
 
MIDDLEWARE FOR DSPS AND FPGAS 

 
William Beckwith (Objective Interface Systems, Herndon, VA, USA; 

bill.beckwith@mail.ois.com) 
Victor Giddings (Objective Interface Systems, Herndon, VA, USA; 

victor.giddings@mail.ois.com) 
 
 

ABSTRACT 
 
System designers have historically wrestled with the 
determination of what portion of their logic is appropriate 
for each type of specialized processor. The typical approach 
is an educated guess or, worse yet, an unconscious repeat of 
the design pattern from a previous generation. Multiple 
tensions drive and constrain the assignment of application 
logic to each specialized processor or GPP. To minimize 
deployment cost while achieving the required current and 
future functionality, system designers must balance the 
following factors: 
 

• Initial ramp up cost,  
• Period to amortize the initial research and 

development,  
• Cost per deployed unit,  
• Power consumption,  
• Legacy intellectual property,  
• Existing engineering skills and paradigms and 
• Performance.  

 
 The appropriate communications middleware allows 
system designers to construct flexible, maintainable systems 
that can accommodate the widest possible range of 
waveform computing loads while maintaining economic 
goals for a target platform cost profile.  
 
This paper will compare and contrast multiple approaches to 
using communications middleware on specialized devices. 
 
 

1. INTRODUCTION 
 
According to WikiPedia, middleware “consists of software 
agents acting as an intermediary between different 
application components. It is used most often to support 
complex, distributed applications. The software agents 
involved may be one or many.”[1] The rise of middleware 
for general purpose computing is well known, and has been 
extended to embedded and real-time systems. In the 
Software Defined Radio domain, appropriate middleware 

allows system designers to construct more flexible and 
maintainable systems that can accommodate the widest 
possible range of signal processing computing loads while 
maintaining economic goals for a target deployment cost 
profile. This paper compares and contrasts multiple 
approaches to extending the applicability of middleware 
concepts to specialized devices, including Digital Signal 
Processors (DSPs), Field Programmable Gate Arrays 
(FPGAs), and Application Specific Integrated Circuits 
(ASICs). 
 

2. MIDDLEWARE GOALS  
 
Our goals for the DSP, FPGA, and ASIC middleware are as 
follows. First and foremost is the necessity to achieve the 
required functionality for the system, both in terms of 
current requirements and future requirements. Second, the 
system must achieve the performance profile required for 
the target user. A frequent goal of middleware is to achieve 
portability by isolating developed application logic from the 
surrounding platform environments. Interoperability, the 
ability for two components of logic to communicate over a 
common media, is frequently useful to accommodate 
independent development of the components.  Incremental 
migration is the capability to migrate developed logic a 
piece at a time. Processing mobility means that processing 
logic can be moved from one type of specialized device to 
another. Of course, with any system it is important to 
minimize the cost of developing the system and minimize 
the time it takes to complete a correct system. Another key 
cost factor is the cost of the deployed hardware. It is 
important to minimize this deployed cost to maximize return 
on investment. 
 
 In achieving these middleware goals, there are 
important considerations to balance. System designers must 
balance the following factors: 

• Performance 
• Power consumption 
• Cost per deployed unit 
• Legacy intellectual property/hardware architectures 
• Existing engineering skills 
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• Existing engineering paradigms 
• Initial ramp up cost 
• Period to amortize the initial research and 

development 
 

3. PROCESSING DEVICE TYPES 
 
The scope of this paper addresses analyzing for types of 
processing devices: GPP, DSP, FPGA, and ASIC.  
 
 Table 1 is intended to be representative of the types of 
tradeoffs that system designers are faced with. The table 
helps exemplify that each type of device has its place in the 
system architects bag of tools, given the wide variance in 
speed, power, cost, and human factors issues. 
 

