

VERIFICATION OF SOFTWARE RECONFIGURATION PLATFORMS

Stoytcho Gultchev, Klaus Moessner, Rahim Tafazolli

Mobile Communications Research
Centre for Communication Systems Research,

University of Surrey Guildford, Surrey, UK - GU2 7XH
(S.Gultchev, K.Moessner, R.Tafazolli@surrey.ac.uk)

ABSTRACT

SDR technology has significantly matured and it becomes
an increasingly important tool enabling the interlinking
between, and the interoperation of, different wireless
technologies. SDR technologies facilitate easy to use and
they support adaptive communication platforms. However,
the standard compliance and system’s correct functioning
are generally the most critical problems and they need to be
ensured. Addressing compliance and correct functionality,
software and configuration verification and validation
techniques are required. These techniques will need to be
agreed and standardised to facilitate interoperability
between different types of reconfigurable platforms and
systems. This paper provides an overview of the influencing
factors and shows some direction and examples of how such
interoperability can be achieved.

1. INTRODUCTION

Business models for commercial implementations of SDR
based radios are emerging and companies aim to specify
and implement the immediate requirements into coherent
system architectures. These ‘reconfigurability architectures’
are defined to handle download, control and installation of
the targeted radio configurations and have the main aim to
support mechanisms, which ensure the correctness of the
targeted configurations (i.e. a configuration being the HW-
SW bundle implementing a radio). Any such software
installation will be prone to the usual issues like glitches,
viruses, security threats etc. Secondly, the verification of
these configurations and their (potentially destructive)
effects on the radio emissions and, if something goes
wrong, the question of the responsibilities has been widely
discussed. Thirdly, the network operators will be concerned
about how to ensure that a SDR node is properly installed
and won’t negatively affect or bring down their
infrastructure, or create interference to neighbouring or co-
located systems.
There are different possibilities to approach this verification
of configurations; in the short term, the different
manufactures may continue following the R&TTE directive

and will verify and self-certify the different configurations
their HW platform can implement. However, in the long
term, it is conceivable that third party SW providers and
uncountable combinations of software modules will exist
and configurations will take place outside the control of the
original manufacturer. To be able to facilitate standards
conformance and to provide a testing regime, which ensures
that the system specifications of the target RAT and
standard compliance are met, have to be implemented.
This can be captured and achieve in an unified system
design approach which considers, already during the design
phase, the issue of verification and validation of the single
software modules, but also of the complete configurations.
This uses a design suite that employs UML for the overall
system and functionality definition, and SDL for the design
of the information flow and verification mechanisms of the
system. The paper presents a description of this approach as
well as the means and mechanisms defined for the
verification of radio configurations. The paper highlights
and discusses the aspects of design, implementation and
verification of reconfigurable radios and will complement
the reconfiguration plane concept that was introduced with
the RMA (Reconfiguration Management Architecture)
framework.

2. FACTORS FOR RECONFIGURATION
VERIFICATION

Manufacturers will ensure the correctness of the initial SDR
architectures and reconfigurable systems at the time of
delivery. In the long run, due to the expected fragmentation
of the market (new manufacturers, new software vendors)
and the increase in availability of reconfigurable systems,
there will be a need to deploy new procedures for
verification of mixed configuration. This complexity of
configurations cannot be just classified in a specification as
research in E2R class marking approach [1]. It will require
much more to reflect the whole reconfiguration validation
process which may be based on the class mark mechanism
but even configurations outside such framework may be
implemented in reconfigurable nodes; then testing the
configurations, heir implementations in the network, with

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

the necessary platform interaction for control and
management will be part of the verification process. Variety
of factors will influence this validation process but the most
important will be portability, interoperability, spectrum
efficiency and compatibility between platforms and
reconfigurable systems. The result of a complex interaction
between different players as part of it will only be achieved
by standard compliance of a common reconfigurable
framework. Addressing this process, there are needs for:
• Common interface definition for a reconfigurable

framework [2];
• Standard compliance to the functionality of

reconfiguration plane [3] - the implementation of it is
not just of the reconfigurable nodes (terminals, BS, AP
etc.) but also the support of the network reconfiguration
service provision are the key factors;

• New tools for system software reconfiguration modules’
development for compliance not just to a particular
platform (manufacture) but inter-platform compatibility;

• Common reconfiguration procedures of process
handling download, control and manage
reconfigurability. The know-how of this reconfiguration
plane implementation will still stay with different
manufactures on the bases of better or more efficient
way when using memory or processing resources;

