

CONNECTING THE DOTS: NATUALLY REPRESENTING YOUR SCA

CONNECTIONS

John Hogg (Zeligsoft, Gatineau, QC, Canada; hogg@zeligsoft.com)
Francis Bordeleau (Zeligsoft, Gatineau, QC, Canada; francis@zeligsoft.com)

ABSTRACT
The Software Communication Architecture (SCA) standard
and associated documents have no standard graphical
representation of most types of Domain Profile connections.
Connections within applications are well represented (at
least at an informal level). However, connections to
services or between application components and logical
devices in underlying platforms are not. This causes errors
not only in communication between humans, but also in
delivered XML descriptor files. There is a simple, natural,
graphical notation for depicting these connections.
Developers who write or generate XML from these
diagrams can deliver better quality profiles faster.

1. INTRODUCTION
The SCA standard itself [1] has no graphical notation for
defining connections in profiles, or sets of XML descriptor
files. Only the XML syntax and semantics are normative.
Unfortunately, XML is hard to read, hard to write and
simply not a good way for humans to express their intent.
This is recognized in the SCA Developer’s Guide[2], which
shows connections graphically in a notation borrowed from
UML 2.0. Developers see boxes representing components,
ports through which the components communicate on their
boundaries, and lines representing connections between
ports. A few boxes and lines crisply define what hundreds
of lines of XML will obscure to normal minds.
The SCA Developer’s Guide does an excellent job as far as
it goes. Unfortunately the SCA connection vocabulary is
very rich, and the Guide’s graphical notation only handles a
small part of this: the static connections between component
instances within a single application. Connections between
application components and logical devices or services are
poorly represented today.
There is a simple solution to this problem based on the
concept of “freestanding ports”. A few simple concepts and
icons express the entire vocabulary of SCA connections.
The surface simplicity comes from solid formal
underpinnings in the UML notion of role modeling, and the
notation can be represented as a UML profile. This paper
presents that solution.

2. BACKGROUND
Most software-defined radio (SDR) experts will be familiar
with the basic concepts of the SCA but they will be briefly
described here as a basis for the rest of this discussion. SCA
architectures are based on a few simple concepts:
components (including devices), interfaces, ports and
connections.

Applications (or waveforms in the SCA context) are the
complete units of software functionality that turn a
hardware platform into a radio. They are constructed from
communicating software components.
The component is the fundamental SDR software building
block. An SCA component is a modular unit of software
that encapsulates its contents behind interfaces and ports.
Developers deliver components as code (compiled into
binary form) and XML descriptors or metadata describing
components. The component is a reusable artifact and the
component instance is its use.
Components are used in many environments. They are a
first-class element in the UML (Unified Modeling
Language)[3]. The representation of components in the
SCA Developer’s Guide is influenced by the UML in the
way that it shows ports on components.
A port is a conjugated interface. A port can specify an
interface that the component provides to its environment or
it can specify an interface that the component requires from
its environment. The direction of a port is its conjugation: a
component provides an interface to its environment through
a Provides port and uses interfaces provided elsewhere in its
environment through a Uses port. An Interface on a
component can be viewed as another type of conjugation for
port matching purposes: a connection must have a Uses port
at one end and a Provides port or Interface at the other.
The Provides conjugation is intuitive to software developers
who haven’t used ports. The Uses conjugation may be less
so. The component does not communicate directly with its
environment: it communicates with its ports. The Uses port
is an outbound window that provides an interface. The
component that responds to that interface is not directly
visible to the component.
Ports are also directed interfaces. Internally, component
may provide the same set of operations through two ports,
but may handle an operation request in different ways
depending on the port. For instance, a TankController will
handle a transitionHigh() operations from sensors at
the top and bottom of a water tank in different ways.
How does the controller in the example receive messages
from the sensors? The architect wires together two ports
with compatible interfaces and conjugations by a
connection. (A Uses port can be connected to a Provides
port or an Interface.) Ports only communicate through
connections; a port cannot communicate to another port or
interface unless they are connected. In this way the
TankController can know who called the
transitionHigh() operation.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

An application does not run in a vacuum. A set of
applications execute on a hardware platform or set of
devices: general-purpose processors (GPPs), field-
programmable gate arrays (FPGAs) and digital signal
processors (DSPs). The applications are designed to be
reusable across a variety of platforms, so application
components do not directly drive device hardware. Instead,
the devices are controlled through software logical devices
that are platform-dependent components.

