
786

PRACTICAL EXPERIENCES USING THE OMG’S EXTENSIBLE TRANSPORT
FRAMEWORK (ETF) UNDER A REAL-TIME CORBA ORB TO IMPLEMENT

QOS SENSITIVE CUSTOM TRANSPORTS FOR SDR.

 A. Foster S. Aslam-Mir
 PrismTech PrismTech
 Gateshead UK San Diego, USA
 Andrew.Foster@prismtech.com sam@prismtech.com

ABSTRACT
SDR synthesis using current generation middleware
technologies warrants the use of optimum middleware and
general software architectures. Key among these is the use
of a domain centric yet canonical architecture such as
SCA and the use of a open standards in its
implementation. The OMG furnishes not only such open
standards, but also provides meaningful guidance as to
how to efficiently and effectively utilize those standards.
One such OMG standard is the Extensible Transport
Framework – viz. ETF. Software Defined Radio (SDR)
application developers are increasingly exploiting the
performance and power potential of different
combinations of modern Digital Signal Processor (DSP)
devices, FPGAs and general purpose processors (GPP). In
an effort to minimize the mips consumption the use of
efficient, componentized an re-usable interconnect
software abstractions is paramount. Radio hardware
implemented with heterogeneous s/w and h/w physical
topologies with different permutations, combinations and
numbers of such processing elements in them today
provide further motivation for the use of such a transport
interconnect standard. This paper talks about the practical
experiences of implementing such a standards based
transport interconnect abstraction in the context of
specialized support for synthesizing SDR SCA radios
with the aim of maximizing waveform portability.

1. MOTIVATION
In 1998 the members of the OMGs real-time special
interest group proposed to the OMG the notion of using
custom specialized transport technologies as the transport
media underneath a CORBA ORB. This movement took
several steps to craft a proposal that would be least
controversial to vendors in the OMG who had existing
products that did not possess such APIs that were publicly
available. The objective of the specification was to
establish a framework for plugging in transports in an
ORB with sufficient predictability in order to support
DRE systems, yet be open enough that anyone could write
a custom transport for the ORB much like people could
write portable interceptors for the ORBs of the time. The
reason to do this was to ensure that the ORBs Generic
Inter ORB Protocol (GIOP) could be remapped into some

transport technology other than the standard TCP over
Ethernet of the time. IIOP (viz. GIOP over TCP/IP)
enables reliable remote messaging, however TCP/IP
introduces unpredictable latencies unsuitable for many
real-time systems, and so the need to plug in lower
latency, much more highly predictable transports was seen
as a key element in enabling implementations of real-time
CORBA ORB applications.
In the context of SDR this issue is even more sensitive
owing to the fact that there is currently much debate
concerning the use of hardware abstraction layers on
platforms in the radio currently perceived to be non-
CORBA stations. If these processors or stations are
converted to CORBA elements the use of ETF based s/w
interconnects over heterogeneous hardware interconnects
harmonizes and normalizes the radio platforms
architecture internally significantly and enables more plug
and plays and faster time to market of any such products.

2. SCOPE OF SPECIFICATION
In scoping out the initial specification an RFP was issued
for the specification in which a number of assumptions
were made when the RFP was drafted. These included the
requirement there was no need to provide support for
alternative messaging protocols other than GIOP with
CDR encoding. The RFP was however explicit in
insisting that there should be a clear separation between
the messaging/protocol layers and the transport layers.
The intent was that transport plug-in authors could
implement ETF interfaces independent of ORB internals,
so in addition to the ORB vendors this would facilitate the
development of ETF compliant transport plug-ins from
third parties including ORB end users, or commercial ETF
plug-in suppliers. The following key requirements were
also to be addressed:
(1) Provide support for architecture so that a specific
transport plug-in could be developed for two different
ORBs. Once the plug-in was applied to each ORBs, the
application interoperate across the transport successfully.
(2) How exactly the ORB and plug-in interact with each
other should be clearly specified and how an ORB
actually selects which transport to use should also be
specified.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

(3) The proposals must support an IOR architecture for
non TCP transports such that it is possible for a transport
author to create a transport plug-in for two different
ORBs that enable application interoperability across the
transport via transport specific IOR profiles using clearly
identified interfaces and interaction semantics between the
ORB and the plug-in.
The work of the submitters came together in 2002 and
resulted in the document Extensible Transport Framework
Specification (document reference ptc/04-03-03) which is
an OMG adopted specification. The submitting companies
included contributions from Vertel Corporation, Borland
Software Corp., Objective Interface Systems, Inc. and
Highlander Engineering. Today the specification is
presently undergoing the finalization process at the OMG.

