
DESIGN OF SECURITY ARCHITECTURE FOR SDR SYSTEM

Mun Gi Kim, Byung Ho Rhee
Graduate School of Information and Communications, Hanyang University

17 Haengdang-dong, Seongdong-gu, Seoul, 133-791, KOREA
Phone: +82-2-2296-0391, Fax: +82-2-2299-1886

E-mail: clevermg@nate.com, bhrhee@hanyang.ac.kr

ABSTRACT

SDR(Software Define Radio) will give future users a

number of benefits like global roaming, multi mode, multi
band, and multi standard. It will also offer complete
programmability and reconfigurability to both multi mode
and multi functional communication terminal and network
nodes. Also, SDR is expected to solve the compatibility
problem among various mobile communication standards so
that people can use the same device for different wireless
network. If theses mobile communication environment is
constructed, integrity and confidentiality of data and
Terminal authentication become very important. Also,
Mutually authentication and security formality problem are
important for nodes. Therefore, In this paper propose
authentication scenario and Transmission security for
software download using PKC(Public Key Certificate) and
AC(Attribute Certificate).

1. INTRODUCTION

SDR is new radio technology of mobile communication.

SDR Terminals aim to be able to dynamically reconfigure
the structure of a wireless device. SDR most of
communication function technology that use hardware that
reconfiguration is available to software be SDR is elements
of a wireless network whose operation modes and
parameters can be changed or augmented post
manufacturing via software. If such communication
environment becomes available, reconfigure software to use
in Domain that communication protocol is different without
necessity to change terminal receiving download, grovel
communication becomes available. Research about SDR
System, Much of researches on next generation mobile
communication system are being carried out in SDRForum,
ITU-R, 3GPP and 3GPP2 etc. Research on main function of
4G System (SDR) and standardization of SDR technology is
being progressed in SDRForum.
 In this paper, describe about necessary security
authentication formality and Software access control
method for software download, Construct trust chain
mutually using PKC (Public Key Certificate) and protect
software resources from attack of interception, Main-in-
middle etc from unlawfulness user's access, Restrict

Terminal access extent using AC for trustability and safety
of system. finally, propose about transmission security using
random key for data stability.

2. ABOUT RESEARCH

2.1. SDR System Security Requirements

SDR is expected to solve the compatibility problem among

various mobile communication standards so that people can
use the same device for different mobile environment. If
theses mobile communication environment are constructed,
integrity and confidentiality of data and between terminal
and service provider or each network server authentication
become very important. Contents to propose in this paper
are as following [2].
- Available security algorithm negotiation
Terminal moves to Visit Domain and sends service request
signal. This time, Service request signal includes terminal
profile to the security management server. The profile is
information about security algorithm that terminal is using.
BS transmits profile that sends to Authentication
Server(AS).
AS confirms version information and available algorithm.

Thereafter, All communication use security algorithm that is
decided through mutual negotiation.

- Authentication & Access Control
Authentication and Access control need to satisfy various

use field of mobile terminal. Authentication is required to
allow service use that offer within domain, and Access
Control need to restrict user’ s service access extent.
Access Control directive in the PKC determines access to
the service provider server. Therefore, service allow or deny
can1.

- Data encryption
Encryption is required for data integrity and confidentiality.

AS creates and supplies encryption key for terminal. This
key is used for encryption communication between end
points. Encryption key distribution uses PKI Based.

1 This work was supported by HY-SDR Research Center at
Hanyang University, Seoul, Korea, under the ITRC Program of
MIC, Korea.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The paper will present the details on security architecture,
about method of data encryption and authentication,
certificate managements and creates and security algorithm
negotiation to use in SDR system.

2.2. Access Control method for SDR Terminal

Access control prevents unlawfulness access of Software,

and offer integrity, confidentiality and availability of
software service. Access competence is established in
Terminal's state. Access control manage technology is
divided by Identity-Based Policy, Rule-Based Policy, Role-
Based Policy. Access control of Identity-Based Policy
consists on subject or sub group's position, Rule-Based
Policy consists based on rule that is established on
permission grade for object. Role-Based Policy is access
control technology that use together with Identity-Based
and Rule-Based Policy. In this paper, Access control of
RBAC (Role-Based Access Control) base is achieved [4].
Establish access competence to RBAC based. It can divide
by Core RBAC and Hierarch RBAC.

2.3. Certificate management

2.3.1. X.509v3 Certificate Fields
Certificates may be used in a wide range of applications

and environments covering a broad spectrum of
interoperability goals and a broader spectrum of operational
and assurance requirements. In particular, the emphasis
will be on supporting the use of X.509 v3 certificates for
informal Internet electronic mail, IPsec, and WWW
applications. The X.509 v3 certificate basic syntax is as
follows. For signature calculation, the certificate is encoded
using the ASN.1 distinguished encoding rules (DER)
[X.208]. ASN.1 DER encoding is a tag, length, value
encoding system for each element [1].

Certificate::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }

 TBSCertificate ::= SEQUENCE {
 Version [0] EXPLICIT Version DEFAULT v1,
 SerialNumber CertificateSerialNumber,
 Signature AlgorithmIdentifier,
 Issuer Name,
 Validity Validity,
 Subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier
OPTIONAL,

-- If present, version shall be v2 or v3 subjectUniqueID
[2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL
-- If present, version shall be v3

 }

2.3.2. X.509 Attribute Certificate Definition
ACs may be used in a wide range of applications and

environments covering a broad spectrum of interoperability
goals and a broader spectrum of operational and assurance
requirements [5].

AttributeCertificate ::= SEQUENCE {
 acinfo AttributeCertificateInfo,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING
 }
 AttributeCertificateInfo::= SEQUENCE {
 Version AttCertVersion -- version is v2,
 Holder Holder,
 Issuer AttCertIssuer,
 Signature AlgorithmIdentifier,
 SerialNumber CertificateSerialNumber,
 AttrCertValidityPeriod AttCertValidityPeriod,
 Attributes SEQUENCE OF Attribute,
I issuerUniqueID UniqueIdentifier
OPTIONAL,
 Extensions Extensions OPTIONAL
 }

 Attribute certificate composition with form of PKC
resemblant. But do not include terminal's public key. Then,
terminal's attribute information is as following.

 - Service Authentication Information: Terminal ID and

Passwd
 - Charging Identity: Accounting information
 - Group: terminal group
 - Role: RoleAuthority, Role of Terminal
 - Clearance: information about the AC holder

3. DESIGN OF SECURITY ARCHITECTURE FOR
SDR TERMINAL

In this paper, Define following component for Software
manage:

- SDR Terminal: Terminal that free communication is
avaliable in any mobile communication environment.
- SP (service provider): Development Software for SDR
Terminal.
- TMS (Terminal Management Server): TMS authenticate
terminal and possess software list that Terminal wants. Then,
Terminal connects to TMS to download Software.
- DS (Data Server): DS means server belonging to TMS,
and stores Software that receive from SP. Can software

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

service that terminal wants through OTA, Internet, Sim
card.
- CA (Certification Authority) : Issue certificate to
Attribute CA and Terminal
- Attribute CA : Decide Terminal's access competence scope
and issue Attribute certificate about software access
competence.
That is, all nodes issues PKC from CA. If Terminal

requests software, all nodes establish relationship of mutual
trust using PKC, connecting to TMS and confirm software
list and receives download from DS.

