extremely far in allowing the
developer to program quickly and correctly in terms of their
domain. Additional constraints can be added via various
programming facilities of the language workbench being
used. Concrete SCA-unique examples of these types of
constraints include not being able to connect ports that
support different interfaces or not exceeding connection
thresholds of output ports. These are errors that are
typically allowed to creep into the runtime system which
lead to expensive integration and support problems. By “left
shifting” these potential defects into the
modeling/compilation phase, we can simultaneously harness
the dynamic nature of the SCA runtime component
deployment, configuration and connection paradigm and do
so in a correct and robust fashion. The DSCL enforces
structural compositional, directional, etc. constraints, pre-
conditions, post-conditions and invariants

7. DOMAIN-SPECIFIC GENERATORS

Ultimately, the tool must be able to transform the domain
specific language into an executable or imperative format, or
to a form that can be transform easily by other compilers
into an executable form. This is achieved through the
connection of Domain Specific Generators to the Domain
Specific Editors. Embedded systems are frequently targeted
at disparate processing eclements (e.g. general-purpose
processors, digital signal processors, field programmable
gate arrays (FPGA)) and as such the tool needs to be able
plug in multiple domain specific code generators that can
iterate over the model and produce multiple types of
executable code.

Translate from declarative
to imperative

< VHDL

Code Coverage

< Test Cases

Figure 4

Figure 4 shows examples of the software artifacts coming
from the domain-specific generators. Having the key
information captured in the model, changes in the model are
instantly reflected in the generated code.

The SCA architecture is most effectively implemented using
a number of industry standard Design Patterns. Most notably
are the Extension Object Pattern[6], Extension Interface
Pattern[7] and the Component Configurator Pattern[7].
These patterns are typically repeated over and over again in
an SCA implementation with minor paramaterization to
account for the context in which they are used. The pre-
validated implementations of these patterns can be generated
directly from the domain specific generators. Many of these
patterns capture infrastructure scaffolding, behavior required
by the SCA specification as well as middleware concerns
that can be difficult for radio developers to understand and
get correct. Additional artifacts are generated from the
model including, the XML descriptors, Unit Test Cases,
documentation etc. The constraints of the tool straddle the
editor and the generators. By using the generated code, the
users can rely on prevalidated logic and patterns written by
experts in the domain and thus they are “constrained”, if you
will, to being correct in their implementation.

8. BENEFITS OF DOMAIN-SPECIFIC MODELING
AS APPLIED TO SOFTWARE DEFINED RADIOS

A number of notable benefits become extremely apparent as
a result of providing a domain modeling tool and all its
constituent parts to the software defined radio domain.

e Increased productivity — users can program at a
much higher level of abstraction and use generators
to automatically get to lower levels that can
thereafter be transformed and executed. The
increased level of abstraction is coupled with the
fact that the DSL is much more declarative in
nature and so the users become less concerned with
how actions are done and more concerned with that
they are done. Users of the tool report a minimum
of 500% increases in productivity and compare the
magnitude of gains to be analogous to using a
compiler to generate assembly code from higher
order languages.

e Increased correctness — the generators provides
prevalidated logic and other artifacts

e Synchronization of software artifacts. Since the
artifacts are generated directly from the model, the
maintenance burden of maintaining them all is
greatly reduced

e Involvement of lay programmers and increased
communication amongst company teams. Since the
model is expressed in problem domain terms and

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

not solution domain terms, the communication of
the model encompasses more disciplines beyond
software engineering to include hardware and
systems engineering and management teams.

e Lower cost of entry. As much of the infrastructure
detail is captured in the metamodel, editor and
generators, the learning curve of developing
software defined radios for a particular domain is
greatly reduced.

e Architectural consistency at the implementation
level. While the SCA mandates architectural form
at the interface level it does not at the
implementation level. This opens the door to many
different architectural implementations. While this
is necessary in some uses cases, in many it is not
and results in unnecessary complexity and
maintenance burdens. The degree to which the
applications have architectural consistency in their
implementations determines the ease of
maintenance by a central maintenance body.

o “Left shifting” of defects from runtime to modeling
time. This provides orders of magnitude of cost
savings across the development cycle

9. SUMMARY AND CONCLUSION

The history of software has seen the continued process of
raising the level of programming abstraction while
simultaneously providing an automatic and configurable
means to traverse to lower levels of more executable forms
of programs. Additionally, this evolution has included the
continued introduction of ways and means to express
domain concepts effectively so that the end user can
program more directly in the problem space and not in the
solution space. Using Model Driven Development and
Domain-Specific Modeling via existing Language
Workbenches is another effective step in this direction.
Application of these techniques to the Software Radio
Domain has yielded orders of magnitude of increase in
productivity, correctness and robustness of these systems
and can serve as the foundation for a graceful evolution of
its products.