Table 1: Processing Device Tradeoffs 
Processin
g 
Device 

Speed Power Initial 
Cost 

Cost 
per 
Unit 

Design 
Investment
Longevity

Skill
Avail-
ability

GPP 1 1 1 1 +++ +++ 

DSP 1 – 1.8 0.5 2 0.8 – 
3 + + 

FPGA 3 – 20 0.25 – 2 4 2 – 4 + - 

ASIC 3 – 50 0.1 – 
0.3 20 0.1 – 

0.2 -- --- 

 
 Of course in each of these device types has a very wide 
range of processing capability. Each row in the table should 
be considered in its entirety when comparing two other 
rows in the table. For example the cost per unit of a small 
FPGA would typically be less than a large GPP.  
 
 It is the basic nature of computing resources that two 
fundamental rules can be observed. First, processors absorb 
algorithmic complexity, meaning that the more complex the 
algorithms the more processing capability is required. 
Second algorithmic complexity will typically expand to 
outstrip the available processing capability. 
 
 Over the course of time the natural solution to a given 
computing problem will have a natural migration. Initially 
an ASIC is the only option to solve some algorithms given a 
severe constraint on computing power per watt or per 
pound. 
As the speed of FPGA processors improves over time a 
FPGA may provide sufficient computing capability for an 
algorithm given the original power or weight constraint. 
Subsequently a DSP processor will provide sufficient 
computing capability for the original constraints. Eventually 

the algorithm can be processed on general purpose 
processors (GPP) within the constraints. 
 
 An example of three algorithms currently in different 
stages of this natural migration is drawn from the 
audio/video domain. A state of the art GPP will have 
sufficient processing capability to implement an audio 
music codec. However, even a low-end video codec will 
require a DSP currently. And a high-end video codec such 
as HDTV will require an FPGA or ASIC to properly 
implement the algorithm in a reasonable form factor for a 
small embedded system. 
 
 The ramp up costs for these different devices differs 
quite a bit. For the GPP, DSP, and FPGA that ramp up cost 
is simply the cost of developing the logic. However, for an 
ASIC, the ramp up cost is the cost of developing the logic 
plus approximately $10 million. 
 
 The financial benefit of a given research and 
development effort to produce a new capability is not 
limited to the revenue produced by the products that it is 
used for.  The financial benefits also include residual 
reusable intellectual property. One key benefit to a GPP is 
that the software can survive many generations of hardware. 
The result is a long period of over which the initial research 
and development expenses can be amortized. The initial 
research and development expenses for developing the 
software for a DSP are typically shorter than that for a GPP. 
There are two causes for this reduced amortization period. 
First, the architecture and capabilities of DSPs tend to 
change in a way that obsoletes previous implementations of 
an algorithm. Second, there is considerable innovation in 
DSP signal processing algorithms which render previous 
algorithms obsolete. 
 
 FPGA processors have an even shorter payback period 
for the initial research and development expenses. That 
payback is typically bound to the FPGA family. ASIC 
processors are typically redesigned each new generation. 
This is typically driven by the high ramp up costs of 
developing each new ASIC revision. 
 
 The relevant metric for measuring the size required to 
absorb a given algorithms complexity differs for each 
device type: For a GPP and a DSP, size is the object code 
and memory used during the execution of that object code. 
For a FPGA and an ASIC, size is the number of transistors 
needed to execute the algorithm in hardware. Frequently 
FPGA processors are discussed in “logical units”. 
 
 Execution time criticality has a different scale on each 
specialized device type. A performance critical embedded 
systems developer will consider each microsecond as 
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critical on a GPP processor and a DSP processor. 
Correspondingly, on an FPGA, tens of nanoseconds are 
critical. On an ASIC, ones of nanoseconds are critical. 
 
 The difficulty of developing the logic to realize a 
particular algorithm differs between the device types. GPP 
processors have a wide array of available tools and are the 
easiest to develop on. DSP processors are more constrained 
specialized environments with fewer tools. There are a 
variety of tools that a hardware engineer may use to 
implement a particular algorithm on a FPGA or ASIC 
processor. While various software conversion tools exist, 
most logic is developed using hardware description 
languages such as Verilog and VHDL. 
 
 Development resource also differs according to 
processor type. Software engineers familiar with general 
purpose processors are readily available. Those familiar 
with DSP familiarity are less common, but it is possible to 
convert a good software engineer in about six months. 
FPGA developers are less common still, and tend to be 
hardware engineers by training. Developers of ASICs are 
rare these days and are usually specially-experienced 
hardware engineers. 
 