3. THE ETF SPECIFICATION
The ETF specification defines a number of mandatory as
well as optional interfaces that a plug-in must implement
or its author provide. As defined in the specification
compliant plug-in implements the following interfaces:

 ETF::Profile

 ETF::Connection

 ETF::Listener

 ETF::Factories

 ETF::Handle

Optional interfaces that the plug-in may choose to
implement are those that may be useful if a transport with
zero-copy semantics is available and so to conform to the
zero copy optional compliance point the interfaces are:

 ETF::ConnectionZeroCopy

 ETF::BufferList

In the next section we shall present the rationale and
purpose of each of these interfaces. It is noteworthy that
the specification also states that an ETF compliant ORB
should implement the ETF::Handle interface – making
this interface a mandatory compliance point. This
compliance point however we believe is somewhat
controversial as will be discussed later in this paper.

3.1 ETF::Factories
This is a ‘local’ interface, which means that in CORBA
terms this interface is process local, and cannot have an
object reference exported to other objects outside of its
local process. It is for ann intensive purposes a local
object. This interface provides the ‘entry point’ for ORB
to use the transport. It is plugged into the ORB via a
proprietary mechanism identified by IOP::ProfileId (IIOP
etc). Indeed the shortcoming of this interface is that fact
that although this is used by the ORB to create instances
of ETF interfaces, it does not specify how this is plugged
into the ORB, this is an implementation detail left to the
designer. The methods in the interface are those detailed
below which are used to create endpoint listeners,

connections, and to demarshall (or extract) profiles
characterising specific transports. The methods are:

 create_listener(…): ETF::Listener
 create_connection(…): ETF::Connection
 demarshal_profile(…)

On the server side factories is used to create a Listener
objects, whilst on the client side they are used to create
connection object and to de-marshal profiles. Usually a
factory object is required per protocol, identified by
IOP::ProfileId e.g.

 TAG_INTERNET_IOP=0 or
 TAG_MULTIPLE_COMPONENTS=1

3.2 ETF::Listener
The Listener interface is again a local interface that
handles request for incoming connections from clients and
is used to encapsulate the connection establishment
protocol. It acts as an ETF connection factory in order to
create server side connection objects to which a client will
actually connects to. It represents the endpoint which
clients contact when connecting an associated
ETF::Profile endpoint (its transport address). This
interface encapsulates connection establishment protocol.
Its functionality may be provided by the underlying
transport (TCP) or may otherwise be implemented in
plug-in code (like for instance in the shared memory
transport implementation we present later in this paper).
The ORB may use blocking or non-blocking style of call.
The ORB thread calls use a blocking accept()
operation. It is usual for the ETF thread to make calls to
the ORB ORB via the ETF::Handle callback. In our
reference implementation we use the accept() method
which is called by the ORB and blocks until a connection
request is detected, at which point a new Connection
object is returned, this is the actual endpoint to which the
client connects.

3.3 ETF::Connection
This too is a local interface. It represents a simple
transport specific encapsulation of a connection used to
read and write byte streams. If the connection semantics
are not provided by the transport then they must be
implemented in the plug-in, this may include for example
ordering, re-tries etc. Client and server process ORBs
write and read data to and from transport via a Connection
object. The interface also ecapsulates semantics of the
actual connection protocol itself also. It may be a reliable,
ordered, 1-to-1, bi-directional byte stream. It is an
overloaded interface for client and server side. It is usual
for the initiation to come from the client-side. The ORB
usually creates a connection using factories. It then calls
connect() to establish connections. The server-side
listener creates a new connection object in response to
incoming request from client and connects the two
connection objects and the endpoints. The client and

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

server then may read and or write over this new
connection.