10. REFERENCES

[1]http://jtrs.army.mil/sections/technicalinformation/fset tec
hnical_sca.html

[2]http://www.martinfowler.com/articles/languageWorkbenc
h.html

[3] http://www.eclipse.org

[4] http://www.isis.vanderbilt.edu/Projects/gme/

[5]http://msmvps.com/vstsblog/archive/2005/07/02/56408.as
pX

[6] http://www.smallmemory.com/almanac/Gamma98.html

[7] http://www.cs.wustl.edu/~schmidt/POSA/

[8] http://www.metacase.com/

[9] http://www.objectmentor.com/resources/articles/ocp.pdf

[10] http://www.aw-
bc.com/catalog/academic/product/0,1144,0321278658.00.ht

ml

[11] http://www.aw-
bc.com/catalog/academic/product/0,1144,0321146530,00.ht

ml

[12] http://www.aw-
bc.com/catalog/academic/product/0,1144,0201485672,00.ht

ml

[13] http://www.aw-
bc.com/catalog/academic/product/0,1144,0321213351,00.ht

ml

[14] http://web.it.kth.se/~jmitola/

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

ﬁ PRISMTECH

Using Domain-Specific. Modeling and

NModel Driven Developmeniitor Develop

Software Defined RadiorComponents
and epplications

\ SDR ‘05
"% 2005 Software Defined Radio Technical
- Conference and Product Exposition

Orange County, CA USA Nov 14-18, 2005
Dominick Paniscotti

Bruce Trask
Angel Roman
Vikram Bhanot

What is a Domain Specific Language?

In order to understand DSLs, one must
understand levels of modeling

DSLs are defined using Meta-Models

Meta-Models are defined using even higher
level models

So, a Domain Specific Language is...
A language targeted to a particular problem
Such as Software Radios

Not a general purpose language aimed at
any kind of problem

Such as UML

Meta Object
Format

A

instance of

UML
Interface

A
instance of

CF::Resource

Type: string
ID: string

I instance of

Voice
CODEC

MetaMeta-Model

Meta-Model

Slide 2 Copyright © PrismTech 2005

& PRISMTECH

Domain Specific Modeling

DSLs allow simplified modeling in the Problem
Space vs. complex modeling in the Solution

POA_DT

e —
®POA_DT()

®POA_DT()

[®<<virtual>> ~POA_DT()

B<vinual>> _is a()

= this()
<<Interface>> <<Interface>> B<<abstract>> myFunc1()
Port o) K
()
connectPort()
disconnectPort()

[®<<satic>> myFunc3_skel()
S

PortSupplier <<Interface>>
<<Interface>> edabladhje
P

PropertySet

rom CF). <<Interface>>
runTest(<<Interface>> rom G+ Reversa B¢ =
F— 5 o e —
Squery() 4 rom 5 A DTProvidesPort
> o e+ e _
()
<<CORBATypedef>> SDTProvidesPort()
Properties .myFunc10
®myFunc2()
[|
7] S ®POA_DTPort() BmyFunc3()
POA_DTPort()
=

<<virtual>> ~POA_DTPort()
<<Interface>> ' this()
N Resoue <<static>> myFunct_sel()
—

—

—
— — <<static>> connectPort_skel()
2 S<<static>> discom ectPort_skel()

[\

DT UsesPort()
MconnectPort()
disconnectPort()

Sname()
MnumOfConnectionsMade()
=,

Solution Space Modeling Problem Space Modeling
Single Ci33Ra5011p¢2 Wil 4 Fori tnil % Erggdpilss

Slide 3 Copyright © PrismTech 2005 &4 PRISMTECH

Domain Specific Modeling

Language Generator

Slide 4 Copyright © PrismTech 2005 &4 PRISMTECH

Model Driven Software Development

Model Driven Development
Models are used to express the design of a system
Models are transformed to create implementations