3.1. PKC and AC issuance process

SDR Terminal and all servers are issued PKC that can

confirm own from CA that plain is authorized. Also,
Terminal is issued AC that can confirm own competence
from Attribute CA. Such basic process needs for software
download.

1. Request
PKC

2. Identification
3. PKC Issued

Attribute CA

Certificate
Authority(CA)

User

1. Request
PKC

Fig.1. Terminal and Attribute CA PKC Issuance Process

Attribute CACertificate
Authority(CA)

User

2. Bind Certification
Issuance

(Autonomic method)

Dependency

1.Request Attribute
Certificate(PKC exchange)

Fig.2. AC Issuance Process

3.2. Access control model using PKC and AC

Attribute certificate division way to deliver attribute

certificate in application service can be classified into pull
model and push model. When pull model creates attribute
certificate, the server searches attribute certificate in
repository by way to bulletin attribute certificate that
attribute certificate issuance person is issued to directory
that search is available in application service. Push model is
a way to deliver attribute certificate directly when client
connects to server. Such push model and pull model can be

utilized electively according to application service
environment.

Table. 1. Push model and Pull model's comparison.

 PUSH MODEL

Advantage

-Simplification of certification processing
process.
-Frugality of certification processing time.
-Frugality of additional expense for
certificate administration.

Shortcomings

-There are certificate damage and loss
danger.
- Can be eavesdropping by hacker at
certificate transmission process.

Utilization
environment

-When outside user's number is too many.
-Safe environment in data transmission.

 PULL MODEL

Advantage
-Can reduce certificate damage and loss.
-Have softness of attribute information
alternation.

Shortcoming

-Additional expense is required for certificate
administration.
-Is proportional in user number and
communication load happens.

Utilization
environment

-Is effective in interior user administration.
-Security set is effective in weak system
environment.

This paper uses push model. Because Push model can

bring simplification of certification processing system and
certification processing speed elevation that is required.
Also, additional expense for user certificate administration
of push model is not required. This picture is describes
access control process; Use push method for software
download. Certification processing server restricts
Terminal’ s DS access within authorized extent using PKC
and Attribute Certificate that user submitted. certificate
verification process is as following.

When SDR Terminal came to new domain, Request
software to TMS. Then Terminal delivers PKC to TMS, and
it is establish relationship of mutual trust. If Terminal is
authenticated, TMS is request terminal Attribute
Certification. Decide DS's access competence using AC.
Access competence establishment is achieved through
ACL(Access Control List). ACL list decides Terminal's
access competence using RBAC. If all certification
processes and access competence examination are
completed, Terminal downloads software from DS.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

List Verified

SDR Terminal Access Control
List(ACL)

Administrator

Certificate
Verified

DS (data server)

Software
request

Attribute CA

NO
Approval

YES

(Access:OTA & Simcard etc)

Certification Processing
Server (TMS)

Fig.3. Software request/response process

3.3. Software transmission security method

In this chapter explains about transmission encryption

method. Terminal approaches to DS using PKC and AC for
software download. Then, Need transmission security to
prevent security threats that happen between nodes.
Transmission security algorithm uses Symmetric Cipher
System and Asymmetric Cryptosystem. Terminal and TMS
exchange PKC for relationship of mutual trust. Terminal
and TMS confirm each other's certificate. Certification is
achieved through CA's signature value. If relationship of
mutual trust is formed, TMS creates and shares session key
for data encryption.

< Definition > Symbol that is used for encryption

 : Terminal public key : Terminal private key
 : TMS public key : TMS private key
 : DS public key : DS private key

 : Session Key that server creates
 : Session Key that encode by public key of

terminal
 : Session Key that encode by public key of

DS
 : that encode by

 : Key that encrypt encoded key to
 : Terminal request message that is encoded

by
 : TMS response message that is encoded by

 : Digital signature message that is encoded by

 : Message digest that use Hash algorithm
 : Terminal creates Message digest that to compare

with value.
 : Digital Signature that encrypt by

3.3.1. Session Key shared method between Terminal and
TMS

All request messages, response message and software

between Nodes are encoded using session key. Session key
is random number, Session key can creates any one. But,

Session key creation does TMS in this paper for to
minimize transmission protocol. and Created session key is
transmit to Terminal using Terminal's public key. Terminal
is decrypt using Terminal's private key. So Terminal acquire
session key.

TMS

TMS PKC

Session key creates by TMS

TMS PKC
verified

SDR Terminal

TMS
Certification

Fig.4. TMS and Terminal on key shared method

ion method between Terminal and TMS

Send-receive data is encoded using session key. TMS has
r

 sessi

3.3.2. Encrypt

ole that certify Terminal, and software management for
Terminal. TMS decides software through Terminal profile
message, Software to supply can know through Terminal
Profile message that Terminal sends.

Request Message
(S/W request & Terminal Profile)

Response MessageResponse Message

TMS SDR Terminal

Request Message
(S/W request & Terminal Profile)

Terminal Prefix confirmation

Fig.5. Encryption method between TMS and Terminal

on key
ed and receives

3.3.3. DS Transmission Security

) Encryption method to use Sessi1
 DS receives result that Terminal certifi
Session Key for data encryption from TMS. All data are
encoded using session key for transmission security. Then,
download software to Terminal is decided by TMS.
Next picture is explaining that DS receives session key from
TMS and transmit Software to Terminal.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

TMS

TMS PKC

Session key created by TMS

TMS PKC
verified

DS

TMS
Certification

Fig.6. TMS and DS session key shared

R esp on se S o ftw areR espo n se S o ftw are

D S SD R Term ina l

Fig.7. Data transmission between DS and Terminal

2) Encry
a

ption method includi s signature function ng node'

The following is method to add Digital Signature for dat
integrity.
DS encrypts software by session key (), and

makes message digest () using H . And
creates Digital Signature (

ash algorithm
) using DS's private key.

Digital Signature encrypts b Terminal's public key. Such
m

y

ethod can support data integrity. After all data receive,
through next process, Terminal verifies integrity of data that
received.
- Terminal does decrypt using session key
(). And makes message digest ().
- Terminal is decrypt digital signature () using
DS's public key. Acquire and compares with

 . If value is equal, accepts data. If value is not equal,
abandons data.

