

MIDDLEWARE FOR DSPS AND FPGAS

William Beckwith (Objective Interface Systems, Herndon, VA, USA;

bill.beckwith@mail.ois.com)
Victor Giddings (Objective Interface Systems, Herndon, VA, USA;

victor.giddings@mail.ois.com)

ABSTRACT

System designers have historically wrestled with the
determination of what portion of their logic is appropriate
for each type of specialized processor. The typical approach
is an educated guess or, worse yet, an unconscious repeat of
the design pattern from a previous generation. Multiple
tensions drive and constrain the assignment of application
logic to each specialized processor or GPP. To minimize
deployment cost while achieving the required current and
future functionality, system designers must balance the
following factors:

• Initial ramp up cost,
• Period to amortize the initial research and

development,
• Cost per deployed unit,
• Power consumption,
• Legacy intellectual property,
• Existing engineering skills and paradigms and
• Performance.

 The appropriate communications middleware allows
system designers to construct flexible, maintainable systems
that can accommodate the widest possible range of
waveform computing loads while maintaining economic
goals for a target platform cost profile.

This paper will compare and contrast multiple approaches to
using communications middleware on specialized devices.

1. INTRODUCTION

According to WikiPedia, middleware “consists of software
agents acting as an intermediary between different
application components. It is used most often to support
complex, distributed applications. The software agents
involved may be one or many.”[1] The rise of middleware
for general purpose computing is well known, and has been
extended to embedded and real-time systems. In the
Software Defined Radio domain, appropriate middleware

allows system designers to construct more flexible and
maintainable systems that can accommodate the widest
possible range of signal processing computing loads while
maintaining economic goals for a target deployment cost
profile. This paper compares and contrasts multiple
approaches to extending the applicability of middleware
concepts to specialized devices, including Digital Signal
Processors (DSPs), Field Programmable Gate Arrays
(FPGAs), and Application Specific Integrated Circuits
(ASICs).

2. MIDDLEWARE GOALS

Our goals for the DSP, FPGA, and ASIC middleware are as
follows. First and foremost is the necessity to achieve the
required functionality for the system, both in terms of
current requirements and future requirements. Second, the
system must achieve the performance profile required for
the target user. A frequent goal of middleware is to achieve
portability by isolating developed application logic from the
surrounding platform environments. Interoperability, the
ability for two components of logic to communicate over a
common media, is frequently useful to accommodate
independent development of the components. Incremental
migration is the capability to migrate developed logic a
piece at a time. Processing mobility means that processing
logic can be moved from one type of specialized device to
another. Of course, with any system it is important to
minimize the cost of developing the system and minimize
the time it takes to complete a correct system. Another key
cost factor is the cost of the deployed hardware. It is
important to minimize this deployed cost to maximize return
on investment.

 In achieving these middleware goals, there are
important considerations to balance. System designers must
balance the following factors:

• Performance
• Power consumption
• Cost per deployed unit
• Legacy intellectual property/hardware architectures
• Existing engineering skills

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

mailto:bill.beckwith@mail.ois.com?subject=Middleware%20for%20DSPs%20and%20FPGAs%20(from%202005%20SDR%20Forum)
mailto:victor.giddings@mail.ois.com

• Existing engineering paradigms
• Initial ramp up cost
• Period to amortize the initial research and

development

3. PROCESSING DEVICE TYPES

The scope of this paper addresses analyzing for types of
processing devices: GPP, DSP, FPGA, and ASIC.

 Table 1 is intended to be representative of the types of
tradeoffs that system designers are faced with. The table
helps exemplify that each type of device has its place in the
system architects bag of tools, given the wide variance in
speed, power, cost, and human factors issues.

Table 1: Processing Device Tradeoffs
Processin
g
Device

Speed Power Initial
Cost

Cost
per
Unit

Design
Investment
Longevity

Skill
Avail-
ability

GPP 1 1 1 1 +++ +++

DSP 1 – 1.8 0.5 2 0.8 –
3 + +

FPGA 3 – 20 0.25 – 2 4 2 – 4 + -

ASIC 3 – 50 0.1 –
0.3 20 0.1 –

0.2 -- ---

 Of course in each of these device types has a very wide
range of processing capability. Each row in the table should
be considered in its entirety when comparing two other
rows in the table. For example the cost per unit of a small
FPGA would typically be less than a large GPP.