Model Driven approaches combined with Generative
Programming technologies allow developers to “create
designs that write code”

Developers use Domain Specific Languages and
Models to efficiently and automatically map to
platform-specific technologies

Model Driven approaches allow us to effectively and
practically move from making one-time concrete systems

to families of systems

Since the meta-models capture the system family rules
Slide 5 Copyright © PrismTech 2005 &4 PRISMTECH

Model Driven Software Development

Allows developers to weave various aspects of the solution domain
together automatically

Increases productivity and correctness in complex systems by
simplifying development

Puts tools in the hands of developers so they can properly capture
the commonalities and variabilities of their domain

Captures the “sweet-spot” of many areas of software development
Including modeling, code generation, coding, testing

Could program in assembly or C++, what is the best combination of
software tools to get the job done and done correctly

Supports the creation of development processes for the domain
Explain exactly what is meant here

Supports the creation of Domain Specific Tools
These Tools further eliminate the complexities associated with

development in a particular domain

Slide & Copyright © PrismTech 2005 &4 PRISMTECH

Levels of Abstraction

More Productive

Middleware

Higher Order Languagesé

A1a17oNpo.LJ

N
=
S
:N:
=

Operating
Assembly ~ Systems !

v Opcodes \/

More Flexible Custom Hardware Less Pr OQQ

Slide 7 Copyright © PrismTech 2005 &4 PRISMTECH

Generative Programming

The process of moving from a higher level
abstraction to a lower level abstraction
automatically

Specification of transformation rules support
this paradigm

e.g. C++ to Assembly to Opcodes.

Domain Specific Models and Languages
work in concert with generative technologies

The whole is the worth more than the sum of the
parts

Thereby increasing the productivity

\

<

Slide 8 Copyright © PrismTech 2005 &4 PRISMTECH

To summarize...

Model driven development defines higher levels
of domain specific abstractions and combines
these with generators that automatically
transform these abstractions to lower level
executable artifacts

An Engineering Trade-Off

Sacrificing flexibility for productivity

Not a value judgment
Its payback is in the cost reduction found in
developing Families Of Systems vs. Single
Concrete System

\

<

Slide 9 Copyright © PrismTech 2005 &4 PRISMTECH

Families Of Systems

Focus on System Families allows one to
identify the commonalities and variablities found
across family members

And develop DSLs to:

Factor out common behavior into paramaterizable
abstractions

Provide extension mechanisms to incorporate

variation points found across family members
And further develop generators to synthesize
concrete functionality for a particular family
member

\

<

Slide 10 Copyright © PrismTach 2005 &4 PRISMTECH

Radio Families

Radio Family Members

Commonalities Variabilities

Properties Functionality
Tests

. RF or SiS characteristics
Life Cycle _
Communications Path Processing Elements (HW)

Deployment Size weight and power constraints

Functionality (Routing, Networking) _.
Basic architecture | ‘_

Slide 11 Copyright © PrismTach 2005 &4 PRISMTECH

What the SCA has done ... and has not

SCA isolated the commonalities and variabilities but did
not provide a DSL in which to program these things

No generators

So to really complete the picture, need generators to
handle practical use and to map against the variabilities

The SCA provides the necessary abstractions and
framework of patterns (Extension Object with
component Configurator) as well as the deployment and
configuration engine.

What is needed now are the remaining artifacts to make
this particular solution complete.
\

<

Slide 12 Copyright © PrismTach 2005 &4 PRISMTECH

Providing the remaining steps

Allow programmers to program in the
higher order domain by
Providing a domain specific grammar
Graphical representations of this grammar

Automatic constraint engines to ensure the use
of the grammar is correct

Automatic generations engines

transform the resulting model to various

targets along varying dimensions

Weave together various complex aspects of

the domain \

<

Slide 13 Copyright © PrismTach 2005 &4 PRISMTECH

The steps

In general In our domain

Isolate the abstractions and

how they work together
Create a formalize SCA

Create a formalized
meta-model

grammar for these - DSL

Create a graphical representation Create a SCA specific
of the grammar — GDSL graphical tool