 The programming languages available to developers, a 
key determinant of development productivity, differ 
between the processing classes. GPP developers have a 
number of languages to choose from, including: C, C++, 
Java, and Ada. DSP code is generally C, with C++ 
becoming more available. FPGA & ASIC descriptions are 
generally in Verilog or VHDL. 
 
 It is important to understand the security implications 
of specialized devices. GPP processors typically contain 
memory management units that allow for hardware enforced 
boundaries between applications. DSP processors typically 
have no memory management units and thus provide little 
boundaries to contain a erroneous or subverted applications.  
FPGA and ASIC processors provide no architecturally 
imposed separation other than the natural time and space 
separation of hardware blocks that are not directly 
connected. 
 

4. MIDDLEWARE FOR DSP, FPGA, AND ASIC 
DESIGNERS 

 
We can now elaborate the expected benefits of middleware 
for these processing device types. In addition to middleware 
used within a particular processing device type, there are 
additional benefits in middleware that bridges between 
different processing device types.  
 

 Middleware technology deals with connecting pieces of 
a system, whether software components or hardware blocks. 
Useful DSP, FPGA, and ASIC middleware technology 
would provide a component definition and container 
technology for each of these processing device types, as 
well as an inter-container communications solution. The 
middleware would allow developers to rewrite the contents 
of a container for a different processing capability without 
changing the contents of the rest of the existing container, 
i.e., the rest of the system. This processing mobility of 
moving functions independently greatly increases 
incremental system evolution capacity. For example, a 
function could be moved from an expensive ASIC to an 
FPGA as the result of increased FPGA processing power, 
without changing the interfaces between components of the 
system. Also, a function in a GPP can be moved in an 
FPGA to support higher capacity or lower power models of 
a device. Of course, there are always limits on the isolation 
that component technologies can attain; system-level 
properties such as a timing and throughput will have to be 
re-analyzed after any change.  
 
 There have recently been proposals to extend 
middleware concepts and technologies into these processing 
device types. In the remainder of this paper, we will discuss 
the merits of five candidates: 

 Custom-built  
 Transport level (HAL-C) 
 Real-time CORBA 
 High-Assurance CORBA 
 SCA-289 Component/Container Model 

 
 Table 2 shows the range of applicability of each of 
these candidate middleware technologies to the processing 
device types described above. It also contains a column for 
a hybrid type of processing device. Most of the FPGA 
vendors have products that are capable of hosting one or 
more full general purpose microprocessors in a fraction of 
the gates available. This allows immediate availability of 
some of the technologies currently available only on GPPs 
on these FPGAs. 
 
 The following subsections discuss the tradeoffs in these 
middleware technologies. 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Table 2: Applicability of Candidate Middleware Technologies 

Approach GPP DSP GPP core 
on FPGA FPGA ASIC 

Custom/ 
  Proprietary      

Transport 
  (HAL-C)      

Real-time 
  CORBA      

High 
Assurance 
  CORBA 

     

SCA-289 
  Comp/Cont 
    Model 

     

 
4.1 Custom Built Approach 
 
“Roll you own” middleware is still popular in some 
domains and, until recently, was the only viable option for 
the processing device types other than the GPP. This 
approach is applicable to all the processing device types. It 
has some decided technical advantages. Since it can be 
developed for the specific processing devices to be 
deployed, it is potentially very fast and small in footprint, 
and can be tightly focused on the requirement current for 
the project.  
 
 It suffers a number of disadvantages because of its tight 
focus, however. A specific project may not have the time or 
money to develop optimal performance and time. The 
project management must always trade off time to market 
against these other market distinguishers. The solution is 
likely to be highly specific to the hardware chosen for the 
project; it may not be reusable on the vendor’s next model 
in the same product line. The proprietary solution will also 
lock you into the supplying vendor. Because the custom 
solution is not interoperable, the ability to incrementally 
migrate parts of the solution to new technologies is 
precluded. The custom-developed infrastructure will be 
more expensive than the cost of middleware, and make it 
more difficult to control the lifecycle costs of the product. 
The questionable reusability of the custom infrastructure 
yields problems when attempts to extend it are made, and 
result in a short period over which the development 
investment is paid back. 
 