 It is the basic nature of computing resources that two
fundamental rules can be observed. First, processors absorb
algorithmic complexity, meaning that the more complex the
algorithms the more processing capability is required.
Second algorithmic complexity will typically expand to
outstrip the available processing capability.

 Over the course of time the natural solution to a given
computing problem will have a natural migration. Initially
an ASIC is the only option to solve some algorithms given a
severe constraint on computing power per watt or per
pound.
As the speed of FPGA processors improves over time a
FPGA may provide sufficient computing capability for an
algorithm given the original power or weight constraint.
Subsequently a DSP processor will provide sufficient
computing capability for the original constraints. Eventually

the algorithm can be processed on general purpose
processors (GPP) within the constraints.

 An example of three algorithms currently in different
stages of this natural migration is drawn from the
audio/video domain. A state of the art GPP will have
sufficient processing capability to implement an audio
music codec. However, even a low-end video codec will
require a DSP currently. And a high-end video codec such
as HDTV will require an FPGA or ASIC to properly
implement the algorithm in a reasonable form factor for a
small embedded system.

 The ramp up costs for these different devices differs
quite a bit. For the GPP, DSP, and FPGA that ramp up cost
is simply the cost of developing the logic. However, for an
ASIC, the ramp up cost is the cost of developing the logic
plus approximately $10 million.

 The financial benefit of a given research and
development effort to produce a new capability is not
limited to the revenue produced by the products that it is
used for. The financial benefits also include residual
reusable intellectual property. One key benefit to a GPP is
that the software can survive many generations of hardware.
The result is a long period of over which the initial research
and development expenses can be amortized. The initial
research and development expenses for developing the
software for a DSP are typically shorter than that for a GPP.
There are two causes for this reduced amortization period.
First, the architecture and capabilities of DSPs tend to
change in a way that obsoletes previous implementations of
an algorithm. Second, there is considerable innovation in
DSP signal processing algorithms which render previous
algorithms obsolete.

 FPGA processors have an even shorter payback period
for the initial research and development expenses. That
payback is typically bound to the FPGA family. ASIC
processors are typically redesigned each new generation.
This is typically driven by the high ramp up costs of
developing each new ASIC revision.

 The relevant metric for measuring the size required to
absorb a given algorithms complexity differs for each
device type: For a GPP and a DSP, size is the object code
and memory used during the execution of that object code.
For a FPGA and an ASIC, size is the number of transistors
needed to execute the algorithm in hardware. Frequently
FPGA processors are discussed in “logical units”.

 Execution time criticality has a different scale on each
specialized device type. A performance critical embedded
systems developer will consider each microsecond as

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

critical on a GPP processor and a DSP processor.
Correspondingly, on an FPGA, tens of nanoseconds are
critical. On an ASIC, ones of nanoseconds are critical.

 The difficulty of developing the logic to realize a
particular algorithm differs between the device types. GPP
processors have a wide array of available tools and are the
easiest to develop on. DSP processors are more constrained
specialized environments with fewer tools. There are a
variety of tools that a hardware engineer may use to
implement a particular algorithm on a FPGA or ASIC
processor. While various software conversion tools exist,
most logic is developed using hardware description
languages such as Verilog and VHDL.

 Development resource also differs according to
processor type. Software engineers familiar with general
purpose processors are readily available. Those familiar
with DSP familiarity are less common, but it is possible to
convert a good software engineer in about six months.
FPGA developers are less common still, and tend to be
hardware engineers by training. Developers of ASICs are
rare these days and are usually specially-experienced
hardware engineers.

 The programming languages available to developers, a
key determinant of development productivity, differ
between the processing classes. GPP developers have a
number of languages to choose from, including: C, C++,
Java, and Ada. DSP code is generally C, with C++
becoming more available. FPGA & ASIC descriptions are
generally in Verilog or VHDL.