R e s p o n s e S o f t w a r e
R e s p o n s e S o f t w a r e

D S S D R T e r m in a l

R e q u e s t M e s s a g e R e q u e s t M e s s a g e

H a s h A l g o r i t h m
H a s h A l g o r i t h m

c o m p a r i s o n

Fig.8. Encryption method cluding node’s signature
function

4. CONCLUSION

In this paper desc sion security using
ssion key, mutually authentication using PKC and AC and

d

tion of certification system, and research for
s

D. Solo “Internet X.509

[3]
[4]

[5]

ribed about transmis

se
ata integrity. Mechanism that proposes in this paper can

protect Terminal from virus or bugs through safe Software
download, can protect away attack about data forgery and
alteration from attacker and can protect Terminal and
servers from data interception and Main-in-Middle attack.
Proposed mechanism is shortcoming that system resources
should be got to apply in present mobile communication.
But When consider SDR Terminal system that is developed
at the future, it may get into safe download mechanism if
minimum size of certificate and simplify verification
process.
At future, research about SPKI may have to be gone for

simplifica
oftware grade classification may have to be gone for

Terminal access control mechanism.

[1] R. Housley, W. Polk, W. Ford and

Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile” RFC 3280, April 2002.

[2] SDRForum, “Security Consideration for Operational
Software for Software Defined Radio Devices in a
Commercial Wireless Domain” DL-SIN Document SDRF-04-
!-0010-V0.0 Ballot version, 27 October 2004.

R. Shirey, “Internet Security Glossary” RFC 2828, May 2000.
David R. Ferraiolo, Janet A. Cugini and D. Richard Kuhn,
“Role-Based Access Control (RBAC); Features and

thMotivations” Proceedings of the 11 Annual Computer
Security Application Conferences, December 1995.
S. Farrell and R. Housley, “An Internet Attribute Certificate
Profile for Authorization” RFC 3281, April 2002.

[6] Kate Cook and Carlos Martinez, “Developing end user and
operator requirements for software reconfigurable radio” IST
Summit 2001.

 in

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

DYNAMIC POLICY ENFORCEMENT FOR SOFTWARE DEFINED RADIO

Patrick Flanigan, (Security Engineer, NCSA, University of Illinois Urbana-Champaign,

flans@ncsa.uiuc.edu), Von Welch, (Senior Security Engineer, NCSA, University of
Illinois Urbana-Champaign, vwelch@ncsa.uiuc.edu) Meenal Pant, (Software Engineer,

NCSA, University of Illinois Urbana-Champaign, mpant@ncsa.uiuc.edu)

ABSTRACT

Our research analyzes security policy enforcement issues
inherent to handheld Software Defined Radio (SDR)
devices. We have developed an abstraction for Dynamic
Policy Enforcement (DPE) for a SDR system which
consists of three distinct modules that monitor changes in
external conditions, validate system configuration based
on those conditions and a given policy, and implement
changes to ensure policy compliance. In order to
demonstrate the viability of our system, we created a
prototype that implements the roles and responsibilities of
our abstraction in conjunction with a prototype SDR
system previously developed by NCSA that is based on
the GNU SDR software.

1. INTRODUCTION AND MOTIVATION

Typically, standard radio devices have been built for
extremely specific functions, limited by the use of narrow
bandwidths and rigid hardware specifications. Software
Defined Radio (SDR) allows for functionality previously
statically-cast in hardware to be implemented in software.
The power of SDR lies in the ability to dynamically
reconfigure its functionality by changing flexible
software. With this flexibility, we achieve tremendous
advantages over hardware-only platforms because
software can be developed to perform the complex tasks
and dynamically updated, altered or even removed based
on changing conditions, users or policy. However, with
these gains in flexibility, security policy enforcement
becomes a major concern. Our work is focused on the
design and implementation of a Dynamic Policy
Enforcement (DPE) for SDR security.
 There are a number of distinct security issues with
SDR. The focus of each issue is dependent upon a
balance between the required flexibility and the level of
security that is desired. There has been a fair amount of
prior work focused on allowing for secure dynamic
download and installation of software into a SDR and the
protection of the base SDR software from malicious code.
Our focus is at a higher level of abstraction – the
implementation of secure and dynamic policy

enforcement for SDR to ensure that the functional pieces
of software deployed adhere to policy dependant on the
user of the SDR and the conditions in which the SDR is
being used.
 SDR policy enforcement must take into account
dynamically changing users, conditions, environments
and needs. In order to decide if a given configuration, by
which we mean combination of software in use and
parameters such as broadcast frequency, protocol and
power, there are a number of factors that effect how the
SDR should behave:

• Who is holding the SDR? What is the role of the

holder of an SDR device? Is it, for example, an
average citizen, a responder, a member of law
enforcement, or the commander of the response?

• What are the environmental conditions? Is it a
normal day or is there a condition alert or is there an
emergency response going on in the immediate area?

• What policies are in effect? Policies would seem to
be more static than the previous factors, but may vary
in time or as the device moves from one region to
another, changing administrative jurisdiction.

It is key to notice that, in particular with the first two

criteria, these may change dynamically and outside the
control of the SDR device. This requires policy
enforcement to not only consider requested changes (e.g.
in broadcast parameters or software installation), but
factors that change outside the device’s control (e.g. who
is holding the device or the state of emergency).
 Consider the scenario of first responders from an
emergency agency (e.g. fire, medical, law enforcement)
using SDR-based handheld radios during a response.
When the emergency is declared, the first effect might be
that average citizens holding SDR-based cell phones or
two-way radios would be severely limited in how they
could use those devices in order to preserve bandwidth
for responders. The responder’s devices however, should
remain fully functional, or even increase in functionality,
allowing them to access normally private channels to
facilitate cross-agency communication or to allow for (or
even require) encrypted private communication.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

mailto:flans@ncsa.uiuc.edu
mailto:vwelch@ncsa.uiuc.edu
mailto:vwelch@ncsa.uiuc.edu

 And, if under some unusual circumstance, a
responder were to use a device belonging to an ordinary
citizen, that device should readjust, granting as much
access to that responder as permitted by its policy and its
implementation.
 In this scenario, it is clear that we have many
possibilities for authorization and configuration. There
could be any number of users with different levels of
access, and these users could change at any time as the
radio is passed from person-to-person. A change in the
alert condition may require a change in basic
functionality, for example, reducing functionality to
preserve spectrum space for critical services. Different
modules for encryption may need to be changed on the fly
for higher security. And software modules themselves
may have specific policy restrictions as well. The
intersection of all of these factors can become quite
complex. Because of this, a dynamic and reliable policy
enforcement solution is required. By creating an abstract
security layer that interacts with the SDR application
layer, we can isolate and manage these security and
configuration needs. This needs to be accomplished at a
layer that is independent of the SDR so that we do not
compromise the implementation of the radio device.
 Our goal was to design and implement an
enforcement system that is capable not only of vetting
changes prior to their occurrence, e.g. a user requesting a
change in frequency or the application of an encryption
scheme, but after their occurrence as well, e.g. the radio is
dropped and picked up by a different user. This requires
not only traditional policy-based authorization gateways
that vet requests, but active system monitoring which
validates all elements of the system (user, software state,
external environment, etc.) against policy and is capable
of making changes to ensure policy is enforced in the face
of changes outside the control of the system. First, in
Section 2, we present our architecture and design of a
Dynamic Policy Enforcement for SDR. In Section 3 we
describe our implemented prototype to validate our
design. In Section 4, we cover the NCSA implementation
of SDR. We conclude with a discussion of related work.