• Deriving standard comprehensive verification
mechanisms for supporting reconfiguration nodes i.e.
generic support mechanisms for the reconfiguration
service provisioning operators to have conformance,
availability and radio compliance system validation
procedures. This will involve:
♦ A standards (RAT) validation procedure in the
network side of the reconfiguration node’s modem and
system components; Again, the requirement is the
procedure and interfaces to be common for everyone
(standardised) and the implementation can be specific
to the manufactures of equipment, giving them
freedom to compete;
♦ A reconfiguration service provisioning to be
complied with specific (generic) network topology
architecture [4] that will enable the open provisioning
of services even from 3rd party providers.
Standardisation of such architecture will be the
optimum requirement;
♦ Ensuring the reconfiguration node security and
security provisioning support [5]. This will enable the
possibility of reconfiguration of security features like
random generators, hash functions, ciphers etc.
without changing the execution algorithm of the
security framework. This reconfiguration procedure
requires some further investigation and also possibility
of standardisation – interfaces, processes and means of
communication exchange protocols. Some work in this
direction has been done in the E2R project [6]. Such

an important reconfiguration procedure will require
verification and validation process techniques to
ensure the intact of the reconfiguration security system
of the reconfigurable nodes.

All these factors lead to a need for specification of the
verification and the validation procedures in all the above
cases.
The achievement of such a goal where software
reconfigurable nodes fully comply when reconfigured will
need a systematic approach for every area mentioned above
with consensus between reconfiguration service and
equipment providers on a generic overall reconfigurable
architecture.

3. METHODS FOR VERIFICATION OF
RECONFIGURABLE ARCHITECTURE AND

SYSTEMS

Formal description techniques (FDTs) have a most
prominent role in the development life cycle of distributed
system, especially telecommunication systems. FDTs were
developed to ensure unambiguous, concise, complete and
consistent specification of the system under development.
FDTs allow for partial or total automation of many analysis
and synthesis activities in the development life cycle.
From the formal specification of user requirements to
implementation, activities such as the validation of the
design specification against requirement specification, the
verification of design specification, stepwise refinement of
formal specification towards implementation, test case
generation, etc., have to be partially automated. A formal
protocol definition or specification facilitates checking a
protocol for logical self-consistency (validation) or
demonstrating that the protocol has various desirable
properties (verification). The SDL (Specification and
Description Language) is one of the choices as a formalised
language that is able to create clear models, which can be
automatically checked for accuracy and completeness. It
also offers the opportunity to use the verification and the
validation in early software development phases, rather than
debugging in an implementation stage. One of the real
benefits of using the SDL is that a well-specified model can
be simulated. The simulation is usually displayed as a
dynamic MSC (Message Sequence Chart).
Object-oriented design is a design strategy where system
designers think in terms of objects instead of operations or
functions. The system is made up of interacting objects that
maintain their own local states and provide operations on
that state information. An object is an entity that has a state
and a defined set of operations, which operate on that state.
The state is represented as a set of object attributes. The
operations associated with the object provide services to
other objects (clients), which request these services when
some computation is required. Object-oriented analysis

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

(OOA) is a well-known and popular technique for
understanding a problem and analysing a system. Among
many different versions of the OOA methods, the UML
(Unified Modelling Language) from the OMG (Object
Management Group) has been extensively accepted as a
standard language for object-oriented methods and tools.
Simplicity is one of the major benefits of OOA notations. A
set of class diagrams can describe complex relationships
between objects from different points of view in a simple
graphical way. Another major benefit is that the concepts,
such as aggregation, inheritance and association, have a
fairly abstract definition, which makes it possible to
describe the problems in a high and abstract level in
analysis situation. The general process for object-oriented
design has a number of stages:

• Understand and define the context and modes of
use of the system;

• Design the system architecture;
• Identify the principal objects in the system;
• Develop design models;
• Specify object interfaces.