3. THE PROBLEM
If all connections were made between two clearly-defined
ports on two known components they would be easy to
specify and understand. However, the components at either
end aren’t always known or knowable to the application
architect.

A component in an application can make a connection to a
service or a logical device on a platform. Services (such as
logs or file managers) are typically implemented by a core
services team, not application developers. While the
delivered application may depend upon them, it does not
contain detailed information about how or where they are
implemented.
Similarly, applications are intended to be portable across
hardware platforms yet must make use of hardware logical
devices. The SCA therefore has constructs for defining
connections to devices that do not appear in any application
descriptor file.
The SCA connection specification problem is complex.
Freestanding ports address this problem.

4. REPRESENTING SCA CONNECTIONS
WITH FREESTANDING PORTS

This section introduces the concept of a “freestanding port”
and describes graphical representations for each type of
SCA connection.
As explained above, for many connection types the
component participating in the connection is not part of the
software profile or not statically determinable. The natural

way to depict the connection is therefore to separate the
endpoint from its component.
This gives rise to the concept of a freestanding port: a port
that is not associated graphically with any component in an
application assembly or any logical device in a node
definition. A freestanding port can represent access to a
service such as a log. Alternatively, it can represent a port
on a logical device of the underlying platform.
Since the component instance owning the port is not known
at connection definition time, it is not represented. The idea
of having a port divorced from any component may concern
UML modeling and metamodeling experts. UML 2.0 ports
are very much part of a “class with structure” and there is
no way in which a UML port can exist on its own. If you
are such an expert, relax. There is a clear and simple
mapping from freestanding ports to UML standard
metamodel definitions and the missing components are
really there after all. Freestanding port compliance with the
UML is described later.
We’ll now see how freestanding ports allow the clean
definition of all types of SCA connection. For
completeness, we’ll start with the simplest connections
based on explicit components and build up from there.
SCA connection ends are essentially independent of each
other (given appropriate conjugation). We will therefore
concentrate on one end of each connection that we review.
The first and simplest of these is a connection between ports
on two component instance references.

Component Instance Reference Connections
Component instance reference connections are the standard
way of specifying an intra-application communication path.
The idea is simple: two components each have (compatible)
ports and the application joins them with a connector.
Examples of this type of connection appear in the SCA
Developer’s Guide. Figure 1 shows such a connection.
Equivalent connections can be made between logical
devices in a platform. For simplicity, only application
connections will be discussed here.
Using connections between component instance reference
ports makes the architecture of an application explicit. This
is normally a best practice. Explicit architectures help all
team members understand what is being implemented.
Additionally, the validity of the connection can be statically
validated. The component instances and their ports appear
in the software or platform descriptor files.
The disadvantage of using component instance references is
the lack of flexibility in architectural connections. The

<!--Connection between [Component decryptor1, Port DecryptedData_Out] and [Component
translator1, Port DecryptedData_In]-->
<connectinterface id="DCE:0ec07bec-6f9d-4c4f-b517-b9289951ad69">
 <usesport>
 <usesidentifier>DecryptedData_Out</usesidentifier>
 <componentinstantiationref refid="DCE:80286241-45f9-4296-ba4d-7ecbaa6f8549" />
 </usesport>
 <providesport>
 <providesidentifier>DecryptedData_In</providesidentifier>
 <componentinstantiationref refid="DCE:8d7f785a-b0c9-4e88-9c0a-3178395a3123" />
 </providesport>
</connectinterface>

Figure 2

Figure 1

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

architect must specify at design time who is connected to
whom. Where this may cause problems, mechanisms such
as event channels (described below) should be used.
However, component instance reference connections should
be the first type of connection considered when designing
an application.
Component instance reference connections are easy to
understand when they are displayed in the graphical view of
an application or node. They are much harder to understand
in XML descriptor files. The XML equivalent to Figure 1 is
shown in Figure 2. The refid values indicating the
component instances are both unambiguous and
unintelligible to a human. However, this is not a problem
when XML is generated from a tool instead of being written
by hand.
Component instance reference connections are a kind of
“base case” for SCA connectivity. All the other connection
types are better represented using freestanding ports.
For consistency and simplicity, a component instance
reference will be used at one end of each of the following
connection descriptions. However, freestanding ports may
be connected to each other.
For reasons of space, findby namingservice connections
(and their limited utility) are not described in this paper.
They are fully explained in [4]. They are also naturally
represented using freestanding ports.