Provide domain-specific Program into the tool the
constraints — GDSCL, DSCL constraints
C++, Cand VHDL

Attach generators for
generators

necessary transformations

Slide 14 Copyright © PrismTech 2005 Q PRISMTECH

ted by
Non- pplications

Core Framework Interface

= ce=
Set

A

<<Interface==

DomainManager

Slide 15 Copyright © PrismTach 2005 &4 PRISMTECH

The Metamodel

H Componeant

= ID: E5tring

H Factory
= Mame: EString F Property

= hame: E5tring

/\

In addition to the structural constraints of the SCA, we can

* further expand the meta-model to include the many additional

requirements and constraints within the SCA Q\
time vs. runtime ™

e constraints that assist in locating errors at modeling

Slide 16 Copyright © PrismTach 2005 &4 PRISMTECH

Domain Specific Language

<?xml version="1.0" encoding="ASCII'"?>
<com.prismtech. spectra.sdr.sca2 2.models:Assembly
xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"
xmlns:com.prismtech.spectra.sdr.sca2 2.models="http://com.prismtech.spectra.sdr.sca
2 2.models''>
<components Name="BitFlipper'" organization="PrismTech" id="DCE:8f647411-91al-4295-bbcé6-
6d3eff4982f7">
<ports xsi:type="com.prismtech.spectra.sdr.sca2 2.models:UsesPort"
instanceName="TX" name="Data"/>
<ports xsi:type="com.prismtech.spectra.sdr.sca2 2.models:ProvidesPort" instanceName="RX"
name="Data'"/>

</components>
</com.prismtech. spectra.sdr.sca2_2.models:Assembly>

Slide 17 Copyright © PrismTech 2005 ﬁ PRISMTECH

A Graphical Domain-Specific Language

Fie Edt Navgate Project Run Window Hep
e a8 -l | | Bsca

% Navigator 5 = O|[@ sca Assembly: fm3tr.sca & = O 1 SCA Resource: CD res i =0

Do R BEg || BTk 2| 4 & Todks |
B FMBETR Al select EPorts *
m a eS a 0 M & Docurmnentation . Marquee Elsitchint e e
) b Eid " Connection uSW\tcthnt .
- - Mbimp .’ i B -
organization based oy i
M CDres .‘Tramsec (= Implementati
W crcSeed sprp . | =Predefined P
D dataprt . Rx & Properties
W cisp e © Interface

W dispinfo.sprp i

m e t a = m 0 d el fmtr.inst Fe = W Sirple Prop: dspifodspinfo.sprp 5% =5
Q. fm3ir.cea '

W Freq.spp P

W FsM res :
W formtate. sprp "HCI | @ ermersion
Dl heiprt
HCl.res ' FsM
1 hoppingData.sspre
B ircprt ks .4 vl
:L‘"“X imp Comp. Inst: fri3wnst & =0
PTT res f = =
M Radio.res ETools #| | [Test: Sequence TestsequenceTest.tprp 52 =
B radiocontrol prt ‘E Select Select
e St - B Marquee

B Reset prt " Connestion

Rxres =Resolrce e

sequenceTest.tpry
Ssance st g | o>

=

d R

Cutput
Value

T | [EPort: heiprt 2
& Tools |

v (]
YT select

[EncoderlUsesPort.h &2 = B & Marquee
|| class EncoderUsesPort : public POA_EncoderPart A | Elnterfaces *

B

< =
- @

EncoderUsesFort (std: :string nane, unsigned long howlanyConnectionsillowed = 0] : .
switchInt

m_Name (nane) ,

I farmStatehext

1_HowhanyConnect ionsA1 lowed (howlanyConnectionsAlloved)
E StateSequence == = =) . reset =
I, E e b L
O TIDSP, = Properties 2 . Console [e®~ "0
H dspinfo ey | valie 2
A heit Author Unknown Developer 1
M tdnst1 Description INo Description
= Blecine n NCF:505d7ec-3af4-456f-9dh0-cA4903a5hc59

2 |3 i

<components Name="BitFlipper" organization="PrismTech"
id="DCE:8£f647411-91al1-4295-bbc6-6d3eff4982£f7">

instanceName="TX" name="Data'/>
<ports xsi:type='"com.prismtech.spectra.sdr.sca2 2.models:
instanceName="RX" name="Data'/>
</components>
</com.prismtech. spectra.sdr.sca2 2.models:Assembly>

