
DEVELOPMENT OF A SCA 3.1 COMPLIANT W-CDMA WAVEFORM
ON DSP/FPGA SPECIALIZED HARDWARE

Maxime Dumas, Lyrtech Inc., Quebec, Canada maxime.dumas@lyrtech.com
Louis Bélanger, Lyrtech Inc., Quebec, Canada louis.belanger@lyrtech.com
Sébastien Roy, Laval University, Quebec, Canada sebasroy@gel.ulaval.ca

Jean-Yves Chouinard, Laval University, Quebec, Canada chouinar@gel.ulaval.ca

ABSTRACT

This paper is a summary of the design method used
to implement an SCA-compliant waveform on
specialized hardware. As a proof-of-concept, the
3GPP W-CDMA waveform was selected, where
focus was placed on the PHY layer. The
specifications are implemented following the
“platform-independent model to platform-specific
model” (or PIM-to-PSM) design flow guidelines and
targeted to a GPP/DSP/FPGA development platform.
The paper also contains a discussion on what must be
done to make specialized hardware SCA-compliant
on heterogeneous platforms (blend of CORBA-
enabled and non-CORBA-enabled processors).
Difficulties associated with FPGA SCA compliance
are presented, and solutions for creating location-
transparent components are described.

1. INTRODUCTION

As the digital radio world is rapidly evolving, there is
an increasing need for radio manufacturers and
designers to seamlessly integrate different waveforms
into their systems, and be able to reuse existing IP
modules without putting too much effort on
integration. Also, wireless service providers need to
easily update or upgrade their hardware at minimum
costs. The purpose of the SCA is to answer these
exact needs in making waveform modules object-
oriented, following OMG’s OO-design guidelines.
Although OO-design is well-suited for general-
purpose processors that support high-level languages,
modules that need to run on specialized hardware,
such as DSPs and FPGAs cannot readily benefit from
the same abstraction level. The JTRS specifies in its
SCA SHS [2] how DSP/FPGA devices should be
adapted and how software components should be
developed, using an abstraction layer (HAL-C) to
ease waveform portability and maximize design
flexibility.

This paper opens with a brief summary of the SCA,
especially for specialized hardware processors (SHP),

and states SCA requirements for these devices. A
description of the suggested design flow follows,
emphasizing the challenges of implementing
location-independent, relocatable, FPGA-targeted
components and their possible solutions. Follows a
description of the design methodology used to
implement the W-CDMA waveform on the platform,
including how and when in the design flow the SCA-
compliance is integrated. Finally, a scenario of
waveform reconfiguration is given as a case-study,
and a discussion follows.

2. SCA/SCA SHS FRAMEWORK

The Software Communication Architecture (SCA)
was developed as part of the Joint Tactical Radio
System (JTRS) program to creating an abstraction
layer between hardware platforms and waveforms to
ease portability. This abstraction requires that
waveform components be distributed and loaded on
available processors by the Core Framework (CF), so
that each component of a waveform is developed
using an object-oriented modular design flow. This
approach has the advantage of leading to generic,
reusable, platform-independent waveform
components.

Waveform components are truly implementation-
independent, thanks to CORBA distributed
processing middleware. While it is relatively
straightforward to implement CORBA on a general-
purpose processor (GPP), it does not lend itself
readily to implementation on specialized hardware
processors such as DSPs and FPGAs. Hence, there
are two ways of configuring a DSP as part of an SCA
platform. First, a DSP that has enough features can be
CORBA-enabled through the implementation of a
POSIX-compliant OS and a “C” ORB. Second,
device-specific proxies are implemented to
communicate with non-CORBA-enabled processing
elements, as shown in figure 1. Because of hardware
limitations or performance reasons, a DSP can also
be part of an SCA platform as a non-CORBA-
enabled device. In this particular case, the DSP

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

environment must at least support the HAL-C API
described in [2], which consists of four functions:
HalcGetEndpoint(), HalcRegisterCallback(),
HalcSend(), and HalcReceive(). For the CF to
communicate with non-CORBA-enabled DSPs,
logical devices representing them need to translate
CORBA requests to HAL-C requests through a
proxy.