2. POLICY ENFORCEMENT ARCHITECTURE

Our Dynamic Policy Enforcement (DPE) system is
focused upon preventing intentional or unintentional
behavior on the part of the SDR user, which violates
policy in regards to the methods of use of the SDR
system. We contend that an independent management
system composed of three abstract roles can successfully
accomplish this. We call these roles the monitor, the
implementor and the validator. These roles are
implemented as separate modules that intercommunicate.
 The monitor is the entry point to the entire system. It
detects and handles all changes to or requests for

changing the current configuration. This can be done
passively by capturing events, either through software or
hardware, such as a sensor, or by actively monitoring the
activity within the application layer. The monitor passes
all events to the implementor.
 The role of the implementor is to enact changes to the
SDR system, either by servicing requests that are deemed
to be valid under the current policy, or in reaction to
changes in external environment that have caused the
current system configuration to become invalid based on
current policy. The implementor communicates with the
validator to determine what configurations are
permissible under current policy.
 The validator contains policy which describes all
permissible configurations of the SDR system based on
environmental conditions and user attributes. It receives
queries from the implementor and responds with the
resultant configuration that should be implemented. This
configuration may be one requested or may be modified if
the a requested configuration is not permissible.
 Dynamic configurations can be represented by
permutations of the application’s components. Some of
these components are external because they exist outside
the software. A specific person, role or group denotes the
current user. The weather is denoted by some well-
defined, finite set of possible weather states. The
condition is something that is enforced externally to our
system entirely, such as an alert status. As a first level of
abstraction, we can consider these factors much like the
modules of the SDR stack. Let us call the entire set of
components and their dependencies our application layer.
And it is crucial that this layer is closed. That is, all
possibilities are accounted for at any given time. And
each of the components is verifiable, so that we are
always sure that the component is what it says it is. These
components and their configurations can be mapped-out
by sets of permutations. We can represent such images of
the application layer in a standard, ubiquitous format such
as XML. The monitor, implementor and validator can use
these images to communicate about configuration
decisions. And due to the abstraction of these security
policy issues, we are able to concentrate and isolate
authorization and module replacement apart from the
application itself.

3. POLICY ENFORCEMENT SYSTEM

We now turn to the detailed design of our system. Our
work is composed of two distinct systems – the Dynamic
Policy Enforcement (DPE) modules and the SDR
modules. How these two systems interact is the focus of
our research. This section provides an overview of the
DPE implementation, while the next is about the NCSA
implementation of SDR. Our intention was to build a
prototype of the two systems coexisting on a handheld

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

SDR. For our purposes, it has been sufficient to build
them both on a Linux box (Fedora 4) using GnuRadio
2.5. First we will look at the individual components, their
roles and how they intercommunicate.
 Instead of using sensor mechanisms to provide
external requests, we created a web-based interface that
allows a user to select a controlled set of parameters. This
GUI was built with Python and consists of three
dropdown menus that allow the user to select an
‘external’ request. We decided to use the role of the user,
the current alert condition and the weather as typical
parameters for this study. Many more variables could
have been used, some perhaps more relevant for specific
reasons, but our intention was to keep it simple. We
wanted to demonstrate functionality – not complexity. We
use specific permutations of these parameters as criteria
for the security policy decisions. When changes are
selected, they are reflected by rendered diagrams showing
the resultant configurations of the SDR. We will also
follow a typical flow of a request as it is processed by the
DPE system.

3.1 Individual Roles and Responsibilities

In Section 2, we discussed a viable abstraction for a
dynamic policy enforcement system which could manage
and make security policy decisions for SDR. We built
modules which implement this abstraction. The module
names were shortened for brevity. The names are montor
(monitor), imptor (implementor) and valtor (validator).
They are C++ modules that use named pipes to
communicate with each other using a messaging API
developed specifically for this project.
 Montor is the entry point and the event sink for the
DPE system for external requests and events fired off by
the SDR. Its job is to handle requests for configuration
changes and to monitor the SDR so that configuration
changes can be made in case there is some failure in the
current SDR setup. The motivation behind the event
monitoring is so that the SDR can be watched to ensure
stability and security. We foresee that threats upon a
system can be detected as internal configuration changes
or requests and they can be inspected as such. This
‘monitoring’ capability is not within the current
implementation of montor, but it is certainly an area that
invites further research.
 In the Linux workstation version of this system, the
GUI provides external requests to montor. The GUI also
allows the user to start and stop the DPE system and the
SDR. Each is started as a whole using multiple forked
processes. This was implemented for demonstrative
purposes. In an actual handheld SDR, these requests
could be enabled with sensors designed to detect changes
that should be handled by DPE. An example is the use of

biometrics to determine a user change that may require a
change to the SDR configuration.
 Imptor is the workhorse for the DPE system. It
handles requests that have been picked up by montor,
then gets them validated by communicating with valtor,
then actually makes the actual SDR configuration changes
as needed. It is aware of configuration needs through the
use of specific XML-based configuration files. These files
contain resource information used to set up the
configuration such as module names as well as
repositories for module downloads. They are also capable
of ensuring that the correct/secure modules are being used
for a specific configuration.
 The final piece of the Dynamic Policy Enforcement
system is valtor. Valtor assumes the role of the validator.
It receives requests from imptor, opens and inspects the
XML-based policy file, then processes the request with a
configuration that is appropriate for the given parameters
and sends it back to imptor. The security policy file can
be updated ‘on the fly’ as well. The current policy that is
being used is based upon eXtensible Access Control
Markup Language (XACML). We will discuss this
further in our Related Works section. We wanted to rely
upon a standardized way of representing our security
policy that could be applied to SDR.

Figure 1: An Overview the Entire System

3.2 The Request Data Flow

The primary vision that guided the development of this
system is that each module has its own unique role and
responsibility. They do not need to know anything about
what the other modules are doing. They watch their

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

message pipes and react, process and reply. In fact, one
can shut a module down and the entire DPE system will
stop. But if the module is then restarted, the system starts
moving again. The entire process is driven by the
messaging that is passed through the named pipes. Each
module processes its message by reading a pipe, and then
completes its role by writing out to another pipe. Figure 2
is a diagram of the flow of a request through the DPE
system. The message API between the modules is quite
simple. The data is written and read via pipes using a
message buffer layer which is mapped into structures
which pass the appropriate parameters.
 Let’s take a quick walk through the diagram. Montor
is waiting for something to happen. It receives a
configuration change request. In our case, this is very
simple because we only have two configurations that are
possible. We are only swapping out
encryption/decryption modules which reflect the security
level given the current parameters – the user, the alert
condition and the weather. Montor takes this state
information and relays it to imptor. Imptor checks the
appropriate configuration file and verifies that it is a valid
configuration. If not, imptor replies to montor that it was
an invalid configuration request. Nothing is changed.
However, if successful, the request gets passed to valtor.