Slide 18 Copyright © PrismTach 2005 &4 PRISMTECH

Declarative Specification/Programming

Both the DSL and GDSL are declarative in
nature

Involves programming by setting properties,
making connections and establishing
relationships
Versus imperative sequential procedural
instructions’
“Declarative programming improves
productivity and quality because it is
another form of reuse of preprogrammed,
prevalidated logic”™

! Model Driven Architecture D. Frankel, Wiley 2003 Q
Slide 19 Copyright © PrismTech 2005 Q PRISMTECH

Processing the Declarative Specification

Constraining its input
Interpreting it as it is entered

After interpretation, have the declarative
specification drive code generators which will
transform the model into an executable form
for a given platform

&

Slide 20 Copyright © PrismTach 2005 &4 PRISMTECH

Domain-Specific Constraints

& SCA - Port: data.prt - Spectra SDR PowerTools
File Edt Mavigate Search Project Run Window Help

i=RAERENl-N1: o BENC R AP LR R e
5 Navigator £ R|BG Y= Eﬂrﬂ SCA Assembly: fr3tr.sca

B FM3TR Alle=Tocls &
*(= Documentation W
‘Eid = |E Marquee

R oot Clnterfaces 2|
W berspp =

I . bit. pprp . transec

- black.fac
B e . switchInt

creSeed sprp . reset
- data prt
<[dspimp . radiocontrol
W dspinfo.sprp
5 frm3irinst .mc data .
e) . i
B2 Qutline =2 =g

@ data .data

EE=RA=RaE)

Properties | & Console &% \
'SSCA - SCA Assembly: fm3tr.sca - Spectra SDR PowerTools A=) A console is not avalable N\

Fle Edit Navigate Search Project Run Window Help

I~Eal@llwe ey |fleceray
&2 Navigator ©2 c2R|EE~"0 Port: data.prt
BFVBTR A/ Tooks
& Docurnentation I select
& id T, Marquee
project ® Connection
: Ei’gfgp |Ecomponents #
black fac 'TX
1 CDres
W creseed
e B rransec
[T dsp.imp = . B
B v - njorce Structura
iy inst ‘
Q frdw.sea e
B Freq.spp
1 FSMres 'PTT oAg .’ ;
| compositional, directiona
Se= o))
L HCLres
[hoppingData.ssprp FaM
i et] ' -
=l etc constraints
| .
Pr GCOIZ 11
itions,

| ostconditions and inva

)
& 3

Properties | E Console 5% R i)
A console s not avallable. |

Slide 21 Copyright © PrismTach 2005 &4 PRISMTECH

Generators

Translate from Code Coverage
declarative to imperative

% SCA - vhdl_cd. vhd - Spectra SDR PowerTools

Ele Edt Navgate Project Run Window Hep
Fle Edit MNavigate Search Project Rum Window Help

ja~ | |wevar|esw

|G~ |# == Navigator & @ LCOV - test.nfo - Encoder/EncodbePortDi/EncoderUsesPorth 25

% Nawigator 2 = o @ | B % T = O)|[%ScA Assembly: fm3tr.sca taprt &5 - Ll SCA Resource: CD fes TS e me|[cve i B

& FM3TRCED Al = Tools » o i LTP GCOV exterlsion - code coverage report
& =

= Bjerryay
I3 Select "‘sg'g:c":;:" REE Current view: directory - Dir - EncoderUsesPorth
& I, Marquee : testinfo

e €D _jmpl b Eertaces 2 . Date: 20050623 W Instrumented lines: 25

[coh : 100.0 % Executed lines: 25
4 CppUnitTestMain.cpp . transec) T reansec
+ fiendes DNCODERUSESPORT

DO = . #define ENCODERUSESPORT N
[§ TestCase_CD.cpp .swwtchlnt i

(8 TestCase_CD.h . E "
reset 2 e 3

~E vhd_cdvhd
@ rwdoonol e
P : #include <cassert>
& FSm ;- N

& CpplnitTestMain.q . B + pulic:
B Fg'\)/lJmp\ h 8 i 'PSM i issetssarot (o tsing e, ssane on

& FsMh . @ i W HoultanyConnectionshl loved (kovllanyCon
[Makefi Slemeraid png : n_HoulanyConnect ionshade (0)
e e B EncoderPortidl : 4

2 TestCase FSM.cpp y <]

(8 TestCase_FSMh .0i¢ \ (gl EncoderlUsesPorth £ = O)/[8 TestCase_EncoderPort.cpp 52
& Hel B = ass EncoderlsesPort : public POM_EncodsrPort
= Porte ly

= Qutine 52
An oLting is not avalzble.