 It is important to understand the security implications
of specialized devices. GPP processors typically contain
memory management units that allow for hardware enforced
boundaries between applications. DSP processors typically
have no memory management units and thus provide little
boundaries to contain a erroneous or subverted applications.
FPGA and ASIC processors provide no architecturally
imposed separation other than the natural time and space
separation of hardware blocks that are not directly
connected.

4. MIDDLEWARE FOR DSP, FPGA, AND ASIC
DESIGNERS

We can now elaborate the expected benefits of middleware
for these processing device types. In addition to middleware
used within a particular processing device type, there are
additional benefits in middleware that bridges between
different processing device types.

 Middleware technology deals with connecting pieces of
a system, whether software components or hardware blocks.
Useful DSP, FPGA, and ASIC middleware technology
would provide a component definition and container
technology for each of these processing device types, as
well as an inter-container communications solution. The
middleware would allow developers to rewrite the contents
of a container for a different processing capability without
changing the contents of the rest of the existing container,
i.e., the rest of the system. This processing mobility of
moving functions independently greatly increases
incremental system evolution capacity. For example, a
function could be moved from an expensive ASIC to an
FPGA as the result of increased FPGA processing power,
without changing the interfaces between components of the
system. Also, a function in a GPP can be moved in an
FPGA to support higher capacity or lower power models of
a device. Of course, there are always limits on the isolation
that component technologies can attain; system-level
properties such as a timing and throughput will have to be
re-analyzed after any change.

 There have recently been proposals to extend
middleware concepts and technologies into these processing
device types. In the remainder of this paper, we will discuss
the merits of five candidates:

 Custom-built
 Transport level (HAL-C)
 Real-time CORBA
 High-Assurance CORBA
 SCA-289 Component/Container Model

 Table 2 shows the range of applicability of each of
these candidate middleware technologies to the processing
device types described above. It also contains a column for
a hybrid type of processing device. Most of the FPGA
vendors have products that are capable of hosting one or
more full general purpose microprocessors in a fraction of
the gates available. This allows immediate availability of
some of the technologies currently available only on GPPs
on these FPGAs.

 The following subsections discuss the tradeoffs in these
middleware technologies.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Table 2: Applicability of Candidate Middleware Technologies

Approach GPP DSP GPP core
on FPGA FPGA ASIC

Custom/
 Proprietary

Transport
 (HAL-C)

Real-time
 CORBA

High
Assurance
 CORBA

SCA-289
 Comp/Cont
 Model

4.1 Custom Built Approach

“Roll you own” middleware is still popular in some
domains and, until recently, was the only viable option for
the processing device types other than the GPP. This
approach is applicable to all the processing device types. It
has some decided technical advantages. Since it can be
developed for the specific processing devices to be
deployed, it is potentially very fast and small in footprint,
and can be tightly focused on the requirement current for
the project.

 It suffers a number of disadvantages because of its tight
focus, however. A specific project may not have the time or
money to develop optimal performance and time. The
project management must always trade off time to market
against these other market distinguishers. The solution is
likely to be highly specific to the hardware chosen for the
project; it may not be reusable on the vendor’s next model
in the same product line. The proprietary solution will also
lock you into the supplying vendor. Because the custom
solution is not interoperable, the ability to incrementally
migrate parts of the solution to new technologies is
precluded. The custom-developed infrastructure will be
more expensive than the cost of middleware, and make it
more difficult to control the lifecycle costs of the product.
The questionable reusability of the custom infrastructure
yields problems when attempts to extend it are made, and
result in a short period over which the development
investment is paid back.

4.2 Transport Level Approach

Version 3.0 of the Software Communication Architecture
(SCA) developed under the Joint Tactical Radio System
program includes a Hardware Abstraction Layer –
Connectivity (HAL-C). HAL-C “specifies a hardware
platform-independent means for communication between
software components running on specialized hardware”[2].
HAL-C is exemplary of the transport-level approach; it
specifies how the bits of a message are transported between
components in the different processing device types.