Because waveform components are built as
independent modules, they need to communicate
through a common, standard interface on RTL-
programmable logic (RPL) processors, designated to
be Open Core Protocol (OCP). This interface makes
complete abstraction of the bus configuration and
arbitration, as implementation of these is left to the
platform provider. On RPL processors (i.e. FPGA),
components physically occupy static resources on the
device (as opposed to instructions being loaded to
data/program memory for DSPs). Hence, for
components to be completely independent of the
processors, they must be relocatable so that the CF
can dynamically assign them to available resources
(or areas) in the RPL processor’s fabric. Moreover,
RPL processors need to support partial
reconfiguration to independently load components to
it. Relocating RPL-targeted components is not a
trivial task, especially if it must be done at runtime.
The following section briefly presents the PIM-to-
PSM design flow for creating SCA-compliant
components. It then describes currently achievable
ways to do so on Xilinx FPGAs.

RapidIO
Fabric

FPGA

C1
DDC

C2
Burst

Acquisition

C3
Network

Sync
C5

Decoder

T1 - Transport Interface to GPP (Local Bus)

T3
 –

 D
ig

ita
lIF

In

te
rf

ac
e

to
 R

F

T4
 –

 T
ra

ns
po

rt

In
te

rf
ac

e
to

 F
ab

ric

GPP1

Proxy
For C1

Proxy
For C2

Proxy
For C3

Proxy
For C5

FPGA
Logical
Device

T2 - Transport Interface to FPGA (Processor Local Bus)

PL
B

DSP

C4
Demod

C6
Deinterleave

T6 - Transport Interface
to GPP (PCI)

T5
 –

 T
ra

ns
po

rt

In
te

rf
ac

e
to

 F
ab

ric

GPP2

Proxy
For C4

Proxy
For C6

T7 - Transport Interface
to DSP (PCI)

GPP3

C7
Link

Processing

DSP
Logical
Device

C8
Assembly Control

CORBA Port Based Comms

Endpoint to Endpoint Comms

P
C

I
B

us

Figure 1: SCA abstraction layer on specialized

hardware [3]

3. DESIGN FLOW FOR CREATING SCA-
COMPLIANT COMPONENTS

All the design flows presented in this section refer to
the PIM-to-PSM methodology defined by SCA, to
ease waveform portability. This methodology is
summarized here and starts with the definition of a

platform-independent model (PIM), which contains
what are called “golden sources”, implementing
waveform specifications without any platform-
specific artifacts.

The first step towards the implementation-specific
model is to derive targetable source code from the
golden sources. This should be done for all
potentially targeted SHP classes. For instance, a
channel decoder could be derived from golden
sources into C code as well as VHDL, so that it could
be deployed either on a C-runtime processor (i.e.
GPP or DSP) or an RPL processor (i.e. FPGA). The
next step is to add the SCA interface that acts as a
container to each worker, so that it can communicate
on a SCA platform. These containers interact with the
CF through proxies provided by the platform vendor.
An optional step in the portability process is to
optimize the code to target a specific device or device
family.

G olden sources

Targetab le source
code (C ,VH D L)

SC A-com pliant
com ponents

O ptim ized
com ponents

W rap com ponents w ith A PI

PIM

PSM

W aveform
specification

D erive P IM source code from
specification to validate the m odel

Translate m odel sources to the actual
target language

(O ptional) A dapt code for specific
architectures

Figure 2: SCA PIM-to-PSM methodology

The standard design flow for creating relocatable
components is to synthesize code, specify area
constraints, then go through mapping, place and
route, and finally bitstream generation. To relocate a
component to a different area, the constraints file
must be modified and the three last steps (above) be
repeated each time. While this method is
straightforward, it cannot be executed at runtime
since mapping and especially place-and-route
operations are time consuming. An adaptation of this
method is to pre-generate several bitstream versions
of the same component, each targeted at a different
area in the FPGA, and store them in memory on the
platform. However, this only partially fulfills the
relocation requirement and consumes a lot of
memory space.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Synthesize

M AP

Place and
R oute

B itG en

Edit a rea constra in ts
(U C F file)

Figure 3: Standard methodology for relocating RPL

components

With the design flow illustrated in figure 4, the
placed-and-routed NCD file is modified so that the
component is relocated to a different area of the
FPGA. Because NCD is an internal and proprietary
file format, it cannot be modified directly. Instead,
the xdl tool must be used to convert it to the user-
readable XDL file format so that it can be modified
and converted back to generate the bitstream. Hence,
only the BitGen and FPGA load steps need to be
executed for relocation (aside from the modification
itself).