/7 % SCA REQ SCAZ.2 TT 3.1.3.1.1.5.1.3 p.3-19

—— Inpuc . A1l input signals are registered to ease timing issues.

pNe: q
8 ErcoderPortS_T.cop oderUsesport (scd: tstring nae, unsigned long howlanyConnectionshllot
oo i

woid TestCase_EncoderPort::testConnsctPort ()
Loved ¢

odr_inpuc_regi process(reset_syscli n, sysclk) 4
begin

if reset_syselk n = '0' then assert (i Neme.enpey()) ;
y

m_HouanyConnectionsHade (0) pUsesPort = new

Portableserver: :Objectld_var uses_oid =

others => '0'): csRez-»activate obsct (pUseaPorc);
: : Void connectPort (CORBA: :Gbject_pur conneccion, const chars comnectionlc poaRes-zactivate shject (pusestorc) ;
¢

CPitPort_var usesPortRes = CF::Port::_narrow(poaRef->id_to_reference (w

check occupied port stracegy/policy, also threading stravegy/po 5
" D eans L L e il CPPUNIT_ASSERT(1CORBA: s i3_na) (usesPorchet.in())) :

(others => '0'); » 77 7% SCA REQ SCAZ.2 *F 3.1.3.1.1.5.1.5 p.3-18

S e - 7/ "The connectPort operation shall raise the InvalidPort exceptior . _
SiSdf (Svecificvent opd srsnik s L) T 77 minpur connection paraweter is an invalid comnection for chis B¢ Pertanleservar;sGhieceldivr pravides.old =

car_dac_r cin_car_dac: . /] b combecion e emenet 1e e Pocher-sactivate obier. (pprovidesport s
car_daca_valid r <= cin_cdr_dara valid: [T —

cdr_data_avail r cin_cdr_data_avail; » € = i ile covidasiet intiiys T T
e T R bl) et

@ I

if (edr_data valid r = '1') then —- hold last value when data not valid I
cdr dat hold ¥ <= edr * r: T Properties 71 Console:
Property. [value

Author

> Jrkriown Developer
Properties & Console 2 Description No Description
A console is not avallable. | D DXE:50735963-b20d-4a8e-9cAf-09c44507bcs4

Blrx inc W

Slide 22 Copyright © PrismTech 2005 RISMTECH

Generators, continued

Application of Design
Patterns Automatically

5 —r—r— ISCA - SCA Assembly: fm3tr.sca - Spectra SDR PowerTools
SCA - vhdl_cd. vhd - Spectra SDR PowerTools FEX e L Newisto. Bioect Bab Whdom LED
fle Edt MNavigate Search Project Run Window Help

Qv | % | ova - |[ss% o
N-EelBla-ldlvers - © LCOV - test nfo - Encoer/EncoderPortDr EncoderlUsesPorth &1
% Nawigator 2 < % | B % T = 0|4 scA Assembly: fm3tr.sca taprt &5 - Ll SCA Resource: CD fes e me|[cve PRCPP R |

&S FMBTRCpp A ETods » y S moRae LTP GCOV extension - code coverage report *
& 13 Select = & JerryapeCop ArEE Currentview: directory - Encoder/EncoderPortDi - EncoderUsesPorth
& xml = & Encoder 2
4 Marquee test.info

e €D _jmpl b » Date: 2005.0623 Instrumented lines: 25
[coh bt faces L : 100.0% Executed lines: 25
[& CppUnitTestMain.cpp .wansec 3