3.4 ETF::Profile
This is another local interface, which encapsulates the
conversion and matching functions used to store transport
specific profile data in an IOR. It is is used to hold
transport specific address information. This is then used to
locate a “matching” profile read from an IOR. The profile
holds data related to an address for a transport endpoint.
This interface can be used to locate a “matching profile”,
used on the client side to check whether it is possible to
create and use connections supporting a particular
protocol/transport or are available, typically when using
shared connections. The marshal() function in this
interface creates an ETF::AddressProfile object
which packages all profile address data into an octet
sequence per profile.

3.5 ETF::Handle
ETF handle is a local interface which is implemented by
the ORB. It is only available on the server side and is used
by the Listener interface to asynchronously inform the
ORB about incoming connection requests. It may also be
used to asynchronously inform the ORB about the
availability of incoming data on existing connections. The
sequence of operation is that the ORB registers a Handle
with ETF. ETF then makes up-calls to Handle when:

(1) A new connection has been established or
(2) Data has arrived on an existing connection,

The ORB thus avoids some blocking calls to ETF. The
ORB must still however make some blocking calls e.g.
connect() and write() still have to be blocking calls

3.6 ETF::ConnectionZeroCopy : Connection
This interface is an optional compliance point provided to
support “zero copy” data transfer in the transport where
such semantics may be furnished. It requires intelligent
buffer allocation to be realised by the underlying transport
to be effective, otherwise the extra BufferList interface
implementation management becomes extra overhead.
The interface provides operations to write and read zero
copy compatible buffers to and from the transport to the
ORB and back – its methods are

 void write_zc(inout BufferList . . .)

 void read_zc(inout BufferList . . .)

ETF::BufferList is a local interface that provides
operations that manage the allocation of a memory buffer
compatible with the zero copy transport mechanism and
used to marshal GIOP protocol into and out of.

3.7 ETF Connection establishment.

Figure 1 illustrates how a client is expected to establish a
connection with a server and issue subsequent requests
using the specified ETF call sequence.

We now describe the sequence used for connection
establishment. The ORB issues a create_listener call on
the protocol specific factory object passing parameters
RTCORBA::ProtocolProperties, and stacksize,
and a RTCORBA::Priority. The properties are provided
to allow the configuration of protocol specific
configurable parameters. Specific protocols have their
own protocol configuration interfaces that inherit from the
RTCORBA::ProtocolProperties interface. If in this
process a nil reference for either ProtocolProperties
is obtained this indicates that the default configuration for
that protocol should be used. In general each protocol will
have an implementation specific default configuration,
that may be overridden by applying the
ServerProtocolPolicy at ORB scope, for example for
TCP there is –

local interface TCPProtocolProperties :

 ProtocolProperties

{

 attribute long send_buffer_size;

 ...

};

The ORB then calls listen(); this call informs the
Listener that the ORB is ready to receive incoming
connection requests. At this point the Listener will create
a Profile object containing its endpoint address
information. An attribute on the Listener gives the ORB
access to it. The ORB then either calls
 set_handle(in Handle ..)
which installs a handle with the Listener so that the ORB
can receive a call-back when a new connection request is
initiated or alternatively the ORB calls accept() in
which case the call blocks until a client connects to the
server. Then a new connection instance is returned. The

Figure 1:
Illustrating Client – Server interaction where both side ORB
utilizes an ETF plug-in. Note the use of the Listener and
connections objects and the use of IOR Tagged Profiles to
exchange specific transport conduit stacks.

12 3 4

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

ORB now marshals the endpoint information contained in
the Listener’s profile object along with additional protocol
specific information not supplied by the ETF into a
complete TaggedProfile and publishes the server IOR.
On the client side the ORB calls on to the client side
factories object in order to perform the converse set of
operations, i.e. de-marshal the IOR profile in order to
obtain the end point addressing information. The client
side ORB then calls the create_connection operation
on the factory object to instantiate a client side connection
object and create the actual underlying socket; once again
an RTCORBA::ProtocolProperties instance is passed
to the operation so as to configure any transport specific
properties on the connection. The client side ORB then
calls connect on the connection object, passing the
server endpoint address information in a profile object.
Usually this connect call is also made say on the
underlying socket (for the case of TCP) and will be called
using the host and port information contained in the
Profile object. On the server side the Listener socket
listening for the incoming request will detect the
connection request and create a new connection object
which will actually then be used for the subsequent client
server communications. The client side ORB can then call
write on the connection object passing a CDR encoded
byte stream to the connection which in term will be
placed on the wire and delivered to the server end of the
connection. The ORB on the server side can then issue a
read on the server side connection object in order to
return the marshalled byte stream for the request. The
ORB then handles the de-marshalling and local up-call
dispatch of the request to target object implementations.