Services
Every architectural framework includes a set of services that
its components may use. Some of these are tightly
integrated into the framework itself; others may be plugged
in to customize the framework for its environment. The
SCA defines a set of standard service types but allows some
actual services to be selected by name. The standard service
types are filemanager, log, namingservice and eventchannel.

The eventchannel service is treated separately in the next
section. Access to the other services in the SCA is similar
in general (although there are some minor differences in the
details of name semantics) and they can be considered
together. The log service is a natural example.
Figure 3 shows two connections from a component

instance’s ports to log services. In the top part of the
diagram the standard log service is implemented as an
interface. The “eye” icon suggests the “lookup” nature of
the connection.
The top part of Figure 3 represents the XML shown in
Figure 4. Services are specified using the domainfinder
findby construct. In this example no name is specified so
the interface can connect to any available log.
Services can also be implemented as ports as shown in the
lower part of Figure 3. The port conjugation is Provides.
The XML for this connection is shown in Figure 5.
In this case the connection is made to a service identifying
itself as ErrorLog. A framework can be extended in this
way to provide multiple log (or other) services to address
various needs.
An SCA service is not part of an application and does not
appear directly in the application architecture or in the XML
profile describing it. The service belongs to an architectural
layer defined at the platform level. The freestanding port is
an access point through the layer to the service provided by

<!--Connection between [Component decrypt, Port ErrorLog_Out] and [Free-Standing Port
 ErrorLog]-->
<connectinterface id="DCE:c7185ca3-f1a0-4bb3-9321-a7ae5fd07d4a">
 <usesport>
 <usesidentifier>ErrorLog_Out</usesidentifier>
 <componentinstantiationref refid="DCE:7f081cab-80ff-48a3-9e46-d01f8c3a74b9" />
 </usesport>
 <providesport>
 <providesidentifier>ErrorLog</providesidentifier>
 <findby>
 <domainfinder type="namingservice" name="ErrorLog" />
 </findby>
 </providesport>
</connectinterface>

Figure 5

<!--Connection between [Component decrypt, Port StandardLog_Out] and [Free-Standing
 Interface]-->
<connectinterface id="DCE:56fab9f9-5a24-4379-84bb-d3631629414c">
 <usesport>
 <usesidentifier>StandardLog_Out</usesidentifier>
 <componentinstantiationref refid="DCE:7f081cab-80ff-48a3-9e46-d01f8c3a74b9" />
 </usesport>
 <findby>
 <domainfinder type="log" />
 </findby>
</connectinterface>

Figure 4

Figure 3

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

the layer underneath.

Event Channels
An event channel provides architects with completely
flexible communication architectures. Event channel clients
send or receive messages, but they don’t know where the
messages are going to or where they’re coming from.
Publish/subscribe is another name for this pattern. It
supports the connection of potentially many channel content
providers to many channel content consumers.
Event channels are a building block for many software
designs. For instance, they allow a component to report a
change in its state to its dependents without having to know
who those dependents are. In one concrete example, a
component can report low signal strength to an event
channel. One consumer of the channel can use this
information to search for another signal source while
another consumer can initiate an antenna retuning. The
source of the event does not need to know that there are
multiple possible signal sources or a tunable antenna,

simplifying its design and portability.
Event channels are SCA services like naming service, log
and file manager. Therefore, event channel graphical and
XML representations closely resemble the other services.
However, event channel conjugations differ from those of
the other services. Instead of being Interfaces or Provides
ports, event channels are represented as Provides ports to
which channel content suppliers write messages and Uses
ports from which channel content consumers read messages.

Figure 6 shows two components using an event channel.
Note that there is no explicit connection between the
content provider and consumer. This is the essence of an
event channel. The Provides and Uses ports can be
graphically located near to each other to suggest a
connection, but the event channel is intended to separate the
senders and receivers.
The generated XML for one of the connections in Figure 6
is shown in Figure 7. (The other is similar.) Like the other
services, event channel connection ends are represented in
SCA profiles as domainfinder findbys.
Once again, a convenient metaphor for the event channel
freestanding ports is to view them as access points through
the application layer to an event channel communication
layer below.