Synthes ize

M AP

P lace and
R oute

B itG en

N C D XD L

XD L N C D

C om ponent
trans la tion

Figure 4: Advanced methodology for relocating RPL

components

A placed-and-routed component can be relocated to a
different area of the FPGA fabric by translating all
resource addresses to target the new area. Of course,
for the new, translated, placed-and-routed design to
be valid, both areas have to be identical. Based on
this restriction, two methods of dividing the FPGA in
identical areas enable partial reconfiguration with
component relocation. One is based on module-based
partial reconfiguration, and the other relies on

difference-based partial reconfiguration. (See [4] for
details on partial reconfiguration methods.)

The first method consists in using columns as the
base unit to divide the FPGA in identical,
reconfigurable areas. The reason for this is that
module-based partial reconfiguration is done by
reloading complete columns (4-slice multiples). The
problem with this method is that special resources
(i.e. BRAM, MULT, etc.) are distributed column-
wise, making it difficult to divide the FPGA in
identical sub-areas. This method often results in
coarse granularity, varying between 2 and 6
subdivisions, depending on the FPGA model and
family.

The second method more efficiently exploits the
distribution of special resources on FPGAs by
dividing it into horizontal areas instead of vertical
areas. To leverage partial reconfiguration with
horizontal area division, difference-based partial
reconfiguration needs to be used. Difference-based
partial reconfiguration works by comparing two
versions of a design at bitstream generation to create
a bitstream that only contains the parts that are
different from those of the already loaded bitstream.
To be able to incrementally load individual
components in the FPGA and obtain a sum of
components forming part of a waveform and actually
processing data, a base template bitstream must be
generated. This template contains all the static parts
of the FPGA design, such as the bus architecture, the
HAL-C infrastructure, the HAL-C adapter, and the
platform-specific I/O interface module (shown in
figure 5). At design time, all components are
synthesized, mapped, and placed and routed with area
constraints. The constrained area must be a multiple
of the “atomic relocatable unit”, which is the smallest
area that can be defined such that all resources of that
area may be remapped to any other area of the FPGA
through translation of addresses. This implementation
results in a placed-and-routed NCD file for each
component. A first waveform component is added to
the FPGA by looking at which areas are available for
new components. Once an available area is found,
translation is performed from the area used at
development time to the new area. After translation,
the modified XDL content is added to the base design
and converted back to the NCD format. The last step
before loading the FPGA is to generate the bitstream
with partial bit file option and specify the base design
bitstream as the previous version to generate a
difference-based partial bitstream. The subsequent
components are added the same way. However,

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

instead of referring to the base design, they refer to
the last design created, thus leading to an incremental
circuit build-up.

The main problem with the latter design flow is that
XDL files can rapidly become space-consuming (in
the order of 1 GBytes for a complete FPGA
bitstream). While this method is better than the
constraints-editing standard method, it may still take
a long time to obtain a relocated bitstream and thus
remains inadequate as a runtime solution.

Figure 5: Floor plan of the base template design
(static parts)

Waveform components impose one further constraint
to be relocatable: their connection endpoints must fit
with the base design bus endpoints. The “atomic
relocatable unit” must contain fixed tiles that can
only be used for interconnection with the
interconnect bus.

While the methodology using difference-based partial
reconfiguration may be applied to both Virtex-II and
Virtex-4 families, Xilinx tool suite currently supports
the module-based design flow only for the Virtex-II
family. Partial loading is done by frame, and Virtex-
II frames are complete, 4-slice wide columns, while
Virtex-4 frames are 16-slice wide by 1-slice high,
meaning that when module-based partial
reconfiguration will be supported, it will be possible
to use it with horizontally-divided areas.

As a final workaround, it is possible to relocate a
complete design from one area to another by
modifying the frame headers contained in the
bitstream, provided, as for the earlier method, that
both source and destination areas are identical. (This
is not yet officially supported by Xilinx.) This
mechanism can be operated with both partial loading
methods. It is based on the principle that the smallest
entity that can be configured is a frame and that, to be

configured, each frame must be addressed. Thus, if a
frame must be relocated to a different area, only the
frame addresses in the bitstream need to be modified
(and the checksum).

It is interesting to note that methodologies similar to
the ones presented here have been explored, and that
tools such as [5] and [6] were developed to facilitate
partial reconfiguration, although none of them can be
used in the present application.