In fact, all of the above activities can be thought of as
interleaved activities that influence each other through the
design process.
When documenting a model design, a sequence diagram is
needed for each significant interaction. A state machine
model should be provided to show how the object instance
changes state depending on the messages that it receives. It
is not usually necessary to produce a state chart for all of the
objects. Many of the objects in a system are relatively
simple objects and a state machine model would not help
implementers to understand these objects.
An important part of any design process is the specification
of the interfaces between the different components.
Designers should avoid representation information in their
interface design. Rather the representation should be hidden
and object operations provided to access and update the
data. If the representation is hidden, it can be changed
without affecting the objects that use these attributes. This
leads to a design, which is inherently simple to maintain [7].
The SDL is an object-oriented formal language defined by
the ITU-T for specification of complex, event-driven, real-
time and interactive applications involving many concurrent
activities that communicate using discrete signals. The
SDL’s general adoption is partly because of its intuitive
graphical notation and excellent tool support. One of the
main perceived benefits of SDL over other notations such as
the UML is the ability to model and reason about, e.g. via
model checking tools, detailed behavioural specifications,
including real-time behaviours [8].
The strength of the SDL is its ability to describe the
structure, behaviour, and data of a system. The most
important characteristic of the SDL is its formality. The
semantics behind each symbol and concept are precisely

defined. SDL has successful track record in terms of support
for design, formal verification and code generation,
especially for distributed, reactive and real-time
applications.
The UML does not specify system behaviour in the same
detail as the SDL. Process diagrams are not part of the
UML, for example. However, the SDL and the UML can be
complementary to each other. The UML is frequently used
at the software architecture and design stage, while the SDL
is now more frequently used in the more detailed process
design stage. The SDL tools which provide code generation
are also used in the final coding stage of software
development.
The MSCs are suitable descriptions of the functional
exchanges but they act also as a basis for test case
development. The SDL is used at the design stage for the
description of the functional behaviour and the architecture
of the target system. Since the MSCs and the SDL
specification are often developed independently from each
other, the SDL specification has to be validated against the
set of MSCs given at the requirement stage, to ensure
consistency between requirement stage and design stage.
The MSCs are used for requirement definition, as an
overview specification of process communication, as an
interface specification, as a basis for automatic generation
of a skeleton SDL specification, for simulation and
consistency check of SDL specification, as a basis for
selection and specification of test cases, for documentation,
for object oriented design and analysis (object interaction).
Within the system development process, the MSCs play an
important role in nearly all stages complementing the SDL
in many respects. On one side, the MSC and the SDL
diagrams describe the same behaviour from two different
perspectives. The SDL shows how each communicating
entity behaves, while the MSC diagrams show how they
interact by exchanging messages. Since the MSC diagrams
are easier to read, they could be helpful to both developers
of the SDL specifications and their readers. On the other
side, the SDL processes and the MSCs can be looked at as
two different kinds of system representation which are
complementary in many respects. The SDL provides a clear
and comprehensive behaviour description within the
individual SDL processes, whereas the communication
between several processes is represented in a fairly indirect
manner and thus the description of the communication
behaviour in the SDL for many purposes is not sufficiently
transparent. Contrary to that, the MSCs focus on the
communication behaviour of system components and their
environment by means of message exchange.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

4. EXAMPLES OF VERIFICATION TECHNIQUES

The benefit for a development project is that the analysts
and developers all can use the notations best suited for each
phase of a development project.

• Use cases analysis. The purpose of the requirement
analysis is to analyse the problem domain and the
requirements on the system to be built, essentially
by analysing the system as a black box in its
intended environment;

• System model design. The purpose of the system
design phase is to precisely define the architecture
of the system including the detailed interfaces
between different parts. In the system design the
architecture of the system is also analysed in terms
of implementation strategies and decomposition
into work packages for different development
teams;

• Specification and Implementation. The purpose of
this phase is to create the executing application that
implements the requirements of the use cases.

The object oriented analysis strength when analysing
requirements and creating conceptual analysis models is
combined with the strong back-end given by SDL tools for
design, verification and code generation. Once the scenarios
are properly modelled by SDL, they can be simulated and
validated for the object communication protocol of the
combined implementation of different scenarios.
In this work, state space exploration and state transition
diagrams are used for validation of the design specification,
and this is a well-known technique for automatic analysis.
The state space of the SDL system of the software terminal
model is explored with powerful methods and tools that will
find virtually any kind of possible run-time errors that may
be difficult to find with regular simulation and debugging
techniques. After the errors and design ambiguities are
discovered, the SDL system specification is adjusted and
corrected for clearly describe system behaviours. It models
the terminal’s reconfiguration scenarios, including complete
reconfiguration and partial reconfiguration. The process of
detection and validation of implied scenarios can be used to
iteratively drive the completion of scenario-based
specification for the terminal model development.
For the software terminal model is used a SDL Validator to
do the validation task. The Validator operates on structures
known as behaviour trees or reachability graphs. A
behaviour tree is a tree structure that represents the
behaviour of an SDL system. The validation intends to
support engineers involved in development of specifications
or designs using SDL. It provides an automated fault
detection mechanism that checks the robustness of the
application and finds inconsistencies and problems in an
early stage of development. When verifying the system
against requirements, there is performed automatic