4.2 Transport Level Approach 
 

Version 3.0 of the Software Communication Architecture 
(SCA) developed under the Joint Tactical Radio System 
program includes a Hardware Abstraction Layer – 
Connectivity (HAL-C). HAL-C “specifies a hardware 
platform-independent means for communication between 
software components running on specialized hardware”[2]. 
HAL-C is exemplary of the transport-level approach; it 
specifies how the bits of a message are transported between 
components in the different processing device types.  
 
Such approaches are applicable to GPPs and to DSPs, but 
break down when FPGAs are included. (The specification 
of HAL-C for FPGAs is generally regarded as being too 
underspecified to be useful.)  
 
Transport-level approaches to middleware offer a standard 
API for inter-device communication, and provides some 
portability for both transport implementations and 
applications that use the transport.  
 
They do not provide message formatting, and thus no 
interoperability between components. They also do not 
incorporate zero-copy interfaces, which impacts their use 
for intra-device communication and adversely affects 
performance. The limitations of this approach preclude 
processing mobility. Finally, there is no specification of 
inter-component timing. 
 
4.3 Real-Time CORBA 
 
There have been proposals to extend specialized CORBA 
implementations into DSPs. The Real-Time CORBA 
specification [3] added features to the CORBA standard to 
support predictable remote invocations across a distributed 
system. The specification is supported by a number of 
implementations that also support the Minimum CORBA 
specification, a specification that subsets the features of 
CORBA to reduce complexity and footprint. It is possible to 
employ implementations that take less than 100K of object 
code for both client and server support. 
 
These implementations could be used on GPPs, on GPP 
cores within FPGAs, and in DSPs. Based on a well defined 
foundation of OMG specification, they would provide 
device location transparent logic, i.e., the logic for a 
component could be located and re-located across any of the 
supported processing device types without affecting the 
other components of the system. The OMG standards basis 
of these implementations would ease integration of the 
specialized devices with GPP-based components of the 
application. The components developed for this technology 
will contain code that is partially portable to and from a 
GPP; the interfaces to the components’ functionality will be 
portable, but the implementation logic will depend on DSP-
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specific processing libraries. The communication between 
components, since it is standards-based will be 
interoperable. 
 
The drawbacks of this approach come from trying to impose 
a GPP-developed paradigm onto a different processing 
device type. The object-oriented, multi-threaded CORBA 
paradigm is unfamiliar to most DSP engineers. DSP 
engineers are using DSPs in order to wring the best 
performance out of the hardware. Thus, DSP-traditional 
footprint and performance concerns can become a cultural 
barrier, even with a small, fast DSP ORB. Most proponents 
of this approach focus on the footprint of the ORB core and 
ignore the footprint of the code generated from the IDL. 
The code can be quite large; an experiment with the SCA 
Core Framework yielded between 30K and 250K lines of 
generated code.  
 
4.4 High-Assurance CORBA 
 
The High-Assurance CORBA effort that is ongoing in the 
OMG is being conducted by Objective Interface Systems 
and Rockwell Collins. It is an effort to define a subset of 
Minimum CORBA for use in systems that are subject to the 
requirements of safety certification, such as those that are 
certified to DO-178B [4]. One of the outcomes of this 
specification effort will be more robust, easier to use 
language mappings. There will also be enhancements to 
apply formal methods to IDL, e.g., in the form of pre-
conditions and post-conditions. Tthe users of this 
technology will be better able to build correct systems on 
first attempt. This effort should result in a specification that 
would allow implementation with further reduced footprint.  
 
Thus, this approach has the same applicability as the 
previous approach: GPPs, GPP cores on FPGAs, and DSPs. 
It also has the same advantages but sometimes to greater 
degree: ORB core written to this subset will be even smaller 
in footprint. The implementations, because of the safety 
certification considerations, will have better testability and 
robustness. This correctness in infrastructure should yield 
quicker deployment. 
 