Such approaches are applicable to GPPs and to DSPs, but
break down when FPGAs are included. (The specification
of HAL-C for FPGAs is generally regarded as being too
underspecified to be useful.)

Transport-level approaches to middleware offer a standard
API for inter-device communication, and provides some
portability for both transport implementations and
applications that use the transport.

They do not provide message formatting, and thus no
interoperability between components. They also do not
incorporate zero-copy interfaces, which impacts their use
for intra-device communication and adversely affects
performance. The limitations of this approach preclude
processing mobility. Finally, there is no specification of
inter-component timing.

4.3 Real-Time CORBA

There have been proposals to extend specialized CORBA
implementations into DSPs. The Real-Time CORBA
specification [3] added features to the CORBA standard to
support predictable remote invocations across a distributed
system. The specification is supported by a number of
implementations that also support the Minimum CORBA
specification, a specification that subsets the features of
CORBA to reduce complexity and footprint. It is possible to
employ implementations that take less than 100K of object
code for both client and server support.

These implementations could be used on GPPs, on GPP
cores within FPGAs, and in DSPs. Based on a well defined
foundation of OMG specification, they would provide
device location transparent logic, i.e., the logic for a
component could be located and re-located across any of the
supported processing device types without affecting the
other components of the system. The OMG standards basis
of these implementations would ease integration of the
specialized devices with GPP-based components of the
application. The components developed for this technology
will contain code that is partially portable to and from a
GPP; the interfaces to the components’ functionality will be
portable, but the implementation logic will depend on DSP-

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

specific processing libraries. The communication between
components, since it is standards-based will be
interoperable.

The drawbacks of this approach come from trying to impose
a GPP-developed paradigm onto a different processing
device type. The object-oriented, multi-threaded CORBA
paradigm is unfamiliar to most DSP engineers. DSP
engineers are using DSPs in order to wring the best
performance out of the hardware. Thus, DSP-traditional
footprint and performance concerns can become a cultural
barrier, even with a small, fast DSP ORB. Most proponents
of this approach focus on the footprint of the ORB core and
ignore the footprint of the code generated from the IDL.
The code can be quite large; an experiment with the SCA
Core Framework yielded between 30K and 250K lines of
generated code.

4.4 High-Assurance CORBA

The High-Assurance CORBA effort that is ongoing in the
OMG is being conducted by Objective Interface Systems
and Rockwell Collins. It is an effort to define a subset of
Minimum CORBA for use in systems that are subject to the
requirements of safety certification, such as those that are
certified to DO-178B [4]. One of the outcomes of this
specification effort will be more robust, easier to use
language mappings. There will also be enhancements to
apply formal methods to IDL, e.g., in the form of pre-
conditions and post-conditions. Tthe users of this
technology will be better able to build correct systems on
first attempt. This effort should result in a specification that
would allow implementation with further reduced footprint.

Thus, this approach has the same applicability as the
previous approach: GPPs, GPP cores on FPGAs, and DSPs.
It also has the same advantages but sometimes to greater
degree: ORB core written to this subset will be even smaller
in footprint. The implementations, because of the safety
certification considerations, will have better testability and
robustness. This correctness in infrastructure should yield
quicker deployment.

However, in addition to the disadvantages of the previous
approach, this approach is not yet available. The
development of the specification is still in progress, and
products supporting the specification will follow after the
specification. This approach still requires the DSP engineer
to adopt the object-oriented coding paradigm of CORBA.
There is no specification of inter-component timing that
allows analysis of performance and timing correctness.

4.5 SCA-289 Component/Container Model

Change proposal #289 [3], a candidate for SCA 3.1,
includes a proposal for a component and container model
for three classes of processing systems:

• GPP Class: normal first class component
environments or CORBA enabled environments. In
this processing class existing component
specifications are suitable.

• RCC Class: Resource-Constrained C language
environments. When C is available, but CORBA is
not suitable. For example, DSPs or
Microcontrollers or RISC cores with limited
memory

• RPL Class: RTL-Programmable-Logic
environments When an RTL language is available
(VHDL/Verilog), but C is not available or not
suitable. This includes FPGAs and ASICs.