verification of the requirements expressed using the MSCs,
which are developed during scenario-based requirement
analysis in the design period. The set of all system states
represented by the behaviour tree is called the state space of
the system.
By moving around in the behaviour tree, the behaviour of
the SDL system can be explored and the system states
reached can be examined. By investigating the error report
generated by the SDL Validator and the system state where
it was generated, the cause of the error can be determined,
and the SDL specification and model description can be
corrected accordingly. But these kinds of errors are limited
in the SDL system itself, not used by the original designers
to revise the scenario descriptions and functional designs.
The reachability analysis is also applied to the software
terminal model in the SDL specification. When the symbol
coverage rate is less than 100%, and if the parameters of the
signals are correct, there are design errors in the SDL
system. These kinds of errors need the SDL system designer
to debug the specification and make corrections. After the
state space exploration of the behaviour tree of the SDL
system specification, manually and automatically, the
specification is revised and corrected according to the
scenario design and use case description.
Also the state transition diagrams are used for the analysis
of the system modules, checking the states and the signals
for whether they show the desired results. For the purpose
of simplicity and page restrictions the details of all the
modules’ state transition diagram from the SDL Validator,
applied to the RMA reconfiguration plane [3] which show
the states of the modules, and what signals trigger the
modules to action and the current state changes to another
state are omitted from this paper.
The SDL specification for the soft terminal model is
debugged and revised according to the results from the
simulation and the validation. The specification finally
becomes complete and correct, with no deadlock and no
starvation, at least from the SDL specification point of view.
The symbol and transition coverage of the specification are
both 100%, which means the state space of the system is
reachable and explorable completely.
All the analysis and description of this paper are for both
the complete reconfiguration and the partial reconfiguration.
The complete and partial reconfiguration use cases are
validated together in one system validation process. So they
are not explained separately.
It has already been stated that reconfigurability will provide
a variety of new features and will offer its advantages to all
parties (network providers, service providers, terminal
manufactures, third party software vendors and the
customer), however, many problems concerning
reconfiguration and reconfigurability are yet to be solved.
One of the main concerns is the question how, in an open
software environment, radio configurations can be tested

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

and validated without having to go through the tedious and
time consuming type approval processes. A validation and
test function has been included in the RMA design and this
entity (the virtual configuration (VC) process within the
AcA [9]) is defined to produce information and knowledge
about the reliability of the intended radio configurations.
The VC detects possible violations of radio standards during
reconfiguration sequences and validates whether the
intended configuration complies to the given standards (i.e.
the AcA prevents the termination of configuration 1 before
establishment whether the intended configuration 2
complies to the standards).
There are different stages where the standard conformance
has to be tested during reconfiguration. Starting from the
upload of new configuration software modules to the
software repository, through to the installation and
implementation of a piece of software the validity has to be
evaluated. This also includes the download of the software
modules and associated rules and requires mechanisms to
confirm/ensure the integrity of the downloaded code.
The GAcA takes care of the complete download of the
software and (software) rules from the 3rd party provider
(using a secure connection), delivers it to the AcA. These
mechanisms are used for the download of rules and
software from another (extra-domain) AcA. The (local)
AcA checks then the completeness of the downloaded
source (software rules and software) and makes sure that the
software delivered to the terminal conforms to the initial
configuration specification of the software provider.
Before this operation is executed the AcA performs a test of
the downloaded software that confirms compliance to the
initial specifications of the test case (i.e. that may be
provided with the software) and compares the I/O
parameters of the tested module with the margins provided
(with the software). This validity information is than stored
in the AcA and the terminal can download/use the module
for configurations. This mechanism provides the merging
point for the reconfiguration software with the standards
and provides the test results together with the software and
rules.
The next stage is to download the software to the terminal
and to ensure that the software is correctly stored in the
LSWR or CRH of the terminal (using the protocols for
communication between AcA and terminal and the security
protocols). This download also applies when software or
rules are required in the terminal for installing and creating
the tag-file respectively. A further task to ensure
conformance is the protection of the terminal from
fraudulent configurations, this requires that the
implementation of the tag-file and rules are done within the
terminal, the creation of the tag-file takes place within the
terminal. This guaranties that all information required for
the installation of the new configuration is available and
complies to the rules imposed for standard compliance.