4. EXAMPLE IMPLEMENTATIONS

4.1 TCP Socket Implementation
Figure 2 depicts an example reference implementation of
using ETF interfaces implementing a TCP transport plug-
in. The purpose is to provide support for Transports other
than TCP/IP, but using TCP as an example of how to
write a transport plug-in.
The plug-in for a TCP/IP transport is very straight
forward and fits into the ETF pattern interfaces nicely.
The Listener object simply encapsulates a listening
socket, and the the client and server connection objects
encapsulate connected sockets. Timeouts on a client
connection’s read, write and connect operations are
implemented by placing the socket into non blocking
mode, and then issuing the socket, read, write or
connect calls and then issuing either the standard BSD
socket select or poll calls with timeout values set for the
calls. The select or poll calls will then wait for the read,
write or connect socket event or timeout to complete. It
was interesting to note that the ETF specification was

silent on the issue of whether or note timeout values are
either relative or absolute. Absolute timeouts would be
simpler to implement, between ORB and plug-in. Figure 2
illustrates in summary that ETF::Listener encapsulates
a listening socket, ETF::Connection encapsulates a
connected socket and ETF::Profile encapsulates an
endpoint specified by host, and port. This model hides all
details of sockets API.

4.2 Shared Memory Transport Implementation
The second transport plug-in example we demonstrate is
commonly used in SCA and non SCA SDRs today, i.e. the
use of shared memory for intra-processor calls. The model
ew demstrate is based upon implementing plug-ins for the
two shared memory style transports that we’ve
implemented. These transport plug-ins support both a
standards based approach using the POSIX APIs and also
using System V IPC shared memory APIs. In this example
the Listener creates the shared memory segment via a set
of RTCORBA::ProtocolProperties as before.
However, it also creates a Listener control block within
the shared memory segment. This listener control block
contains information including the client and server send,
receive semaphores for the POSIX shared memory
transport, or the System V message queue connect and
transmit Ids. Other information contained in the block
includes the size of the data segment, the size of the data
written to the segment and the read offset index and so on.
For System V shared memory transport the Profile object
addressing scheme is specialized now. It gets converted
into a tagged profile and published in an IOR in the form
Shared Memory Segment ID and host; in this case the host
is a string and can either be of the form host IP address or
name. For the POSIX shared memory transport object
addressing scheme we use the form Shared Memory
Segment Name and host. In this scenario when a
connection request is made by a client the Listener creates
a Connection object which in the case of the POSIX
shared memory plug-in is allocated in its own connection
control block, and has its own set of send and receive
semaphores for request-reply co-ordination and

Connection S ConnectionS

ListenerS

Figure 2:
Diagrammatic depiction of implementing a conventional
TCP-IP transport using BSD like socket APIs through the
ETF transport framework for a real-time CORBA ORB.
(globes with S depict sockets)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

handshaking. The System V shared memory transport on
the other hand doesn’t need to create a connection control
block per connection object as each connection object can
share and use the message queue setup in the Listener
control block. Figure 3 illustrates in summary that
ETF::Listener creates and manages the shared memory
segment, ETF::Listener allocates a control block at
start, ETF::Profile encapsulates an endpoint specified
by a file descriptor filename and each ETF::Connection
get allocated its own control block each. The remainder of
shared memory segments is used for transfer buffer, and is
shared by the connections. The request response cycle is
coordinated and synchronized via either POSIX
semaphores, or System V message queues depending on
choice of underlying implementation.

5. BENEFITS OF SPECIFICATION

As a result of this work it has been possible to produce a
single unified transport plug-in API underneath our RTE
ORBs (e*ORB SDR C and C++ Editions). In fact it will
be possible to use the same plug-ins under our ADA
ORBs also. All ORBs share the same pluggable transport
layer code implemented once in C. This has meant that we
write a transport plug-in once in C and plug into either
ORB without excessive porting effort. The has maximised
re-use and reduced the amount of test code required. In
addition C++ based transport plug-ins developed can be
also be appled to the other ORBs, note however that in the
case of the C ORB there is no satisfactory approach to
handle any exceptions thrown by transport written in C++.
The new ETF transport plug-in interfaces are a clear
improvement over the original proprietary interfaces that
were always vendor specific as there was not standard
before. There is a simpler abstraction, which is are easier
to document and explain to end users wishing to develop
their own.