4. SCA PLATFORM PRESENTATION

The platform on which the SCA-compliant waveform
is implemented is the Lyrtech SignalMaster Quad, a
member of the Lyrtech Signal Processing hybrid
DSP/FPGA development platform family. Its cPCI
6U form factor is ideally suited for prototyping since
it allows the developer to easily integrate additional
hardware, such as A/D and D/A converters, host PC
cards, or digital I/O. In the present case, a host PC
card provides the GPP environment on which the CF
will run. The SignalMaster Quad C6416/V4 consists
of two clusters, each containing two TMS320C6416
DSP and a Virtex-4 FX FPGA. Each cluster can
deliver up to 16,000 MIPS of DSP processing power
and up to 70 GMACS of FPGA power, yielding a
total of 32,000 MIPS of DSP power, 16-million gates
system. The platform architecture is presented in
figure 6. As can be seen, the DSPs are interconnected
through FPGAs by high-speed parallel buses. The
two FPGAs communicate through parallel LVDS
buses while high-speed I/Os are connected with
point-to-point parallel paths. The Lyrtech SCA Board
Support Package consists of all interfaces and
abstraction layers necessary to run SCA waveforms
on it.

StarFabric

Local Stream #2
LDI[7:4]
LDO[7:4]

selecMAP

32
-b

its
/6

6M
H

z

LVDS 6X8bits

PCI-PCI Bridge
64-bits 66MHz

Optional
Standard

PCI Interface
PLX9656

Virtex IV
(XC4VF40-VF100)

U
se

r I
/O

Virtex IV
(XC4VF40-VF100)

SDRAM (64-256MB)

cPCI P1 & P2
(PCI BUS)

cPCI P5
(User I/O)

64
-b

its
/6

6M
H

z

32
-b

its

LyrIO

I/O

LyrIO

SDRAM
(up to 128MB)

SDRAM
(up to 128MB)

TMS320C6416
@ 720MHz

TMS320C6416
@ 720MHz

32
-b

its

32
-b

its

TMS320C6416
@ 720MHz

TMS320C6416
@ 720MHz

32
-b

its

HPI

TBC

JTAG

selecMAP

CPLD
ctrl

cPCI P4
(H.110)

H.110 Interface &
Time Slot

Interchanger &
StarFabric

Lucent T8105

Local Stream #1
LDI[3:0]
LDO[3:0]

Front
Panel
LVDS

H.110

cPCI P3
(StarFabric)cPCI PSB P3

I/O

64
-b

its

PCI
ext.

SDRAM (64-256MB)

64
-b

its

SDRAM (64-256MB)

64
-b

its

SDRAM (64-256MB)

64
-b

its

Debug connector
(MICTOR)

64
-b

its

Debug connector
(MICTOR)

64
-b

its

1 Gethernet port

1 Gethernet port

Front-panel
RJ-45

Figure 6: SignalMaster Quad architecture

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5. 3G APPLICATION

Wideband Code Division Multiple Access is one of
the most processing-intensive waveforms currently in
use, mainly due to the fact that it consists of 5-MHz
wide Direct Sequence Spread Spectrum (DSSS)
QPSK modulated signals. Spreading the signal is
achieved by OVSF sequences, which allow the
multiplexing of several physical channels over the
same frequency band. A scrambling sequence
(Kasami code) is used to differentiate users over the
same channel. The W-CDMA chip rate is
3.84 Mchip/s and has a bandwidth of 4.6848 MHz
due to the root-raised cosine filter with a roll-off
factor of 0.22. The chip period being 0.26 µs,
resolution is good enough to account for multipath at
the receiver. After being brought to baseband, the
almost 5-MHz wide spread spectrum signal goes
through despreading, multipath detection and
combination, as well as symbol decoding. Next come
deinterleaving, channel decoding (standard Viterbi
decoding or turbo decoding), and block decoding
(CRC).

C hannelizer D esp reader M ultipath
C om biner

M ultipath
E stim ato r

D e interleaver

V iterb i
D ecoder

Turbo
D ecoder

B lock
D ecoder

(C R C)

M ulti-U ser
D etector

... ...