Figure 2: The Request Flow

 Valtor receives the request and opens the XML-based
security policy file. It checks the permutation of the
requested parameters and determines if it is valid for the
requested configuration. Valid or invalid, valtor sends a

resultant configuration back to imptor. If valid, the
requested change is returned. If the policy criteria is
invalid, the ‘best alternative’ configuration is returned.
This ensures that even if the security level is not what is
required for the request, an appropriate configuration is
returned. Thus, the SDR always remains operational. The
policy file must be built so that any request will return a
valid configuration. It certainly can be flagged as a failed
request, but continuous operation without user
intervention is a positive alternative to SDR shutdown.
 Consider this scenario: the handheld SDR is being
used by someone who has a high security clearance. His
credentials match the current encryption scheme that is
implemented by the SDR configuration. He loses the
radio and it is found by someone who has inadequate
credentials for the configuration. Montor picked up the
change of user, but it has no knowledge of the current
configuration. By the time the request gets to valtor, the
configuration is passed as the current one, which fails for
the new user. A less secure configuration is passed back
to imptor and the change is made. The user does not even
need to know about the change. It can all be mapped out
in the security policy file. This ensures that all final
decisions about accessibility are made according to the
policy file.

4. NCSA SDR IMPLEMENTATION

In order to demonstrate the viability of our Dynamic
Policy Enforcement upon SDR, we have implemented it
in conjunction with a SDR system. For our
implementation, we are using GnuRadio 2.5 as the
underlying software required for implementing a SDR. In
order to demonstrate a typical SDR application, we
previously developed a reconfigurable software radio
‘data stack’ that consists of four executables that are
inter-connected via UNIX pipes. [3] The data stack is
essentially a collection of modules/layers such as source,
sink, software defined radio (SDR), encryptor and
decryptor that inter-communicate through a well-defined
API. (see Figure 3).
 The purpose of this module setup is to provide a data
stack that is dynamically reconfigurable. That is, any
layer can be replaced at runtime. We can replace modules
for security needs such as encryption or replacing
modules dependent upon functional needs that vary
according to the weather, conditions or the user. And
when these modules are swapped, allowable
configurations and proper authorization will need to be
considered. This requires a standard way of representing
all possible configurations of the modules and any other
determining factors. We refer to all modules and factors
as ‘components’ of the application layer. These
components comprise the SDR.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

 The impetus behind building such a system is to keep
the design fairly simple and well-bounded. Encryption
and decryption are somewhat ubiquitous and easy to swap
and analyze for a given system. Modifying the SDR
behavior in other ways such as bandwidth usage or output
power is much more complicated and raises even more
security considerations such has regional regulations and
standards. Thus, the SDR model for our purposes is
intentionally simple and straightforward. We needed a
simple model so that we could focus on dynamic policy
enforcement without sidestepping into other security
issues. If the SDR is built with modules, then our system
can be used with it. The layout of the SDR can be
specified in the configuration file.
 As the name suggests, Source is a data provider, such
as a file source or an audio source. Data from a
transmitter’s Source goes to the intended receiver’s Sink,
such as a file sink, audio sink etc. The Encryptor module,
located at the transmitter, is responsible for data
encryption before the data travels through the air
interface. This module is implemented as a software
object providing a specific encryption scheme, such as
Triple DES, AES etc. The Decryptor module, located at
the receiver, will decrypt the data before sending it down
to the sink. Similar to the Encryptor, this module is also
implemented as a software object providing a specific
decryption scheme. The SDR module provides a
transmit/receive path, filtering and modulation schemes
for the data to travel through the air interface.

Figure 3: The reconfigurable data stack

4.1. Previous NCSA work with SDR

The reconfigurable data stack was first implemented at
NCSA using GnuRadio 0.9 [2], C++ and UNIX pipes.

This stack is comprised of Application, Session, Security,
Radio Manager and Radio Hardware layers. It is
reconfigurable at runtime as well. The modules
communicate using named pipes. For a detailed
description of the architecture and implementation of this
stack please refer to [3].

4.2. Current Implementation

For the current implementation, GnuRadio 2.5, Python
2.3.4 [4] and UNIX sockets [5] are used. Our previous
work could not be reused, as the GnuRadio 2.5 code base
went through a major implementation change from
GnuRadio 0.9. Each of the modules are Python objects.
The SDR module is an extension of the GnuRadio 2.5
code. The modulation scheme used by transmit and
receive paths is Frequency Shift Keying (FSK). The SDR
module receives encrypted data from the Encryptor. This
data is then filtered, interpolated and modulated. The
signal is then transmitted over the air interface. At the
receiver the signal is filtered and demodulated to extract
the original data. The modules talk to each other via
UNIX sockets. During runtime any of these modules can
be swapped out with another similar module seamlessly,
based on the command received from the Policy
Enforcement front end.

5. RELATED WORK

In this section we briefly review and contrast some related
work in the field of SDR security.
 The Next Generation (XG) program [6] is developing
specifications and concepts related towards using SDR
technology for a dynamic redistributable spectrum. Their
proposed architecture [7] bears strong similarity to GNU
Software Radio-based data stack design, which is not
surprising since it also seems to be inspired by the ISO
network stack model. The XG group also has a proposed
policy language [8] (for which they have a prototype [9])
with implied policy enforcement architecture. This
architecture is fairly similar to ours, with a “Policy
Conformance Reasoner” corresponding to our validator,
an “Accredited Kernel” playing the role of implementor,
and the notion of a “Sensor” which partly fills our
monitor role. The major differences between the projects
are that the XG has spent considerable effort in
developing what appears to be a comprehensive policy
language and our project has incorporated external
environmental conditions besides radio spectrum use, e.g.
alert level and device user.
 Lam et. al. [10] propose a “Radio Security Module”
for validation and lifecycle management of software on a
SDR. This work is complementary to the work described
in our paper as it serves to validate downloaded software,

 Source

 Encryptor

SDR

Decryptor

 Sink

NewDecryptor

NewEncryptor

Swap at
runtime

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

while our work strives to manage that software’s use
under different conditions once it is installed on the SDR.
 Hill et. al. [1] have performed a threat analysis on the
GNU Software Radio [2] which forms the basis of our
prototype implementation. Their work focused on a
number of software vulnerabilities within the GNU
implementation. These problems include memory access
threats and the risks associated with the manipulation of
the execution graph. This analysis pointed out some
execution weaknesses of the GNU implementation which
effect our implementation as well, namely the single
address space in which the different software modules
run, which in our implementation includes the policy
enforcement modules as well. Advancement of our work
beyond the prototype phase would need to address this
concern. Their work also stressed the need for a strong
policy driven configuration that would provide a
framework to minimize the risks associated with the
programmability of RF parameters. It is crucial that
operating constraints be in place so that security policies
can be effectively enforced.