6. DISCUSSION
Implementing any new specification highlight areas that
need judicious interpretation to achieve a solution where
the specification falls short. As a result there are always
issues with any implementation and interpretation of the

specification. We now provide some discussion on some
of these.
(1) The separation between the message/protocol and
transport layers has not been made clean enough. For
example, the Profile interface contains a GIOP version
attribute, the transport really shouldn’t know anything
about message formats as this is inferring GIOP which
shouldn’t have to be the case. If anything a Protocol
version attribute such as IIOP:Version would have
made more sense.
(2) The Profile’s marshal function assumes CDR encoding
and doesn’t have sufficient information to marshal a
complete Tagged Profile.
(3) The specification states "a Factories object needs to
have an identifier so that the ORB can select the correct
transport type"– but in fact it does not. An
ETF::Factories object is identified by an
IOP::ProfileId which in fact is much more than
"transport type“. An IOP::ProfileId identifies a
protocol, which implies a specific message layer and
tagged profile encoding association.
(4) At present it is not obvious if one can use a transport
plug-in with different message layers to form different
protocols.
(5) The specification in its current state with the defined
interfaces in their unmodified state are problemsatic and
need workarounds. In particular the marshalling and un-
marshalling functions fall short of the mark since the ETF
plug-in has no way of adding tagged components to a
tagged profile, and no way of reading them when de-
marshalling a tagged profile. This is a key issue logged in
the OMGs finalization task force (FTF) is Issue 7594
which states that ETF::Profile::marshal() and
ETF::Factories::demarshal_profile() are not
workable. This is owing to the fact that the ETF plug-in
has no access to IOP::TaggedComponents in the full
IOP::TaggedProfile. Therefore when marshalling a
tagged profile, the ETF plug-in may want to add tagged
components; conversely when un-marshalling it may want
to read them. When marshaling a full tagged profile,the
ETF marshals part of it (ETF::AddressProfile), and
then the ORB marshals the remainder viz.
IOP::ObjectKey and IOP::TaggedComponents.
For IIOP, at least, these two parts must form a single
encapsulation. Oddly the responsibility for encoding and
decoding a full tagged profile is split between the ORB
and ETF. The result is that neither party has access to all
the information necessary.
The solution to this problem is to give the responsibility
for marshalling and un-marshalling a complete tagged
profile to the ETF plug-in, however there is presently no
standard representation for a tagged profile, so these
interfaces will have to be implemented on a per ORB

Figure 3:
Diagrammatic depiction of implementing a shared memory
transport using shared memory segments again through the ETF
transport framework for a real-time CORBA ORB. (Green block
depicts shared memory segment)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

basis, as each ORB has its own internal way of
representing a tagged profile.
PrismTech alternative approach has been to create an
extra ORB specific protocol abstraction which is
responsible for marshalling and un-marshalling protocol
specific tagged profiles. The ETF in this case becomes
only concerned with transport specifics and endpoint
addressing then
(6) If the Factories interface is extended to support
transport identification and versioning, (transport type,
version, vendor tag), then it would be possible to have
different implementations of the same transport supported
for a single protocol. This would enable support for
different message formats e.g. ProfileId = IIOP,
transport type = TCP/IP , Vendor Tag = Berkley sockets
or BF3Net
(7) The ETF::Handle interface serves two distinct roles:

(a) connection establishment
(b) message arrival

It would have been better to have two separate handle
interfaces to encapsulate the different behaviour, this
would enable call-backs and blocking for different areas
e.g. call-backs for connection establishment and blocking
calls for data transfer
(8) The Handle interface as specified is always registered
with the Listener and is used for two different purposes ,
either connection establishment or signalling the ORB that
data has arrived on a connection. It would have been
better if this behaviour had been split between two
different types of handles, one of which could could have
been installed with a Listener simply for connection
establishment, the another handle type could be installed
with each specific connection in order to support a
reactive model. The current model is one where a Listener
with a single handle can support a reactive style of request
de-multiplexing.
(9) A handle object can only be installed on the server
side. The specification doesn’t support the symmetrical
installation of a handle on the client side in order to
support for example the de-multiplexing of replies from a
shared connection or bi-directional GIOP. This behaviour
can still be achieved , however the client side ORB must
use a dedicated IO thread to do either the blocking or
polling calls on the connection. At present since a handle
cannot be installed on the client side, this implicitly forces
the ORB designer or plug-in implementer wishing to
implement Bi-directional GIOP to use private
connections. The penalty for this is of course the use of
many more threads on the client side.