This proposal is comprehensive and includes all of the
previously enumerated processing device types. It provides
both inter-container and inter-device interface definition,
portability of components at source level, replace-ability
across technologies. It addresses the separation of concerns
between platform providers and component authors, allows
resource efficiency and performance, and has minimal
impact on existing component models.

 The primary shortcoming of this proposal is that it does
not address a specification of inter-component timing.

CONCLUSION

A summary of this analysis of tradeoffs along with some
quantization of the expected overheads is offered in Table 3.
Each of the approaches above are represented by a row in
the table. The “Portable Logic” column shows that none of
these approaches offers portability across the different
processing device types: FPGA “code” will be different
than DSP code will be different than GPP code. The second
column, “Portable Logic Shell” indicates whether the
definition of the interfaces is portable across the different
processing device types. OMG’s IDL is used as the
specification of inter-component interfaces in the last three
approaches. The column labeled “Portable Inter-logic
Comm” reveals whether communication paths between
different components of the system are portable, i.e.,
whether the migration of a component from one processing
device type to another (e.g., GPP to DSP) would be
accommodated by the infrastructure. The last three columns
indicate the expected overhead of the middleware
infrastructure in terms of FPGA slice or Logic Elements,
memory footprint, and clock cycles, respectively.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Table 3: Evaluation of Candidate Middleware Technologies

Approach Portabl
e Logic

Portable
Logic
Shell

Portable
Inter-logic
Comm

Middleware
FPGA
Footprint
(Slices/LEs)

Middleware
Memory
Footprint
(kilobytes)

Execution
Overhead
(kilocycles)

Custom/
Proprietary varies Varies varies

Transport
 (HAL-C) 0.2 – 5

(+ xport) 0.1 – 2

Real-time
 CORBA

45 – 100
Clnt + Svr
(+ xport)

1.8 – 20

High
 Assurance
 CORBA

 15 – 35
(+ xport) 0.9 – 4

SCA-289
Comp/Cont
Approach

 80 – 120
20 – 35

(+ xport)
0.3/cpnt

0.1 – 3

REFERENCES

 [1] “Middleware”,Wikipedia,

http://en.wikipedia.org/wiki/Middleware
 [2] “Specialized Hardware Supplement to the Software

Communication Architecture (SCA) Specification”, JTRS-
5000 SP, V3.0, 27 August 2004,
http://jtrs.army.mil/documents/sca_documents/V3.0/SCA%
20Specialized%20Hardware%20Supplement%203.0.pdf

[3] “Real-Time CORBA Specification”, Version 1.2, OMG
Document formal/2005-01-04,

http://www.omg.org/technology/documents/formal/real-
time_CORBA.htm

[4] “Software Considerations in Airborne Systems and
Equipment Certification”, DO-178B, RTCA Inc., 1140
Connecticut Avenue, N.W., Suite 1020, Washington, DC
20036

[5] Kulp, J., et al, “Portable Waveform Components for
Specialized Hardware”.
http://jtrs.army.mil/documents/sca_documents/V3.1_works
hop/CP_289%20Component_PortabilityJTRSWKSHOP3.p
pt

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

http://en.wikipedia.org/wiki/Middleware
http://jtrs.army.mil/documents/sca_documents/V3.0/SCA%20Specialized%20Hardware%20Supplement%203.0.pdf
http://jtrs.army.mil/documents/sca_documents/V3.0/SCA%20Specialized%20Hardware%20Supplement%203.0.pdf
http://www.omg.org/technology/documents/formal/real-time_CORBA.htm
http://www.omg.org/technology/documents/formal/real-time_CORBA.htm
http://jtrs.army.mil/documents/sca_documents/V3.1_workshop/CP_289%20Component_PortabilityJTRSWKSHOP3.ppt
http://jtrs.army.mil/documents/sca_documents/V3.1_workshop/CP_289%20Component_PortabilityJTRSWKSHOP3.ppt
http://jtrs.army.mil/documents/sca_documents/V3.1_workshop/CP_289%20Component_PortabilityJTRSWKSHOP3.ppt