6. CONCLUSION

We have presented a possible architecture for dynamic
policy enforcement for a SDR system which takes into
account dynamic attributes external to the SDR device
such as the device user and environmental conditions
such as level of alert. Our architecture consists of three
main components, which serve to monitor the current
system configuration and accept requests for changes to
that configuration, validate configuration changes, either
requested or externally driven, and then implement
changes based on requests or deviation of the
configuration from what is valid under policy. To
demonstrate the validity of our system, we have
prototyped our architecture in conjunction with a GNU
Software Radio-based application data stacked previously
implemented at NCSA.
 We examined at length the problems and constraints
that were encountered in this development. As an
extension to our findings, we also considered the
viewpoint that attacks upon an application\system and
internal failure could be seen as changes in behavior that
can be detected by the monitor. These could certainly be
interpreted as requests for new configurations that could
be handled just as safely and easily as we have shown
above. Transitioning our focus into software and away
from hardware dependency has brought along many
inherent security issues. This is seen very clearly with
SDR. Our research has been focused upon abstracting
these issues out of the application layer and addressing
them independently. We have found that secure software

systems can be represented in a model that is highly
adaptive and configurable. Our prototype provides us
with a strong, dynamic security policy enforcement
solution for SDR.

7. ACKNOWLEDGEMENTS

This work is funded by the Office of Naval Research
through the National Center for Advanced Secure
Systems (NCASSR), as was the previous work
developing the GNU SDR Radio-based data stack
described in [3]. The GNU SDR Radio software base
provided the foundation for our project.

8. REFERENCES

[1] R. Hill, S. Myagmar, R. Campbell, Threat Analysis
of GNU Software Radio, World Wireless Congress
(WWC) , May 2005.

[2] http://www.gnu.org/software/gnuradio/
[3] A. Betts, M. Hall, V. Kindratenko, M. Pant, D.

Pointer, V. Welch, and P. Zawada, The GNU
Software Radio Transceiver Platform, Procs of
2004 Software Defined Radio Technical Conference
(SDR Forum), Phoenix (AZ), Nov 2004, Vol. C, pp.
41-46.

[4] http://www.python.org/
[5] W.R.Stevens, “Unix Network Programming, Volume

1: Networking APIs - Sockets and XTI”, 1997,
Prentice Hall PTR

[6] “XG Overview”, visited September 29th, 2005,
 http://www.darpa.mil/ato/programs/xg/overview.html
[7] XG Working Group, “The XG Architectural

Framework, “Request for Comments Version 1.0”
 http://www.darpa.mil/ato/programs/xg/rfc_af.pdf
[8] XG Working Group, “XG Policy Language

Framework Request for Comments Version 1.0”,
http://www.ir.bbn.com/projects/xmac/rfc/rfc-
policylang-1.0.pdf

[9] “The BBN XG Projects”, visited September 29,
2005.
http://www.ir.bbn.com/projects/xmac/pollang.html

[10] Chih Fung Lam, Kei Sakaguchi, Jun-ichi Takada,
and Kiyomichi Araki, "Radio Security Module
that Enables Global Roaming of SDR Terminal while
Complying with Local Radio Regulation," 2003 Fall
IEEE Vehicular Technology Conference (VTC 2003
Fall), Oct. 2003 (Orlando, FL, USA).

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

http://www.ir.bbn.com/projects/xmac/pollang.html
http://srg.cs.uiuc.edu/swradio/hill_threat_wwc05.pdf
http://srg.cs.uiuc.edu/swradio/hill_threat_wwc05.pdf
http://www.gnu.org/software/gnuradio/
https://netfiles.uiuc.edu/kindrtnk/www/papers/article23.pdf
https://netfiles.uiuc.edu/kindrtnk/www/papers/article23.pdf
http://www.python.org/
http://www.darpa.mil/ato/programs/xg/overview.html
http://www.darpa.mil/ato/programs/xg/rfc_af.pdf
http://www.ir.bbn.com/projects/xmac/rfc/rfc-policylang-1.0.pdf
http://www.ir.bbn.com/projects/xmac/rfc/rfc-policylang-1.0.pdf
http://www.ir.bbn.com/projects/xmac/pollang.html

DESIGN SECURITY WITH WAVEFORMS

Jie Feng Joel A. Seely
Altera Corporation Altera Corporation
101 Innovation Dr 101 Innovation Dr
San Jose, CA 95134 San Jose, CA 95134
(408) 544-6753 (408) 544-8122
jfeng@altera.com jseely@altera.com

ABSTRACT

Military communications applications such as the Joint
tactical Radio System (JTRS) are increasingly turning to
FPGAs for large portions of their system design. The
reasons for this are many, but include the benefits of
increased density, functionality, and performance of
FPGAs, as well as higher flexibility, lower development
costs and risks over ASICs. However, as FPGAs become a
more integral part of the leading edge architectural
design, replacing ASICs and ASSPs, security of the FPGA
design and configuration bitstream is of utmost
importance. This paper describes two techniques –
configuration bitstream encryption and handshaking
tokens – for securing designers’ intellectual property (IP)
within SRAM-based FPGAs.

1. INTRODUCTION

Military applications are becoming increasingly complex.
Major programs such as the Future Combat Systems
(FCS) and Joint Tactical Radio System (JTRS) are
pushing technological capabilities on all fronts to their
limits. The electronics in these systems are relying on
programmable logic and FPGAs to provide extreme
flexibility at a reasonable cost while not giving up the
requisite computational power. For example, secure
communication systems are used to connect a variety of
airborne, space ground and sea-based military
communication networks. They are used in the
transmission, processing, recording, monitoring and
dissemination functions of a variety such networks,

including secure data links. All this functionality requires
processing power and reconfigurability.

As FPGAs advance in density, functionality and
performance, they are increasingly used in critical military
system functions that were traditionally filled by ASICs or
ASSPs. However, SRAM-based FPGAs are volatile and
require a configuration bitstream to be sent from a flash
memory or configuration device to the FPGA at power up.
Since this bitstream could be intercepted during
transmission, design security in high-performance FPGAs
is a concern.

2. TECHNIQUES FOR ENSURING BITSTREAM
SECURITY

Two techniques – configuration bitstream encryption and
handshaking tokens – can be used for securing intellectual
property (IP) within SRAM-based FPGAs. The bitstream
encryption is enabled using 128-bit advanced encryption
standard (AES) and a non-volatile key. The 128-bit AES
key makes it much more secure than data encryption
standard (DES - 56-bit key size) and triple DES (112-bit
effective key size). The non-volatile key is stored on the
FPGA and retains its information when power is off,
eliminating the need for unreliable battery backup in harsh
military environments. Handshaking tokens is a method
whereby the FPGA communicates with a CPLD which
includes a non-volatile stored encrypted token. The FPGA
design must read this token and have the matching key,
otherwise the design will shut down.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Figure 1: Altera DSP Builder Design Flow

AES comes in three different key sizes: 128-bit, 192-bit,
and 256-bit. The longer the key size, the more secure, but
also the more processing-intensive and costly. For many
applications, 128-bit AES key size is probably the most
suitable for both security and efficiency. To understand
the level of security, studies have shown that if one could
build a machine that could discover a DES key in seconds,
then it would take that same machine approximately 149
trillion years to discover a 128-bit AES key.