7. CONCLUSIONS
The ETF specification provides a standard set of
interfaces through which a transport other than TCP/IP
could be plugged into the ORB. It is felt at present given
relevant implementation experience that the current

interfaces in their unmodified state are insufficient to
openly and portably implement a transport plug-in. With
no standard representation of a Tagged Profile ORB
specific implementation is required to support marshalling
and un-marshalling of Tagged Profiles.
On a more positive note, it is felt that the ETF style of
interfaces have certainly provided PrismTech as a vendor
with benefits. This work has made it possible to write a
transport plug-in once and plug it into both the C and C++
implementations of our SCA-CORBA SDR embedded
operating environment. It is also important we believe for
any shipping pluggable transport SDK to provide source
and examples required to implement the ORB specific
protocol mentioned earlier.
Some of the most critical shortcomings are that
(1) The specification is at present more useful to an ORB

vendor, or an end user, rather than a third party
transport developer.

(2) At present a transport plug-in cannot be written once
and plugged into two ORBs from different vendors.

(3) TheSeparation between message, protocol and
transport layers is not enforced cleanly enough.

Some of these issues have been raised in the discussion
part of this paper and should be addressed before the final
specification is adopted. Finally, perhaps the most
important issues in SCA development today revolve
around standards compliance in order to achieve true
waveform portability across all elements of the radio as
far as possible. The work of this paper goes towards
helping achieve that goal with the aim of achieving a
simplification and componentization of the underlying
transport connection abstraction in a portable manner also.
This paper therefore builds upon our assertion from our
2004 paper in which we proposed the possibility of a
GIOP-everywhere ideology inside the SCA radio. It
shows that it is indeed possible to achieve a complete
ubiquitous SCA machine across the radio. This unburdens
the waveform developer from having to have intricate
knowledge of the details of the s/w and h/w of the
physical radios hetergenous interconnects, therefore
yielding substantial cost and time benefits to the wireless
industry’s value chain.

REFERENCES
[1] Pugh K., Prefactoring – Extreme Abstraction, Extreme Separation,

Extreme Readability, O’Reilly 2005.
[2] Mitola J., – Software Radio Architecture – Object oriented

Approaches to Wireless Systems Engineering, Wiley 2000.
[3] Reed J.H., – Software Radio, A modern approach to Radio

Engineering, Prentice Hall 2002.
[4] Dohse D., Bush L., Osborne G., Christensen E., –“Successfully

introducing CORBA into the signal processing chain of a software
defined radio”, COTS Journal, January 2003.

[5] Fette B., LaMacchia M , Christensen E.,– “High Performance
Software Radios”, April 2004.

[6] The OMG Extensible Transport Framework Specification – OMG
Document reference ptc/04-03-03.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Practical Experiences using the OMG’s Extensible
Transport Framework (ETF) under a real-time

CORBA ORB to Implement QoS Sensitive Custom
Transports for SDR

Shahzad Aslam-Mir Ph.D.
Chief Technology Officer

PrismTech Corporation

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 2 Copyright © PrismTech 2004

Agenda

1. Background

2. ETF Interfaces

3. Transport Plug-in Case Studies

4. Practical Experiences

5. Conclusions

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 3 Copyright © PrismTech 2004

Background

Objective – to establish a framework for
plugging in transports in an ORB with
sufficient predictability in order to support
DRE systems

WHY – IIOP (GIOP over TCP/IP) enables
reliable remote messaging, however TCP/IP
introduces unpredictable latencies unsuitable
for many real-time systems

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 4 Copyright © PrismTech 2004