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICs

Middleware
for

DSPs and FPGAs
Bill Beckwith

Objective Interface Systems, Inc.
http://www.ois.com info@ois.com

SDR Forum Technical Meeting 2005

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

http://www.ois.com/
mailto:info@ois.com

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsOverview

The appropriate middleware allows system designers
to construct flexible, maintainable systems
that can accommodate the widest possible range of signal processing
computing loads
while maintaining economic goals for a target deployment cost profile

This presentation will compare and contrast multiple approaches to
using middleware on specialized devices (DSPs, FPGAs and ASICs)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsGoals for DSP, FPGA, and ASIC

Middleware

Achieve the required functionality
Current requirements
Future requirements

Achieve the required performance
Portability
Interoperability
Incremental migration
Processing mobility
Minimize development cost and time-to-completion
Maximize return on investment
Minimize deployment cost

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsConsiderations While

Achieving Middleware Goals

System designers must balance the following factors
Performance
Power consumption
Cost per deployed unit
Legacy intellectual property/hardware architectures
Existing engineering skills
Existing engineering paradigms
Initial ramp up cost
Period to amortize the initial
research and development

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsComparing the Technologies

Processing
Device Speed Power Initial

Cost
Cost per

Unit

1 1

0.8 – 3

2 – 4

0.1 – 0.2

2

FPGA 3 – 20 0.25 – 2 4 + -

20

Design
Investment
Longevity

Skill
Availability

GPP 1 1 +++ +++

DSP 1 – 1.8 0.5 + +

ASIC 3 – 50 0.1 – 0.3 -- ---

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsNature of Computing

Resources

Two rules
Processors absorb algorithmic complexity
Algorithmic complexity expands to outstrip processing capability

Solutions to computing problems have natural migration
ASIC the only option for maximum compute power per watt or lb
FPGA when solution allows more watts or lbs
DSP when solution can exist on specialized signal processing hw
GPP when solution can exist on general purpose hw

Examples of solutions currently constrained by computing resource
GPP Ok audio music codec
DSP Ok low end video codec
FPGA/ASIC Ok high-end video codec (HDTV)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsComparisons

Ramp up cost
GPP: Logic development + $0
GPP: Logic development + $0
FPGA: Logic development + $0
ASIC: Logic development + $10,000,000

Period to amortize the initial research and development (longevity of
IPR assets)

GPP: long; can survive many generations of hardware
DSP: medium (bound to DSP family)
FPGA: short-to-medium (bound to FPGA family)
ASIC: short, typically bound to the lifetime of that chip run

Size
GPP & DSP: object code and memory use size
FGPA: number of logical units

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsComparisons (cont’d)

Performance
GPP & DSP: 1’s of microseconds critical
FPGA: 10’s of nanoseconds critical
ASIC: 1’s of nanoseconds critical

Logic development
GPP: easy to develop, lots of tools
DSP: more constrained environment, fewer tools
FPGA & ASIC: some swr conversion tools, mostly VHDL & Verilog

Engineering resources
GPP: software engineers widely available
DSP: less common, but can convert a good swr engineer in six months
FPGA: less common, hardware engineers by education
ASIC: rare these days, special experience hardware engineers

Languages
GPP: many, C, C++, Java, Ada, …
DSP: C, C++
FPGA & ASIC: Verilog & VHDL

Partitioning Support
GPP: MMUs provide partitioning and separation
DSP: typically no partitioning or separation (there are exceptions)
FPGA & ASIC

no architecturally imposed separation
hw blocks can separate by design if carefully constructed

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsMiddleware Benefits

for DSP and FPGA Designers

Inter-container communication
solution allows:

Rewrite a container for a different
processing capability
Without changing the rest of the
existing containers

Incremental system evolution –
Processing Mobility

Each container can
migrate/integrate independent of
other containers
Still need system-level timing
analysis

Function B

GPP → FPGA

Function C

FPGA → DSP

Function A

GPP → DSP

Processing Mobility:
Moving Functions Independently

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsCatalog of Approaches

Custom
Transport level (HAL-C)
Real-time CORBA
High-Assurance CORBA
SCA-289 Component/Container Model