Figure 7: W-CDMA receiver block diagram

To demonstrate the functionality of the platform, the
physical layer of 3G W-CDMA is being
implemented. Most waveform components are
developed in-house, except for the RAKE receiver,
which was provided by École Nationale Supérieure
des Sciences Appliquées et de Technologie
(ENSSAT)[7], France, as VHDL IP cores. Following
the PIM-to-PSM design flow, a platform-independent
reference model was first created based on 3GPP
specifications using a system-level approach with
Simulink. As a next, Simulink blocks were replaced
with C code for components targeted to DSP and
with VHDL for components targeted to FPGA. Once
the design is validated, wrapping must be performed
for SCA-compliance. All modules were wrapped
with a proper API, specified in SCA SHS 3.1 clause
2.4 or in SCACS 3.2, and then compiled/synthesized
to the target devices, in this case Texas Instruments
C64x family and Xilinx XC4VFX100. For VHDL
components, constraints needed to be specified. The
less space a component occupies on the FPGA, the
better. It may thus be necessary to perform some
iteration to find the right area constraints that will

contain the design in the smallest possible area, while
still respecting timing constraints. Also, since bus
connections are placed at specific positions, the OCP
interface must be constrained to these locations.

As a demonstration scenario, one could use the same
waveform with two different front-end
configurations, the first being that the RF signal is
downconverted to baseband, digitized, and then sent
for demodulation (in FPGA), in which case no DDC
or filter is needed in the software waveform path. For
the second configuration, several FDMA channels are
provided in digital-IF and must be downconverted in
software for channel selection before further
processing. In this case, the channelizer component
would be added in the FPGA since it is now required
in the waveform path. Following the SCA
methodology, the CF will look at the device’s Device
Package Descriptor file to find unallocated space
where the new component may be loaded. After
loading the component into the FPGA, the DCD file
is updated and reconfiguration of endpoints
performed. While there is a major difference between
these two configurations, the only necessary
modification is minor changes in the descriptor files
(i.e. Software Assembly Descriptor), as the
component and datapath changes are taken over by
the CF.

6. CONCLUSION

SCA requires that waveform components have the
ability to be individually loaded on devices and that
their interconnections be specified afterwards,
making them as modular as possible. As this can be
achieved with CORBA middleware for some
processors, SCA SHS details how it should be done
for those that are not CORBA-enabled. Proxies on
the CORBA-enabled processor side side translate
requests so that non-CORBA-enabled processors can
process them through a common API, while HAL-C
(OCP) provides the common transport layer. In this
context, location-independence of FPGA-targeted
components is not a given, and is a thus problematic.
Among all solutions presented, the most suitable uses
bitstream frame address translation as a relocation
method.

Although waveform implementation and platform
adaptation is still in progress, everything is in place
to construct a platform containing Specialized
Hardware Processors SCA 3.1-compliant that will
demonstrate dynamic reconfiguration of the W-
CDMA waveform.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

7. REFERENCES

[1] Joint Tactical Radio System (JTRS), Joint Program

Office, “Software Communication Architecture (SCA)
Specification”, JTRS-5000 SP V3.0.

[2] Joint Tactical Radio System (JTRS), Joint Program
Office, “Specialized Hardware Supplement to the
JTRS Software Communication Architecture (SCA)
Specification”, JTRS-5000 SP V3.1.

[3] J. Kulp, M. Bicer, L. Pucker, G. Holt, Portable
Waveform Components for Specialized Hardware,
JPO Portability Workshop, January 2005.

[4] Xilinx Development System Reference Guide, 2005.
[5] Anup Kumar Raghavan, Peter Sutton, “JPG - A Partial

Bitstream Generation Tool to Support Partial
Reconfiguration in Virtex FPGAs”, Proceedings of the
16th International Parallel and Distributed Processing
Symposium, p.192, April 15-19, 2002.

[6] Edson L. Horta, John W. Lockwood, Sérgio T. Kofuji,
“Using PARBIT to Implement Partial Run-Time
Reconfigurable Systems”, Proceedings of the
Reconfigurable Computing Is Going Mainstream, 12th
International Conference on Field-Programmable
Logic and Applications, p.182-191, September 2-4,
2002.