+ fiendes DNCODERUSESPORT
[Makefie #define ENCODERUSESPORT_H
[& TestCase_CD.cpp

ol TR
[TestCase_CD.h Q- e AL
- B vhd_cdvhd

de "EncoderPorcs.hv

CEX

switchInt

radiocontrol <string>
: finclude <casserc>

: class Encoderisesport : public POA_EncoderPort
e

¢ CpplnitTestMain.cpp :
[8 FSM_irmpl.h

BFMh Slemersid png
Lo Makefie L | - B EncoderPortidl
&) TestCass_FSM.cpp d

(8 TestCase_FSMh .0i¢ \ (gl EncoderlUsesPorth £ (8 TestCase_EncoderPort.cop 2
& Hel = ass EncoderlsesPort : public POM_EncodsrPort
X /7 %% SCA REQ SCAZ.2 *¥ 3.1.3.1.1.5.1.3 p.3-19
G Ports e . ALl input signals are registered to ease timing issues. 5 7/ "The connectPort operation shall meke a connection to the component idei
= Outine 92 oerUsssport (std satring nawe, unsigned long howianyConnectionsille | | // 797 Case for checking successul comnectiont
= . e (nae),
An oLting is not avalzble. iy Lowed)
cdr_input_regi process(reset_sysclk_n, sysclk 2

woid TestCase_EncoderPort::testConnsctPort ()
w «
n_HowtianyConnect sonsHade (0) pusesport = new
begin - N

Lics
EncoderUsesPort (std::string neme, unsigned lon
n_Naee (newe) ,
1 HoullanyConnect ionshl Loved (hovangCon,
n_HoulianyConnect ionshade (0)

< L @

if ressc_sysclkn = '0' then assert (1m Neme.enpy (1) ;
_syselkn = 'O th (1 feme.cnpey) PoctanLeserver: sOpyeet o var uses_oid =
cdr_dat_r (others => '0'); : =

poaRet->activate_chject (pUsesPort);
woid connectPort (CORDA::Chject_pts connection, const char® comnectionlc =
cdr_data_valid r <= '0'; « ! i

e ot evatlr < '0';

77 checx occupied port strategy/policy, also threading strategy/po T T S GE R e e S et e s T
cdr_dat_hold r <= (athers => 'D');

R ey ogiousein i ety CRPUNIT_ASSERT (1CORBAS £5_s 1 (nsesPorTRes. in ()17

s "The comescrort. operation shail raise the InvaliaPort excepoiol

S13ie (Rveelefevend and Siacly 5 L] cheR e e S e Poccableserves: pject1d ver providss ot =
cdr_dat_r <= cin_cdr_dat: o RNEome e poaRer->activate_cbject (pPeovidesport);
car_dsta valid r <= cin_cdr_daca_valid: 1 $£(1C0RBA1 1 15_st (eonmsotion)) Ensoder_var provideshet = Ensoder::_narrov(poaRef>id_to_resereace (prar

cdr_data_avail r <= cin_cdr_daca avails 5 Feone: 1o, fhi toroviBesnet infiils 7

DT e Wl SEmoEr g
£ (odr_data valid r = '1') th hold last value when data not valid = = L : L 2
car dst hold r <= edr dat £ B properties 2"\ Consok [ex87°0

Property. [value
Author Unkriown Developer

Properties & Console 2 1 Descrioion No Descrption

A console is not avallable. | D DCE 50735563620k 4a8e St 05044507bc84

Blrx inc L

* Replicated production of Design Pattern(s)
implementations

C++ Test Cases\
» Can be more effective than dealing with the replication -

using 3GL language features, particularly in DRE Systems

Slide 23 Copyright © PrismTech 2005 &4 PRISMTECH

The Benefits

The SCA
portability
standardized development

Meta-model — Domain Specific Language
more productivity

GDSL
easy to use and communicate to others

Constraints
left shift defects from run-time to modeling time
Harness the inherent flexibility provided by the SCA

Generators

Productivity

Portability

Correctness

Architectural consistency
A coordinated set of design patterns’

Requirements traceability

Synchronization of software artifacts
e.g.documentation

Automated testing = increased robustness

Allow the marriage of design artifacts with development artifacts
! Model Driven Architecture D. Frankel, Wiley 2003

Slide 24 Copyright © PrismTech 2005 Q PRISMTECH

Contact Info

www.prismtech.com

Dominick - dp@prismtech.com

Bruce — bt@prismtech.com

Slide 25 Copyright © PrismTech 2005 ﬁ PRISMTECH

	Search by Author
	Search by Session/Paper