Connections to Devices
The SCA is designed to make applications portable across
different hardware platforms with minimal modification.
Applications therefore have no direct knowledge of the
platform on which they are deployed. However,
applications must be able to use the platform through its
logical devices. How can these connections be made in a
portable way?
The SCA has two solutions to this problem:
devicethatloadedthiscomponentref connections and
deviceusedbythiscomponentref connections. Textual
representations of software profiles can be challenging to
understand and interpret. Freestanding ports clarify device
connection specification, starting with
devicethatloadedthiscomponentref connections then
considering deviceusedbythiscomponentref connections.
Devicethatloadedthiscomponentref
An application architect knows the component instances
that make up an application. A component instance is
deployed or loaded onto a device when it is created, and this
deployment mapping is available to the core framework to
set up connections. A devicethatloadedthiscomponentref
connection end specifies a component instance reference
(i.e., a unique ID) and a port. The connection is literally
made to the given port on the logical device whose physical
device loaded the referenced component instance.
The word “this” in devicethatloadedthiscomponentref can
be confusing to new SCA developers. Since the logical
device port is usually (but not always) connected to a
component instance, it’s natural to assume that

<!--Connection between [Component generator1, Port Content_Out] and [Free-Standing
 Port Content_Channel]-->
<connectinterface id="DCE:e90686dc-c6ed-4a6f-97ae-478a7e6c0415">
 <usesport>
 <usesidentifier>Content_Out</usesidentifier>
 <componentinstantiationref refid="DCE:1fbbe2d8-cc5b-464f-be30-b3c159aa8092" />
 </usesport>
 <providesport>
 <providesidentifier>Content_Channel</providesidentifier>
 <findby>
 <domainfinder type="eventchannel" name="ContentChannel" />
 </findby>
 </providesport>
</connectinterface>

Figure 7

Figure 6

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

“thiscomponentref” refers to the connected component
instance. However, any component instance can be used in
the connection, not just the component instance at the other
end of the connection.
The SCA Developer’s Guide includes a graphical
representation of a connection between a port on a
component instance and port on a Modem device. The
component instance and its port are shown in the
conventional manner. The Modem device appears as a
shaded component instance with a port. At first glance, this
appears to be a reasonable way to represent the device end
of the connection. However, it makes several implicit
assumptions and causes representation problems.
The root problem behind this approach is that the
application cannot and should not make assumptions about
the device instance to which it is connected because doing
so compromises portability. The device instance is part of
the platform, not the application. The application should
only know that the device instance has at least the port
participating in the connection.
The solution is to recognize the independence of logical
device ports from each other in the desired SCA
representation and to represent the
devicethatloadedthiscomponentref port as a freestanding
port. The freestanding port’s icon suggests the loading
relationship between the referenced component and a
device.
Figure 8 shows a connection between the Modem_Out port
of a component instance and a freestanding Provides

devicethatloadedthiscomponentref port. The
devicethatloadedthiscomponentref port instance reference is
specified as a component instance name instead of an
unreadable unique ID. The SAD file XML that Figure 8
represents is shown in Figure 9.
Deviceusedbythiscomponentref
Devicethatloadedthiscomponentref gives one way of
connecting to a logical device, but what happens when the
logical device in question is not loadable? The SCA also

provides a deviceusedbythiscomponentref connection from
waveforms to logical devices. This connection type
employs usesdevice dependencies which in turn make use of
allocation properties, so we will start with a very brief
overview of these.
An allocation property describes some resource provided by
a component instance, and specifically a device instance.
Properties can be qualitative or quantitative: a bandwidth
property might describe the available bandwidth of a
modem device that could be shared between component
instances using the modem. In this modem example, the
component instances sharing the modem don’t execute on
it.
Components specify their requirement for an allocation
property with a usesdevice dependency that references the
allocation property’s unique ID. A component instance
never directly specifies the device that it uses. The device
provides an allocation property, the component instance has
a usesdevice relationship on the property, and the Core
Framework is responsible for connecting the two. A single
component instance can use multiple devices through
multiple usesdevice dependencies and a single device
instance can provide one or several allocation properties to
multiple component instances.
Deviceusedbythiscomponentref connections are the most
complicated ones in the SCA, but with this background the
remainder is straightforward. A connection end specifies a
component instance and a usesdevice relationship on the
definition that is the basis of that instance. Like
devicethatloadedthiscomponentref connections, “this”
specifies a component instance unique ID, not the
component at the other end of the connection.
The device instance participating in the connection is not
part of the portable application that uses it and the full
interface of the device cannot and need not be known to the
application. A natural representation of the connection does
not show this unknown device instance.
Freestanding ports display exactly what is known, as shown
in Figure 10. This example shows a Provides
deviceusedbythiscomponentref freestanding port with its
“U” icon. A Uses deviceusedbythiscomponentref
freestanding port is displayed as a white “U” on a black
square. The thiscomponentref and usesdevice information
are properties of the freestanding port.
The connection in Figure 10 is equivalent to the SAD file
XML in Figure 11. The deviceusedbythiscomponentref
specifies the allocation property that identifies the device