However, in addition to the disadvantages of the previous 
approach, this approach is not yet available. The 
development of the specification is still in progress, and 
products supporting the specification will follow after the 
specification. This approach still requires the DSP engineer 
to adopt the object-oriented coding paradigm of CORBA. 
There is no specification of inter-component timing that 
allows analysis of performance and timing correctness. 
 

4.5 SCA-289 Component/Container Model 
 
Change proposal #289 [3], a candidate for SCA 3.1, 
includes a proposal for a component and container model 
for three classes of processing systems:  

• GPP Class: normal first class component 
environments or CORBA enabled environments. In 
this processing class existing component 
specifications are suitable. 

• RCC Class: Resource-Constrained C language 
environments. When C is available, but CORBA is 
not suitable. For example, DSPs or 
Microcontrollers or RISC cores with limited 
memory 

• RPL Class: RTL-Programmable-Logic 
environments When an RTL language is available 
(VHDL/Verilog), but C is not available or not 
suitable. This includes  FPGAs and ASICs. 

This proposal is comprehensive and includes all of the 
previously enumerated processing device types. It provides 
both inter-container and inter-device interface definition, 
portability of components at source level, replace-ability 
across technologies. It addresses the separation of concerns 
between platform providers and component authors, allows 
resource efficiency and performance, and has minimal 
impact on existing component models. 
 
 The primary shortcoming of this proposal is that it does 
not address a specification of inter-component timing. 
 

CONCLUSION 
 
A summary of this analysis of tradeoffs along with some 
quantization of the expected overheads is offered in Table 3. 
Each of the approaches above are represented by a row in 
the table. The “Portable Logic” column shows that none of 
these approaches offers portability across the different 
processing device types: FPGA “code” will be different 
than DSP code will be different than GPP code. The second 
column, “Portable Logic Shell” indicates whether the 
definition of the interfaces is portable across the different 
processing device types. OMG’s IDL is used as the 
specification of inter-component interfaces in the last three 
approaches. The column labeled “Portable Inter-logic 
Comm” reveals whether communication paths between 
different components of the system are portable, i.e., 
whether the migration of a component from one processing 
device type to another (e.g., GPP to DSP) would be 
accommodated by the infrastructure. The last three columns 
indicate the expected overhead of the middleware 
infrastructure in terms of FPGA slice or Logic Elements, 
memory footprint, and clock cycles, respectively. 
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Table 3: Evaluation of Candidate Middleware Technologies 

Approach Portabl
e Logic 

Portable
Logic 
Shell 

Portable 
Inter-logic
Comm 

Middleware
FPGA 
Footprint 
(Slices/LEs) 

Middleware
Memory 
Footprint 
(kilobytes) 

Execution 
Overhead 
(kilocycles) 

Custom/ 
Proprietary    varies Varies varies 

Transport 
  (HAL-C)     0.2 – 5 

(+ xport) 0.1 – 2 

Real-time 
  CORBA     

45 – 100 
Clnt + Svr
(+ xport) 

1.8 – 20 

High 
  Assurance 
    CORBA  

    15 – 35 
(+ xport) 0.9 – 4 

SCA-289 
Comp/Cont 
Approach 

   80 – 120 
20 – 35 

(+ xport) 
0.3/cpnt 

0.1 – 3 
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Middleware for 
DSPs, FPGAs, & ASICsOverview

The appropriate middleware allows system designers
to construct flexible, maintainable systems
that can accommodate the widest possible range of signal processing 
computing loads
while maintaining economic goals for a target deployment cost profile

This presentation will compare and contrast multiple approaches to 
using middleware on specialized devices (DSPs, FPGAs and ASICs)
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Middleware for 
DSPs, FPGAs, & ASICsGoals for DSP, FPGA, and ASIC 

Middleware

Achieve the required functionality
Current requirements
Future requirements

Achieve the required performance
Portability
Interoperability
Incremental migration
Processing mobility
Minimize development cost and time-to-completion
Maximize return on investment
Minimize deployment cost
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Middleware for 
DSPs, FPGAs, & ASICsConsiderations While 