The third step is the testing of the tag-file, the tag file is
downloaded to the VC, which in turn evaluates the tag-files
compliance to the network requirements. This is one of the
most important verification steps for the new terminal
configuration; this has to be completed before a
reconfiguration can take place within the terminal. Once the
procedure is complete, the reconfiguration procedure takes
place as the Configuration Manager of the CMP interprets
the approved tag-file and creates the necessary RMCs for
the installation of the software modules.
Finally, the installation of a module on the radio platform
takes place and the terminal (CM & RMCs) performs a final
test before the different radio modules are connected and
the new configuration becomes active. Verification
procedures may differ, depending on the type/class of
reconfiguration process, hence a number of reconfiguration
scenarios are applied to demonstrate the functionality of the
validation procedure.
The SDL implementation formally specifies the function
design of the modules in the RMA architecture, and the
communication sequences between the modules. With the
SDL specification, the RMA architecture is formally
modelled by executable specification, which can be
simulated and validated before the architecture is
implemented and coded darkly. Through the SDL
specification, the architecture is verified and validated in an
early stage, which is valuable for complex system design
and save the cost of software development.
In practice the testing and validation are closely related, and
after the SDL system is debugged well enough, there is no
further testing to be done. The scenarios are already tested
and shown in the simulation MSCs. In the similar manner
networked entities of the reconfiguration plane - RMA are
evaluated for the performance of procedures and message
sequences compliance. This activity also deals with the
correctness and validation of the design of the mechanisms
between AcAs and GAcA, which describes the design
specification of the network side of RMA architecture.

5. SUMMARY

SDR technologies will be at the core of any future adaptive
communication platform. On such platforms, any software
installation and alteration will be prone to the usual issues
of software systems (installation and compatibility
problems, etc.). The verification of these configurations and
their (potentially destructive) effects on the radio emissions
are presented as well as the effect to the network operators.
The paper presented the most important factors for
reconfiguration verification and different verification
techniques that need to be deployed for the uninterrupted
and correct functioning of a reconfiguration node. The
different verification methods have been highlighted to
underline the importance of FDTs in validation of

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

reconfiguration systems and their reconfiguration
management and control parts.
Finally, an example of the implementation and verification
of reconfigurable radios and complement the
reconfiguration plane concept that was introduced with the
RMA (Reconfiguration Management Architecture)
framework has been provided.

6. ACKNOWLEDGMENTS

The work presented in this paper has formed part of Core 2
Research Programme of the Virtual Centre of Excellence in
Mobile & Personal Communications, Mobile VCE,
www.mobilevce.com, whose funding support, is gratefully
acknowledged.

7. REFERENCES

[1] Berzosa F, "Reconfiguration Terminal Classmarks", WWRF
14, San Diego, California, USA, 07-08 July

[2] http://sbc.omg.org/
[3] Gultchev S, Moessner K, Tafazolli R, “System

Reconfigurability” SDR Technical Conference 2004,
Phoenix, Arizona, USA, 15-17 November 2004

[4] Gultchev S, Moessner K, Tafazolli R, “Reconfiguration
Mechanisms and Processes in RMA controlled Soft-Radios
Signalling”, SDR Technical Conference 2003, Orlando,
Florida, USA, 17-19 November 2003

[5] Gultchev S, Moessner K, Tafazolli R, “Provisioning of
Reconfiguration Services between Different Access
Networks”, published in Frequenz 58 (2004) 5-6, ISSN 0016-
1136, pp.126-131, May-June 2004

[6] http://e2r.motlabs.com/
[7] Sommerville I, "Software Engineering", 6th edition, ISBN

020139815X, Addison Wesley, 2001
[8] Sinnott R, “Real-Time Systems Development with SDL and

Next Generation Validation Tools”, IEEE Real-Time
Embedded System Workshop, December 2001

[9] Gultchev S, Moessner K, Tafazolli R “Network Based
Reconfiguration Support Services for Software Radio
Terminals”, IEE 3G2003, London, UK, 25-27 June 2003

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

https://outlook2003.surrey.ac.uk/exchweb/bin/redir.asp?URL=http://sbc.omg.org/
http://e2r.motlabs.com/

	Search by Author
	Search by Session/Paper