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsApplicability of Approaches

Approach GPP DSP GPP core
on FPGA FPGA ASIC

Custom/
Proprietary

Real-time
CORBA

Transport
(HAL-C)

High Assurance
CORBA

SCA-289
Comp/Cont
Model

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsCustom Built Approach

Applicable anywhere
Advantages

Potentially fast
Potentially small
Tightly focused on current requirements

Disadvantages
May not have time or $ to develop optimal performance
May not have time or $ to develop optimal size
Typically hardware specific—DMS issues over system life
Proprietary solution—vendor lock-in, also no interfaces to standardize
Not interoperable, can’t incrementally migrate
More expensive to develop
More difficult to control lifecycle costs
Questionable reusability

Problem to extend
Short payback period

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsTransport Level Approach

Characteristics
HAL-C in SCA 3.0

Scope
GPP
DSP

Advantages
Standard API for inter-device communication
Provides some portability for:

Transport implementations
Applications that use the transport

Disadvantages
Doesn’t provide messaging format

No interoperability
Not zero-copy

Prevents use for intra-device communication
Not optimal

Doesn’t allow for processing mobility
No specification of inter-component timing

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Model

Characteristics
SCA change proposal #289
Candidate for SCA 3.1

Scope
GPP and GPP core on FPGA
DSP
FPGA
ASIC

Advantages
Provides both inter-container and inter-device interface definition
Portability of components at source level
Replace-ability across technologies
Separation of concerns between platform provider and component author
Resource efficiency and performance
Minimal impact/changes required on existing component models

Disadvantages
No specification of inter-component timing

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsReal-time CORBA

Characteristics
Specialized ORBs for DSPs
Much less than 100K object code for both client and server support

Scope
GPP and GPP core in FPGA
DSP

Advantages
Well defined foundation, easy to integrate with GPP, OMG standard
Device-location-transparent logic
Code partially portable to/from GPP

Interfaces to functionality are portable
Implementation logic will depend on DSP-specific signal processing libs

Interoperable communications
Disadvantages

Unfamiliar paradigm to most DSP engineers
Traditional footprint and performance concerns can become a cultural barrier
(despite small, fast DSP ORBs!)
ORBs require some knowledge of object-oriented design
Generated code from IDL can be quite large (eg. Core Framework IDL)
No specification of inter-component timing

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsHigh Assurance CORBA

Characteristics
Still being defined by OMG (Objective Interface and Rockwell-Collins)
A subset of Minimum CORBA
Designed to support safety certification efforts (DO-178B)
More robust mappings to languages
Formal methods enhancements to IDL (better correctness)

Scope
GPP and GPP core in FPGA
DSP

Advantages
Same as Real-time CORBA plus:

Much smaller ORBs
Better testability and robustness
Correctness infrastructure makes for quicker deployment

Disadvantages
Specification in progress
Still requires knowledge of O-O
No specification of inter-component timing

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsMiddleware Characteristics

Approach Portable
Logic

Portable
Logic
Shell

Portable
Inter-
logic

Comm

Middleware
FPGA

Footprint
(Slices/LEs)

varies

80 – 120

Real-time
CORBA

45 – 100
Clnt + Svr
(+ xport)

1.8 – 20

Middleware
Memory
Footprint

(kilobytes)

Execution
Overhead

(kilocycles)

Custom/
Proprietary varies varies

Transport
(HAL-C)

0.2 – 5
(+ xport) 0.1 – 2

High
Assurance

CORBA

15 – 35
(+ xport) 0.9 – 4

SCA-289
Comp/Cont

Approach

20 – 35
(+ xport)
0.3/cpnt

0.1 – 3

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICs

Last Slide

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICs

Backup Slides

More information on
SCA-289 Component/Container Model

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Concepts

Component:
unit of deployable functionality
independently defined unit of functionality of an application

Application:
One or more components deployed as a unit to perform interesting
work for the user/client
A configured and interconnected set of one or more components

Container:
the immediate runtime environment in which a component instance
executes
the provider of any local runtime services or APIs to components
the local invoker/controller/manager of the component

Class (a.k.a. which Component Implementation Framework):
A particular language/API model to which components are written

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Classes

Different types of processors require different ways of writing
components.