Achieving Middleware Goals

System designers must balance the following factors
Performance
Power consumption
Cost per deployed unit
Legacy intellectual property/hardware architectures
Existing engineering skills
Existing engineering paradigms
Initial ramp up cost
Period to amortize the initial
research and development
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Middleware for 
DSPs, FPGAs, & ASICsComparing the Technologies

Processing
Device Speed Power Initial 

Cost
Cost per 

Unit

1 1

0.8 – 3

2 – 4

0.1 – 0.2

2

FPGA 3 – 20 0.25 – 2 4 + -

20

Design
Investment
Longevity

Skill
Availability

GPP 1 1 +++ +++

DSP 1 – 1.8 0.5 + +

ASIC 3 – 50 0.1 – 0.3 -- ---
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Middleware for 
DSPs, FPGAs, & ASICsNature of Computing 

Resources

Two rules
Processors absorb algorithmic complexity
Algorithmic complexity expands to outstrip processing capability

Solutions to computing problems have natural migration
ASIC the only option for maximum compute power per watt or lb
FPGA when solution allows more watts or lbs
DSP when solution can exist on specialized signal processing hw
GPP when solution can exist on general purpose hw

Examples of solutions currently constrained by computing resource
GPP Ok audio music codec
DSP Ok low end video codec
FPGA/ASIC Ok high-end video codec (HDTV)
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Middleware for 
DSPs, FPGAs, & ASICsComparisons

Ramp up cost
GPP: Logic development + $0
GPP: Logic development + $0
FPGA: Logic development + $0
ASIC: Logic development + $10,000,000

Period to amortize the initial research and development (longevity of 
IPR assets)

GPP: long; can survive many generations of hardware
DSP: medium (bound to DSP family)
FPGA: short-to-medium (bound to FPGA family)
ASIC: short, typically bound to the lifetime of that chip run

Size
GPP & DSP: object code and memory use size
FGPA: number of logical units
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Middleware for 
DSPs, FPGAs, & ASICsComparisons (cont’d)

Performance
GPP & DSP: 1’s of microseconds critical
FPGA: 10’s of nanoseconds critical
ASIC: 1’s of nanoseconds critical

Logic development
GPP: easy to develop, lots of tools
DSP: more constrained environment, fewer tools
FPGA & ASIC: some swr conversion tools, mostly VHDL & Verilog

Engineering resources
GPP: software engineers widely available
DSP: less common, but can convert a good swr engineer in six months
FPGA: less common, hardware engineers by education
ASIC: rare these days, special experience hardware engineers

Languages
GPP: many, C, C++, Java, Ada, …
DSP: C, C++
FPGA & ASIC: Verilog & VHDL

Partitioning Support
GPP: MMUs provide partitioning and separation
DSP: typically no partitioning or separation (there are exceptions)
FPGA & ASIC

no architecturally imposed separation
hw blocks can separate by design if carefully constructed
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Middleware for 
DSPs, FPGAs, & ASICsMiddleware Benefits

for DSP and FPGA Designers

Inter-container communication 
solution allows:

Rewrite a container for a different 
processing capability
Without changing the rest of the 
existing containers

Incremental system evolution –
Processing Mobility

Each container can 
migrate/integrate independent of 
other containers
Still need system-level timing 
analysis

Function B

GPP → FPGA

Function C

FPGA → DSP

Function A

GPP → DSP

Processing Mobility:
Moving Functions Independently
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Middleware for 
DSPs, FPGAs, & ASICsCatalog of Approaches

Custom
Transport level (HAL-C)
Real-time CORBA
High-Assurance CORBA
SCA-289 Component/Container Model
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Middleware for 
DSPs, FPGAs, & ASICsApplicability of Approaches

Approach GPP DSP GPP core
on FPGA FPGA ASIC

Custom/
Proprietary

Real-time
CORBA

Transport
(HAL-C)

High Assurance
CORBA

SCA-289
Comp/Cont
Model
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Middleware for 
DSPs, FPGAs, & ASICsCustom Built Approach