 [7] D. Menard, M. Guitton, S. Pillement, O. Sentieys,
“Design and Implementation of WCDMA Platforms:
Challenges and Trade-offs”, International Signal
Processing Conference (ISPC'03), April, 2003.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

www.lyrtech.com

Development of a SCA 3.1 Development of a SCA 3.1
compliant Wcompliant W--CDMA waveform on CDMA waveform on
DSP/FPGA specialized hardwareDSP/FPGA specialized hardware

M. Dumas, L. BM. Dumas, L. Béélanger, S. Roy and J.langer, S. Roy and J.--Y. ChouinardY. Chouinard

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2

OutlineOutline

• Software Communications Architecture
• Design Flow and main challenge
• FPGA Component Relocation Methods
• Lyrtech Platform and Board Support

Package
• W-CDMA waveform reconfiguration
• Conclusion

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3

SCA / SCA SHSSCA / SCA SHS

Summary of objectives:

• Waveform portability
• Location-independence
• Waveform modularity
• On-the-fly waveform reconfiguration

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

4

Design FlowDesign Flow

G olden sources

Targetab le source
code (C ,VH D L)

SC A-com plian t
com ponents

O ptim ized
com ponents

W rap com ponents w ith A PI

PIM

PSM

W aveform
specifica tion

D erive PIM source code from
specification to validate the m odel

Translate m odel sources to the actual
target language

(O ptional) A dapt code for specific
architectures

G olden sources

Targetab le source
code (C ,VH D L)

SC A-com pliant
com ponents

O ptim ized
com ponents

W rap com ponents w ith A PI

PIM

PSM

W aveform
specifica tion

D erive P IM source code from
specification to validate the m odel

Translate m odel sources to the actual
target language

(O ptional) A dapt code for specific
architectures

Challenge resides in
component relocation
for RPL processors

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5

Component relocationComponent relocation

S ynthes ize

M A P

P lace and
R oute

B itG en

E dit a rea constra in ts
(U C F file)

C om ponent re location

FP G A load

Synthesize

M AP

P lace and
R oute

B itG en

Edit area constra in ts
(U C F file)

FPG A load

Standard relocation flow

• Time consuming

• Not for run-time applications

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

6

Component relocationComponent relocation

P lace and
R oute

B itG en

N C D XD L

XD L N C D

C om ponent
transla tion

FPG A load

Synthesize

M AP

Edit area constra in ts
(U C F file)

P lace and
R oute

B itG en

N C D XD L

XD L N C D

C om ponent
transla tion

C om ponent relocation

FPG A load

Synthesize

M AP

Edit a rea constra in ts
(U C F file)Post place-and-route relocation flow

• XDL files quickly become large

• Could be used at run-time

• Requires a large amount of resources
(memory and processing)

•Translation is not trivial

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

7

Component relocationComponent relocation
Synthesize

M AP

Place and
R oute

B itG en

Edit area constra in ts
(U C F file)

B itstream
fram e address

transla tion

FPG A load

S ynthesize

M AP

P lace and
R oute

B itG en

Edit area constra in ts
(U C F file)

C om ponent relocation

B itstream
fram e address

transla tion

FPG A load

Bitstream relocation flow

• Only one operation : address translation

• Biggest file size around 1 Mbytes

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

8

Partial reconfigurationPartial reconfiguration

• Module-based
• Difference-based

• Custom reconfiguration
• Elaborate base design
• Specify interconnection points for modules to connect
• Build modular components with area constraints

(size & connection points to common resources)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

9

Design flow for FPGADesign flow for FPGA

PIM-to-PSM design
flow applied to FPGA

PIM

PSM

Sim ulink m ode l

VH D L source code

O C P/IP w rapper

A rea constra in ts
S ize
C onnection po in ts

 (c locks & buses)

3G PP spec.

Partia l B itstream

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

10

Base design floorplanBase design floorplan

BR AM / M U LT tiles

I/O tiles

C LB tiles

R econfigurab le tiles

Base design (sta tic) tiles
(I/O interfaces, data buses,
config buses, clocks, etc.)