Background

Scope
GIOP messaging and CDR encoding is adequate
for real-time systems
No requirement to specify a alternative messaging
protocol to GIOP
Should provide clear separation on concerns
between the messaging layer (GIOP) and the
transport layer (e.g TCP/IP)
Specifically by defining interfaces to enable ORB
core, facility and service layers to be independent
of the underlying transport
Facilitate the development of 3rd party transport
solutions

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 5 Copyright © PrismTech 2004

Background

Key Requirements
Must support an IOR architecture for non TCP
transports such that it is possible for a transport
author to create a transport plug-in for two
different ORBs that enable application
interoperability across the transport
Clearly identified interfaces and interaction
semantics between the ORB and the plugin
How an ORB selects a transport should be
specified

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 6 Copyright © PrismTech 2004

Background

Resulted in:
Extensible Transport Framework Specification
(document reference ptc/04-03-03)
Which is an OMG adopted specification
With submissions or contributions from the
following companies:

Borland Software Corp.
Objective Interface Systems, Inc.
VERTEL Corp.

Current Status:
Undergoing finalization

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 7 Copyright © PrismTech 2004

ETF Interfaces

A compliant plugin implements the following
interfaces:

ETF::Profile
ETF::Connection
ETF::Listener
ETF::Factories

An ORB compliant with the specification implements
the following interface:

ETF::Handle
Optional interfaces that the plugin can implement in
order to conform to the “zero copy “ compliance point
are:

ETF::ConnectionZeroCopy
ETF::BufferList

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 8 Copyright © PrismTech 2004

ETF Interfaces

ETF::Factories
Local interface
Provides ‘entry point’ for ORB to use transport
Plugged into ORB via proprietary mechanism
Identified by IOP::ProfileId (IIOP etc)

create_listener(…) : ETF::Listener
create_connection(…) : ETF::Connection
demarshal_profile(…)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 9 Copyright © PrismTech 2004

ETF Interfaces

ETF::Listener
Local interface
Endpoint which clients contact when connecting

Associated ETF::Profile endpoint (its transport address)

Encapsulates Connection establishment protocol
May be provided by underlying transport (TCP)
Otherwise implemented in plugin code (SHMEM)

ORB may use blocking or non-blocking style
ORB thread calls blocking accept() operation
ETF thread calls ORB via ETF::Handle callback

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 10 Copyright © PrismTech 2004

ETF Interfaces

ETF::Connection
Local interface

Encapsulates semantics of Connection protocol
Reliable, ordered, 1-to-1, bi-directional byte stream

Overloaded interface for client and server side
Initiated from client-side

ORB creates a Connection using Factories
ORB calls connect() to establish connection

Server-Side
Listener creates new Connection object in response to
incoming request from client.

Client and server then read/write over Connection

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 11 Copyright © PrismTech 2004

ETF Interfaces

ETF::Profile
Local interface
Encapsulates the conversion and matching
functions used to store transport specific profile
data in an IOR
Can also be used to locate a “matching” profile
read from an IOR
Holds data related to an address for a transport
marshal() function creates an ETF::AddressProfile
which packages all profile address data into an
octet sequence

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 12 Copyright © PrismTech 2004

ETF Interfaces

ETF::Handle
Local interface
Implemented by the ORB
ORB registers a Handle with ETF
Enables flexible threading models
ETF then makes up-calls to Handle when:

A new connection has been established
Data has arrived on an existing connection

ORB thus avoids some blocking calls to ETF.
ORB must still make some blocking calls:

connect() & write() still have to be blocking calls
Only available on the server side

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 13 Copyright © PrismTech 2004

ETF Interfaces

ETF::ConnectionZeroCopy : Connection
Local interface
Optional compliance point within the standard
Supports the notion of a “zero copy” data transfer into the
transport layer
Provides operations to write and read zero copy compatible
buffers to and from the transport:

void write_zc(inoutBufferList data,…..
void read_zc(inoutBufferList data,…..