Applicable anywhere
Advantages

Potentially fast
Potentially small
Tightly focused on current requirements

Disadvantages
May not have time or $ to develop optimal performance
May not have time or $ to develop optimal size
Typically hardware specific—DMS issues over system life
Proprietary solution—vendor lock-in, also no interfaces to standardize
Not interoperable, can’t incrementally migrate
More expensive to develop
More difficult to control lifecycle costs
Questionable reusability

Problem to extend
Short payback period
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Middleware for 
DSPs, FPGAs, & ASICsTransport Level Approach

Characteristics
HAL-C in SCA 3.0

Scope
GPP
DSP

Advantages
Standard API for inter-device communication
Provides some portability for:

Transport implementations
Applications that use the transport

Disadvantages
Doesn’t provide messaging format

No interoperability
Not zero-copy

Prevents use for intra-device communication
Not optimal

Doesn’t allow for processing mobility
No specification of inter-component timing
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Middleware for 
DSPs, FPGAs, & ASICsSCA-289 Component/Container 

Model

Characteristics
SCA change proposal #289
Candidate for SCA 3.1

Scope
GPP and GPP core on FPGA
DSP
FPGA
ASIC

Advantages
Provides both inter-container and inter-device interface definition
Portability of components at source level
Replace-ability across technologies
Separation of concerns between platform provider and component author
Resource efficiency and performance
Minimal impact/changes required on existing component models

Disadvantages
No specification of inter-component timing
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Middleware for 
DSPs, FPGAs, & ASICsReal-time CORBA

Characteristics
Specialized ORBs for DSPs
Much less than 100K object code for both client and server support

Scope
GPP and GPP core in FPGA
DSP

Advantages
Well defined foundation, easy to integrate with GPP, OMG standard
Device-location-transparent logic
Code partially portable to/from GPP

Interfaces to functionality are portable
Implementation logic will depend on DSP-specific signal processing libs

Interoperable communications
Disadvantages

Unfamiliar paradigm to most DSP engineers
Traditional footprint and performance concerns can become a cultural barrier
(despite small, fast DSP ORBs!)
ORBs require some knowledge of object-oriented design
Generated code from IDL can be quite large (eg. Core Framework IDL)
No specification of inter-component timing
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Middleware for 
DSPs, FPGAs, & ASICsHigh Assurance CORBA

Characteristics
Still being defined by OMG (Objective Interface and Rockwell-Collins)
A subset of Minimum CORBA
Designed to support safety certification efforts (DO-178B)
More robust mappings to languages
Formal methods enhancements to IDL (better correctness)

Scope
GPP and GPP core in FPGA
DSP

Advantages
Same as Real-time CORBA plus:

Much smaller ORBs
Better testability and robustness
Correctness infrastructure makes for quicker deployment

Disadvantages
Specification in progress
Still requires knowledge of O-O
No specification of inter-component timing
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Middleware for 
DSPs, FPGAs, & ASICsMiddleware Characteristics

Approach Portable 
Logic

Portable
Logic
Shell

Portable
Inter-
logic

Comm

Middleware
FPGA

Footprint
(Slices/LEs)

varies

80 – 120

Real-time
CORBA

45 – 100
Clnt + Svr
(+ xport)

1.8 – 20

Middleware
Memory
Footprint

(kilobytes)

Execution
Overhead

(kilocycles)

Custom/
Proprietary varies varies

Transport
(HAL-C)

0.2 – 5
(+ xport) 0.1 – 2

High
Assurance

CORBA 

15 – 35
(+ xport) 0.9 – 4

SCA-289
Comp/Cont

Approach

20 – 35
(+ xport)
0.3/cpnt

0.1 – 3
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Backup Slides

More information on
SCA-289 Component/Container Model
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Middleware for 
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Concepts

Component:
unit of deployable functionality
independently defined unit of functionality of an application

Application:
One or more components deployed as a unit to perform interesting
work for the user/client
A configured and interconnected set of one or more components 

Container:
the immediate runtime environment in which a component instance 
executes
the provider of any local runtime services or APIs to components
the local invoker/controller/manager of the component

Class (a.k.a. which Component Implementation Framework):
A particular language/API model to which components are written
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Middleware for 
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Classes

Different types of processors require different ways of writing 
components.