X ilinx XC 2V4000

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

11

Lyrtech platform architectureLyrtech platform architecture
(SignalMaster Quad)(SignalMaster Quad)

StarFabric

Local Stream #2
LDI[7:4]
LDO[7:4]

selecMAP
32

-b
its

/6
6M

H
z

LVDS 6X8bits

PCI-PCI Bridge
64-bits 66MHz

Optional
Standard

PCI Interface
PLX9656

Virtex IV
(XC4VF40-VF100)

U
se

r I
/O

Virtex IV
(XC4VF40-VF100)

SDRAM (64-256MB)

cPCI P1 & P2
(PCI BUS)

cPCI P5
(User I/O)

64
-b

its
/6

6M
H

z

32
-b

its

LyrIO
I/O

LyrIO

SDRAM
(up to 128MB)

SDRAM
(up to 128MB)

TMS320C6416
@ 720MHz

TMS320C6416
@ 720MHz

32
-b

its

32
-b

its

TMS320C6416
@ 720MHz

TMS320C6416
@ 720MHz

32
-b

its

HPI

TBC

JTAG

selecMAP

CPLD
ctrl

cPCI P4
(H.110)

H.110 Interface &
Time Slot

Interchanger &
StarFabric

Lucent T8105

Local Stream #1
LDI[3:0]
LDO[3:0]

Front
Panel
LVDS

H.110

cPCI P3
(StarFabric)cPCI PSB P3

I/O

64
-b

its

PCI
ext.

SDRAM (64-256MB)

64
-b

its

SDRAM (64-256MB)

64
-b

its

SDRAM (64-256MB)

64
-b

its

Debug connector
(MICTOR)

64
-b

its

Debug connector
(MICTOR)

64
-b

its

1 Gethernet port

1 Gethernet port

Front-panel
RJ-45

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

12

SCA Mapping to PlatformSCA Mapping to Platform
(SCA Board Support Package)(SCA Board Support Package)

• CF on GPP (host card)

• Prismtech ORB on DSPs

• Proxy for FPGA on GPP
and DSPs

• OCP transport layer on
FPGA

•common on FPGA

D SP 4 PCI in terface

External M
em

ory Interface W F
com ponent

C O R BA-
enab led

Proxy

D SP 3 PCI in terface

External M
em

ory Interface W F
com ponent

C O R BA-
enab led

Proxy

D S P 2 PC I interface

External M
em

ory Interface W F
com ponent

C O R BA-
enabled

Proxy

PC I interfaceFPG A 2

W F
com ponent

W F
com ponent

Ex
te

rn
al

M
em

or
y I

nt
er

fa
ce

G PP

D SP 1

Assem bly C ontro l

FPG A log ica l device

Proxy

D SP log ica l device

PC I interface PC I interface

PCI in terfaceFPG A 1 PCI in terface

W F
com ponent

W F
com ponent

Ex
te

rn
al

M
em

or
y I

nt
er

fa
ce

External M
em

ory Interface W F
com ponent

C O R BA-
enab led

Proxy

Proxy

CO RBA com m

HAL-C com m

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

13

3G application (W3G application (W--CDMA)CDMA)

C hannelizer D espreader M ultipath
C om biner

M ultipa th
Estim ator

D ein terleaver

V iterb i
D ecoder

Turbo
D ecoder

B lock
D ecoder

(C R C)

M ulti-U ser
D etector

... ...

C hannel estim ation

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

14

3G application (W3G application (W--CDMA)CDMA)

Why?

• Complex, processor-intensive waveform.
• Different versions of the waveform.

(front-end, MIMO)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

15

3G application (W3G application (W--CDMA)CDMA)

Scenarios

1. Baseband input signal

2. IF input signal

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

16

3G application (W3G application (W--CDMA)CDMA)

FPGA modules required

R ake
receiver D ow nconverter

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

17

3G application (W3G application (W--CDMA)CDMA)

Scenario 1

•Front-end feeds
baseband signal to
FPGA.

•Demodulated
signal is sent to
DSP for further
processing

R ake
receiver

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

18

3G application (W3G application (W--CDMA)CDMA)

Scenario 2

•Multiplexed signal
is received in IF

•Sent to
downconverter
module, then fed to
the rake receiver

•Goes to DSP

R ake
receiver

D ow nconverter

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

19

ConclusionConclusion

SCA requires that:
• They can be individually loaded on devices
• Their interconnections be specified afterwards
What makes it possible:
• CORBA middleware
• SCA SHS for non CORBA-enabled processors

• Common API
• Common transport layer (OCP)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

20

ConclusionConclusion

Challenge:
Location independence on FPGA

Solutions:
• Standard relocation flow (post-synthesis)
• Post place-and-route relocation flow
• Bitstream relocation flow

Run-time reconfiguration as presented will be
demonstrated with W-CDMA

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

21

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