No “one language/API fits all”, especially when performance sensitive
GPP Class: normal first class component environments

CORBA enabled environments
Existing component specifications are suitable

RCC Class: Resource-Constrained C language environments
When C is available
When CORBA is not suitable
E.g. DSPs or Microcontrollers or RISC cores with limited memory

RPL Class: RTL-Programmable-Logic environments
When RTL language is available (VHDL/Verilog)
When C is not available or not suitable
E.g. FPGAs and ASICs

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsSCA-289 Component/Container

System

Distributed/Embedded System/Platform

Processor X

ContainerA

ContainerB

Processor Y

ContainerC

Component
instance6

Component
instance5

Component
instance4

Component
instance2

Component
instance1

Component
instance3

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsSimple FM3TR Receiver

Tuner
RF to IF

A/D

Digital
Down-

converter

MSK
Demodulator

FM3TR
Decoder

CVSD
Decoder

Audio
Output

Containers talk to containers.
Important interface for
interoperability/plug&play
of containers (e.g. boards).
Protocols/networks/busses.

RPL component Soft components

Component implementations in Containers

FPGA
Container

PowerPC+CORBA+POSIX
Container

Communication between components, conveyed by their containers

Components talk to their containers.
Important interface for portability of
components. APIs used by
component authors.

… …
Digital
Down-

converter

MSK
Demodulator

FM3TR
Decoder

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Portability Goals

A component implementation can move to same class of container
(“like for like”), recompiling source

RPL component written in VHDL ports between FPGA families or to an
ASIC.

Use of platform/processor/container-specific features impedes
portability.
Portable “reference implementations” can be tweaked to use special
features (e.g. Viterbi acccelerator on DSP)
RCC components easily port and wrap into GPP environments.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Replace-ability Goal

Enable Changes in technology/processor class with no impact on the
rest of the application (other components)

Change a filter from FPGA to (new faster) DSP
Change a modem from DSP to (new faster) GPP
Increase data rate requiring switch to (new faster) FPGA.

Enable simple addition of component implementations to existing
components

Both CCM & SCA support multiple implementations in a component
package.
Allow adding FPGA implementation to component with GPP
implementation without impacting application

Implies opaque interoperability between all classes of component
implementations

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsResource Efficiency and

Performance Goals

Minimize “tax” for portability
Minimize “tax” for interoperability
Enable appropriately small footprint

Satisfy the fanatics
Enable full performance usage of inter-processor hardware
interconnections

busses, networks, fabrics, NICs
Enable full performance for collocated component instances
Enable statically pre-combinations of component implementations
Enable zero copy operation

To inter-processor interconnects
Between collocated components
Between input and output of a component

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Component Interfaces

Management interfaces
Generic for deployment, configuration, introspection, lifecycle
SCA has CF::Resource as exposed external interface

No container/local interface
CCM has:

CCMObject as exposed external interface
EnterpriseComponent and SessionComponent as local container-to-
component base interface
CCMContext and SessionContext as local component-to-container
interface

Inter-component interfaces
IDL-defined user and provider ports
CCM specializes event ports and stream ports

Local O/S APIs
CCM says nothing
SCA defines POSIX profile

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© Objective Interface Systems, Inc. 2005

Middleware for
DSPs, FPGAs, & ASICsRPL: RTL-Programmable Logic

environments

All interfaces are OCP
An open standard for how “IP Cores” are connected.
Independent of VHDL vs. Verilog
A range of performance options

Management interface
Simplified from (CCM or SCA) component model
Initialize/start/stop/release/test on one OCP “thread”
Configure read/write on second OCP “thread”

Intercomponent interface
Burst read/write transactions on OCP-port

One OCP port per IDL port per direction
Implementation chooses master or slave role
Implementation chooses FIFO or random access style

Local interfaces
Clocks and local memory access (several styles)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