No “one language/API fits all”, especially when performance sensitive
GPP Class: normal first class component environments

CORBA enabled environments
Existing component specifications are suitable

RCC Class: Resource-Constrained C language environments
When C is available
When CORBA is not suitable
E.g. DSPs or Microcontrollers or RISC cores with limited memory

RPL Class: RTL-Programmable-Logic environments
When RTL language is available (VHDL/Verilog)
When C is not available or not suitable
E.g. FPGAs and ASICs
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Middleware for 
DSPs, FPGAs, & ASICsSCA-289 Component/Container

System

Distributed/Embedded System/Platform

Processor X

ContainerA

ContainerB

Processor  Y

ContainerC

Component
instance6

Component
instance5

Component
instance4

Component
instance2

Component
instance1

Component
instance3
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Middleware for 
DSPs, FPGAs, & ASICsSimple FM3TR Receiver

Tuner
RF to IF

A/D

Digital
Down-

converter

MSK
Demodulator

FM3TR
Decoder

CVSD
Decoder

Audio
Output

Containers talk to containers.
Important interface for 
interoperability/plug&play
of containers (e.g. boards).  
Protocols/networks/busses.

RPL component Soft components

Component implementations in Containers

FPGA
Container

PowerPC+CORBA+POSIX
Container

Communication between components, conveyed by their containers

Components talk to their containers.
Important interface for portability of
components.  APIs used by 
component authors.

… …
Digital
Down-

converter

MSK
Demodulator

FM3TR
Decoder
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Middleware for 
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Portability Goals

A component implementation can move to same class of container 
(“like for like”), recompiling source

RPL component written in VHDL ports between FPGA families or to an 
ASIC.

Use of platform/processor/container-specific features impedes 
portability.
Portable “reference implementations” can be tweaked to use special 
features (e.g. Viterbi acccelerator on DSP)
RCC components easily port and wrap into GPP environments.
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Middleware for 
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Replace-ability Goal

Enable Changes in technology/processor class with no impact on the 
rest of the application (other components)

Change a filter from FPGA to (new faster) DSP
Change a modem from DSP to (new faster) GPP
Increase data rate requiring switch to (new faster) FPGA.

Enable simple addition of component implementations to existing 
components

Both CCM & SCA support multiple implementations in a component 
package.
Allow adding FPGA implementation to component with GPP 
implementation without impacting application

Implies opaque interoperability between all classes of component
implementations
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Middleware for 
DSPs, FPGAs, & ASICsResource Efficiency and 

Performance Goals

Minimize “tax” for portability
Minimize “tax” for interoperability
Enable appropriately small footprint

Satisfy the fanatics
Enable full performance usage of inter-processor hardware 
interconnections

busses, networks, fabrics, NICs
Enable full performance for collocated component instances
Enable statically pre-combinations of component implementations
Enable zero copy operation

To inter-processor interconnects
Between collocated components
Between input and output of a component
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Middleware for 
DSPs, FPGAs, & ASICsSCA-289 Component/Container

Component Interfaces

Management interfaces
Generic for deployment, configuration, introspection, lifecycle
SCA has CF::Resource as exposed external interface

No container/local interface
CCM has:

CCMObject as exposed external interface
EnterpriseComponent and SessionComponent as local container-to-
component base interface
CCMContext and SessionContext as local component-to-container 
interface

Inter-component interfaces
IDL-defined user and provider ports
CCM specializes event ports and stream ports

Local O/S APIs
CCM says nothing
SCA defines POSIX profile
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Middleware for 
DSPs, FPGAs, & ASICsRPL:  RTL-Programmable Logic 

environments

All interfaces are OCP
An open standard for how “IP Cores” are connected.
Independent of VHDL vs. Verilog
A range of performance options

Management interface
Simplified from (CCM or SCA) component model
Initialize/start/stop/release/test on one OCP “thread”
Configure read/write on second OCP “thread”

Intercomponent interface
Burst read/write transactions on OCP-port

One OCP port per IDL port per direction
Implementation chooses master or slave role
Implementation chooses FIFO or random access style

Local interfaces
Clocks and local memory access (several styles)
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