Figure 8

<!--Connection between [Component physLayer, Port Modem_Control] and [Free-Standing
 Port physLayer]-->
<connectinterface id="DCE:508963ae-eb30-43fd-858c-3e7f5b404846">
 <usesport>
 <usesidentifier>Modem_Control</usesidentifier>
 <componentinstantiationref refid="DCE:f8f96234-8672-4527-9afe-4dc77abe354b" />
 </usesport>
 <providesport>
 <providesidentifier>physLayer</providesidentifier>
 <devicethatloadedthiscomponentref refid="DCE:f8f96234-8672-4527-9afe-
4dc77abe354b" />
 </providesport>
</connectinterface>

Figure 9

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

and also the component instance using the property. Here
we see the situation where the thiscomponentref component
is the component instance at the other end of the
connection.

As a final note on connections to device instances, the
architect of an application may expect that two
deviceusedbythiscomponentref or
devicethatloadedthiscomponentref connections will use the
same device. The SCA does not provide any way to
guarantee that this will happen on all deployment platforms.
Freestanding ports therefore display exactly what the SCA
can ensure. However, relationships between freestanding
ports can still be captured. Graphical layout is a powerful
tool for capturing architectural intent. To indicate that two
deviceusedbythiscomponentref or
devicethatloadedthiscomponentref freestanding ports share
a device, place them together on an application assembly.

5. UML COMPLIANCE
SCA ports are closely related to the ports introduced to the
Unified Modeling Language in UML 2.0. However, UML
2.0 “classes with structure” have no concept of a
freestanding port. A port is part of a class or component,
and can never exist on its own. However, freestanding
ports are entirely compatible with an SCA profile of UML,
and there is a simple mapping of freestanding ports to the
ports of UML 2.0. “Freestanding” ports aren’t really
freestanding at all. They are a convenient representation of

an aspect of a component that is visible in a given context.
Every freestanding port belongs to a component; the
component simply doesn’t appear in a graphical view. By
eliding the component, irrelevant and unknown aspects are
hidden. The user of the freestanding port does not know or
need to know how many other ports the unseen component
may have.
If the idea of a port with no visible component is still
worrying, simply draw a component around every
freestanding port.

6. SUMMARY
Freestanding ports are a new tool for the SCA architect and
developer. They are a valuable notation for all stakeholders
who specify, design, implement, integrate, test or use
reliable SCA applications. They simplify architectural
design and communication even when the only tool
available is a whiteboard. With tool support they can
decrease the amount of deep SCA knowledge required to
rapidly deliver a solid product. Freestanding ports are a
powerful step forward in SCA modeling.

7. REFERENCES
[1] Joint Tactical Radio System (JTRS) Joint Program Office,

Software Communication Architecture Specification V3.0,
August 27, 2004.
http://jtrs.army.mil/sections/technicalinformation/fset_technic
al_sca.html.

[2] Raytheon, Joint Tactical Radio System (JTRS) SCA
Developer’s Guide, June 18, 2002.
http://jtrs.army.mil/sections/technicalinformation/fset_technic
al_sca.html.

[3] OMG, UML 2.0 Superstructure Specification (convenience
document), October 8, 2004. http://www.omg.org/cgi-
bin/doc?ptc/2004-10-02.

[4] Hogg, John, Communicating SCA Architectures by
Visualizing SCA Connections, 2005.
http://www.zeligsoft.com/Technology/Resources.asp.

<connectinterface id="DCE:3b63934c-edce-4f90-a8ba-370c072f1f2f">
 <usesport>
 <usesidentifier>Modem_Control</usesidentifier>
 <componentinstantiationref refid="DCE:1e37517d-7444-4ce8-b785-66f1fe4661d9" />
 </usesport>
 <providesport>
 <providesidentifier>ModemControl</providesidentifier>
 <deviceusedbythiscomponentref refid="DCE:1e37517d-7444-4ce8-b785-66f1fe4661d9"
 usesrefid="ModemBandwidth" />
 </providesport>
</connectinterface>

Figure 11

Figure 10

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