ETF::BufferList is a local interface that provides
operations that manage the allocation of a buffer
compatible with the zero copy transport mechanism

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 14 Copyright © PrismTech 2004

ServerClient

ETF Connection Establishment

FactoriesFactories Connection

Listener

3: create_connection() 4: connect() 1: create_listener()2: listen()

Connection

IOR P

P

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 15 Copyright © PrismTech 2004

TCP Sockets Implementation

Connection S ConnectionS

ListenerS

ETF::Listener encapsulates a listening socket
ETF::Connection encapsulates a connected socket
ETF::Profile encapsulates an endpoint specified by host & port
Hides details of sockets API
Implements timeouts with:

non-blocking sockets
select()/poll() calls

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 16 Copyright © PrismTech 2004

Shared Memory Implementation

ETF::Listener creates & manages shared memory segment
ETF::Listener allocates a control block at start
ETF::Profile encapsulates an endpoint specified by a file name
ETF::Connections get allocated a control block each
Remainder of shared memory segment used for transfer buffer –
shared by connections
Coordination by:

POSIX : Semaphores
System V : Message Queue

Connection Connection

Listener

Listener Control Block

Connection

Connection Control Block

Connection
Connection Control Block

Buffer Space

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 17 Copyright © PrismTech 2004

Experiences

Benefits:
PrismTech have a single unified transport plugin API
underneath our RTE ORBs (e*ORB SDR C and C++
Editions)
Both ORBs share the same pluggable transport layer code
implemented once in C
Allows us to write a transport plug-in once in C and plug into
either ORB without excessive porting
C++ based transport plugins can be also be plugged into the
ORBs – however the C ORB has no way of handle any
exceptions thrown by transport written in C++
The new ETF transport plugin interfaces are an improvement
over the original proprietary interfaces – simpler abstraction,
easier to document and explain to end users

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 18 Copyright © PrismTech 2004

Experiences

Issues:
Confuses the boundaries between transport (e.g
TCP), the messaging layer (e.g GIOP) and the
protocol (e.g IIOP)

The spec states "separates the message layer (GIOP)
from the Extensible Transport Framework"– but it doesn't

ETF::Profile includes a supported GIOP version attribute
should be protocol version if required (e.g. IIOP::Version)

ETF::Profile::marshal() operation assumes CDR

ETF::Factories::demarshal_profile(in AddressProfile
profile) operation requires ORB to understand
AddressProfile encoding for each protocol

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 19 Copyright © PrismTech 2004

Experiences

Issues:
The spec states "a Factories object needs to have
an identifier so that the ORB can select the correct
transport type"– but it doesn't.

An ETF::Factories object is identified by an IOP::ProfileId
– much more than "transport type“

An IOP::ProfileId identifies a protocol,which implies a
specific message layer and tagged profile encoding etc

Cannot use a transport plugin with different message
layers to form different protocols.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 20 Copyright © PrismTech 2004

Experiences

Issues:
Issue 7594:ETF::Profile::marshal() and
ETF::Factories::demarshal_profile() are
unworkable:

The ETF plugin has no access to IOP::TaggedComponents in
the full IOP::TaggedProfile. When marshaling a tagged profile,the
ETF plugin may want to add tagged components, and when
unmarshaling it may want to read them

When marshaling a full tagged profile,the ETF marshals part of it
(ETF::AddressProfile), and then the ORB marshals the rest
(IOP::ObjectKey & IOP::TaggedComponents). For IIOP, at least,
these two parts must form a single encapsulation

The responsibility for encoding and decoding a full tagged profile
is split between the ORB and ETF. The result is that neither party
has access to all the information necessary

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 21 Copyright © PrismTech 2004

Experiences

Issues:
ETF::Handle serves two distinct roles:
1. connection establishment
2. message arrival

It would be better to have two separate handle interfaces to
encapsulate the different behaviour, this would enable:

call-backs and blocking for different areas e.g. call-
backs for connection establishment and blocking calls
for data transfer

Cannot use ETF::Handle interface on client side
connections – when de-multiplexing replies from a shared
connection, the ORB must use a dedicated I/O thread to do
blocking/polling calls on the connection

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Slide 22 Copyright © PrismTech 2004

Conclusions

Provides a standard set interfaces by which a ORB transport
plugin can implemented
Currently specified interfaces are not enough to successfully
implement a complete transport plugin, additional ORB level
implementation is required per plugin
More useful at present to an ORB vendor, or an end user, rather
than a third party transport author
Transport plugin cannot be written once and plugged into two
ORBs from different vendors
Separation between message, protocol and transport layers is
not enforced cleanly enough
Changes required during specification finalization to address
fundamental issues

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