Security key storage, which can be in either a volatile or
non-volatile location, is an important part of overall
security. When the key is stored in volatile memory, an
external backup battery is required when there is no power
to the device. While this solution is quite secure (because
the key will likely be lost if someone tries to attack the
solution by decapping the device), reliability, especially in
military environments, is a major concern. Battery life
depends on temperature and moisture levels of the
surrounding area. If the battery dies, the key will be lost,
and the device becomes unusable and must be sent back to
the factory for repair. Also, adding a battery increases
overall system cost and requires additional manufacturing
steps. The battery needs to be soldered onto the board
after the reflow process. The volatile key needs to be
programmed into the FPGA after both the FPGA and the
battery are on board.

When the key is stored in a non-volatile location, no
external battery is required. This method is more reliable,
practical and flexible. The key can be stored into the
FPGA during regular manufacturing flow, with the FPGA
either on-board or off-board. Various security techniques
need to be employed to make the key difficult to find.

Because only the encrypted configuration file is physically
located in the system with the key stored securely inside
the FPGA, even if the configuration bitstream is captured,
it cannot be decrypted. Read-back of a decrypted
configuration file is not allowed by the FPGA vendors.

Further, the encrypted configuration file cannot be
interpreted and used to configure another FPGA without
the appropriate key, making it very difficult to copy such a
design.

Reverse engineering any FPGA design through
configuration bitstream is very difficult and time-
consuming, even without encryption. For high-density
devices, the configuration file could contain millions of
bits. Some FPGA vendors’ configuration file formats are
proprietary and confidential, providing another layer of
security. With the addition of configuration bitstream
encryption, it may be easier and quicker to build a
competitive design from scratch than to reverse engineer
such a design.

Tampering cannot be prevented if a volatile key is used
because the key is erasable; once the key is erased, the
device can be configured with any configuration file. For
the non-volatile key solution, the device can be set to only
accept configuration files encrypted with the stored key. A
configuration failure signals possible tampering with the
configuration file, whether in the external memory, during
transmission between the external memory and the FPGA,
or during remotely communicated system upgrades. This
is another advantage of a non-volatile key.

3. HANDSHAKING TOKENS

Configuration bitstream encryption is only available in
high-density, high-performance SRAM-based FPGAs.
The following solution allows any FPGA designs to
remain secure even if the configuration bitstream is
captured. This is accomplished by disabling the
functionality of a user design within the FPGA until
handshaking tokens are passed to the FPGA from a secure
external device. The secure external device generates
continuous handshaking tokens to the FPGA to ensure that
it continues operation. This concept is similar to the
software license scheme shown in Figure 2.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

1. Install 1. Configure

2. Software Operation 2. Device

License

File

SRAM-Based
FPGA

...License...

SRAM-Based
FPGA ...Handshaking Tokens...

... Configuration Data ...

Configuration

or Flash
Device

Secure
Device

Figure 2: Comparison of Software License Scheme & FPGA Security Scheme

Configuring the FPGA is similar to installing software
onto a computer; the configuration bitstream is not
protected. The external secure device is similar to the
license file. The software will only operate when a valid
license file is present. The user design within the FPGA
will only operate when the handshaking tokens sent from

the external secure device are valid. A simplified
hardware implementation for this solution is shown in
Figure 3. In this example, a CPLD is used as the secure
external device because it is non-volatile and retains its
configuration data during power down.

RNG

Encryptor

Comparator

User
Design

FPGA CPLD

System Clock
Clock

Random

Handshaking

Counter

Counter
Encrypt

Figure 3: Simplified Hardware Implementation of the FPGA Design Security Solution

Enable

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

After the FPGA is configured, the functionality of the user
design within the FPGA is disabled because the enable
signal is not asserted, while the security block within the
FPGA starts to function. The random number generator
(RNG) generates and sends the initial counter value to the
CPLD. The CPLD encrypts the counter value and sends
the resulting handshaking token to the FPGA. If the
handshaking token matches the data generated internally

inside the FPGA, the enable signal is asserted, and the
user design starts functioning. This process continues
during the entire operation of the FPGA. A mismatch will
cause the enable signal to go low and disable the
functionality of the user design. Figure 4 shows an
example of how the enable signal is used with a simple
AND gate.

Figure 4: Design with Security Scheme

The FPGA user design only works when the handshaking
tokens from the external secure device and the data
generated inside the FPGA are identical. Even if the FPGA
configuration bitstream is stolen, it is useless, similar to
software without a license. Therefore, the FPGA user design
is secure from copying. This solution does not provide
additional protection against reverse engineering (though
difficult) and tampering.

The security of the solution relies on the external secure
device to be secure and the handshaking tokens to be
unpredictable. A secure external device needs to be non-
volatile and retain its configuration during power down (e.g.
CPLDs or security processors). The RNG in the solution is
critical. It ensures that every time the device starts up, it uses
a different initial value. This prevents anyone from storing
the handshaking tokens in a storage device. To prevent
someone from detecting the pattern in the handshaking
tokens, a proven encryption algorithm such as AES should
be used.

To ensure that the security scheme works properly, the
system clock feeding the FPGA user design should be the
same as the system clock feeding the security block. This
prevents someone from disabling the security block when
the enable signal is asserted. To further increase security, the
comparator block can be duplicated several times to produce
more enable signals to feed different portions of the user
designs.

4. CONCLUSIONS

In an era of ever-increasing security concerns, SRAM-based
FPGAs combined with bitstream encryption offer designers
of military systems critical advantages. In addition to high
density, high performance, low development risk and fast
time-to-market benefits over other implementations, they
also deliver a secure approach for protecting proprietary
designs and IP. For FPGAs without this built-in security
feature, an additional non-volatile device can be used to
protect the FPGA design by supplying handshaking tokens.

FPGA Design With Security Scheme

User
Design

Clock Clock
Enable

User
Design

Clock Clock
Enable

Enable

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5. REFERENCES

[1] Design Security using MAX II CPLDs, Altera
http://www.altera.com/literature/wp/wp_m2dsgn.pdf

[2] Design Security in Stratix II Devices, Altera
http://www.altera.com/products/devices/stratix2/features/sec
urity/st2-security.html

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

http://www.altera.com/literature/wp/wp_m2dsgn.pdf
http://www.altera.com/products/devices/stratix2/features/security/st2-security.html
http://www.altera.com/products/devices/stratix2/features/security/st2-security.html

http://scann.hanyang.ac.kr
The Graduate School of Information and

Communications 1

DESIGN OF SECURITY
ARCHITECTURE
FOR SDR SYSTEM

Kim Mun Gi

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 2http://scann.hanyang.ac.kr

Contents

Introduction

About Research

Design of security architecture for SDR Terminal

Conclusion

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 3http://scann.hanyang.ac.kr

1. Introduction

New radio technology of mobile communication.
No necessity to change H/W.
Through S/W, H/W reconfiguration is available.
That is, can download S/W and reconstruct H/W.
Then, S/W's administration is required.

Security Consideration
Software Integrity and Confidentiality
Terminal and Data Authentication
Transmission security

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 4http://scann.hanyang.ac.kr

2. About Research

2.1 SDR System Security Requirements

Expected to solve the compatible problems of various
mobile communication standards.

If this is constructed, We need
Integrity and Confidentiality for download software
Available security algorithm negotiation
Authentication & Access Control
Data encryption

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 5http://scann.hanyang.ac.kr

2. About Research

2.2 Access Control method for SDR Terminal

Access Control prevents unlawfulness access of software.

Access competence is established in Terminal’s state.

Access control of Identity-Based Policy consists on subject
or sub group’s position.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 6http://scann.hanyang.ac.kr

2. About Research

2.3 Certificate management (1)
X.509v3 Certificate Fields

Certificate::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {
Version [0] EXPLICIT Version DEFAULT v1,
SerialNumber CertificateSerialNumber,
Signature AlgorithmIdentifier,
Issuer Name,
Validity Validity,
Subject Name,
SubjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL }

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 7http://scann.hanyang.ac.kr

2. About Research

2.3 Certificate management(2)
X.509 Attribute Certificate Definition

AttributeCertificate ::= SEQUENCE {
acinfo AttributeCertificateInfo,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

AttributeCertificateInfo::= SEQUENCE {
Version AttCertVersion -- version is v2,
Holder Holder,
Issuer AttCertIssuer,
Signature AlgorithmIdentifier,
SerialNumber CertificateSerialNumber,
AttrCertValidityPeriod AttCertValidityPeriod,
Attributes SEQUENCE OF Attribute,

IssuerUniqueID UniqueIdentifier OPTIONAL, Extensions Extensions OPTIONAL }

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 8http://scann.hanyang.ac.kr

3. Design of security architecture for SDR system

SDR System Components
SDR Terminal
SP (Service Provider)
TMS (Terminal Management Server)
DS (Data Server)
CA (Certification Authority)
Attribute CA
PKC (Public Key Certificate)
AC (Attribute Certificate)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 9http://scann.hanyang.ac.kr

3. Design of security architecture for SDR system

3.1 PKC issuance process(1)

Fig. User(Terminal) and Attribute CA PKC Issuance Process

1. Request PKC
2. Identification
3. PKC Issued

Attribute CA

Certificate Authority(CA)

User

1. Request PKC

- User and attribute CA issue PKC from certificate Authority for certification mutually.

- Certificate Authority issues PKC to attribute certificate CA with SDR Terminal.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 10http://scann.hanyang.ac.kr

3. Design of security architecture for SDR system

3.1 AC issuance process(2)

Fig. AC Issuance Process

Attribute CACertificate
Authority(CA)

User

2. Bind Certification
Issuance

(Autonomic method)

Dependency

1.Request Attribute
Certificate(PKC exchange)

- User transmits own PKC to attribute CA for attribute certificate issuance.

- Attribute CA transmits own PKC to user. (mutually relationship of mutual trust
establishment)

- Attribute CA asks to certification engine for user identification.

- If user certification process is completed, issue bind certificate to user.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 11http://scann.hanyang.ac.kr

3. Design of security architecture for SDR system

Comparison Push and Pull model(1)
Push Model

Advantage
Simplification of certification processing process.
Frugality of certification processing time.
Frugality of additional expense for certificate administration.

Shortcomings
There are certificate damage and loss danger.
Can be eavesdropping by hacker at certificate transmission
process.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 12http://scann.hanyang.ac.kr

3. Design of security architecture for SDR system

Comparison Push and Pull model(1)
Pull Model

Advantage
Can reduce certificate damage and loss.
Have softness of attribute information alternation.

Shortcomings
Additional expense is required for certificate administration.
Is proportional in user number and communication load
happens.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 13http://scann.hanyang.ac.kr

3. Design of security architecture for SDR system

3.2 Access control model using PKC and AC

Fig. AC Issuance Process

List Verified

SDR Terminal Access Control
List(ACL)

Administrator

Certificate
Verified

DS (data server)

Software
request

Attribute CA

NO
Approval

YES

(Access:OTA & Simcard etc)

Certification Processing
Server (TMS)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 14http://scann.hanyang.ac.kr

3. Design of security architecture for SDR system

3.3 Software transmission security method
Definition

K_TP : Terminal public key K_TS : Terminal private key
K_TMS_p : TMS public key K_TMS_s : TMS private key
K_DS_p : DS public key K_DS_s : DS private key
K_session : Session Key that server creates
E_K_TP(K_session): Session Key that encode by public key of terminal
E_K_DS_p(K_session): Session Key that encode by public key of DS
E_K_TMS_p(K_session): K_session that encode by K_TMS_p
E_K_TS(E_K_TMS_p(K_session)): Key that encrypt encoded key to K_TS
K_session(R_m) : Terminal request message that is encoded by K_session
K_session(M_m): TMS response message that is encoded by
S_m: Digital signature message that is encoded by K_TP
MD(M) : Message Digest that use Hash algorithm
MD(M)`: Terminal creates Message digest that to compare with MD(M) value.
E_K_DS_s[MD(M)] : Digital Signature that encrypt MD(M) by K_DS_s

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 15http://scann.hanyang.ac.kr

3.3.1 session key shared method between Terminal and TMS

3. Design of security architecture for SDR system

TMS

TMS PKC

Session key creates by TMS

TMS PKC
verified

SDR Terminal

TMS
Certification

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 16http://scann.hanyang.ac.kr

3.3.2 Encryption method between Terminal and TMS

3. Design of security architecture for SDR system

Request Message
(S/W request & Terminal Profile)

Response MessageResponse Message

TMS SDR Terminal

Request Message
(S/W request & Terminal Profile)

Terminal Prefix confirmation

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 17http://scann.hanyang.ac.kr

3.3.3 DS Transmission Security
Encryption method to use Session key

3. Design of security architecture for SDR system

TMS

TMS PKC

Session key created by TMS

TMS PKC
verified

DS

TMS
Certification

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 18http://scann.hanyang.ac.kr

Response SoftwareResponse Software

DS SDR Terminal

3.3.3 DS Transmission Security
Encryption method to use Session key

3. Design of security architecture for SDR system

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 19http://scann.hanyang.ac.kr

3.3.3 DS Transmission Security
Encryption method including node’s signature function

3. Design of security architecture for SDR system

R espo nse S o ftw are
R espo nse S o ftw are

D S SD R Term ina l

R eq uest M essage R eq uest M essage

H ash A lgo rithm
H ash A lgo rithm

c o m p aris o n

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The Graduate School of Information and
Communications 20http://scann.hanyang.ac.kr

4. Conclusion

This paper proposes the certificate process using PKC for SDR
Terminal
S/W access method using AC
The transmission method for the integrity of S/W
We will consider the efficiency of Terminal based on this paper
Continue to research about lightening PKC and the limit of AC access
control scope
Furthermore, in aspect of transmission security , we will continue to
research about Key administration, establishment and distribution.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

