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ABSTRACT 
 
One area of focus in Software Defined Radio (SDR) 
systems is smart antennas.  This is due to their ability to 
provide enhanced communication capacity and minimize 
interference. The optimum least-squares solution of linear 
systems of equations is a key operation in state-of-the-art 
communications systems including smart antenna systems. 
These applications typically require very large amounts of 
processing which makes implementations in cost-effective, 
fixed-point hardware – in Field-Programmable Gate Arrays 
(FPGAs) or Application-Specific Integrated Circuits 
(ASICs) - the preferred implementation choice. 

An efficient implementation of a least-squares solution 
depends on essential characteristics of the vectors and 
matrices that represent the system of equations when cast in 
a linear algebra context. These characteristics include: the 
size of the vectors and matrices, symmetry, as well as other 
structural characteristics. These characteristics, along with 
system requirements for a real-time application drive the 
selection of a suitable algorithm for implementation. 
 

1. INTRODUCTION 
 
Traditionally, the implementation of the Least-Squares (LS) 
solution has been done with general-purpose DSPs using 
floating-point arithmetic. Floating-point arithmetic 
minimizes round-off error making the implementation of a 
LS solution less sensitive to this type of errors.  On the 
other hand, these implementations tend to be limited in 
processing speed due to the use of a single floating-point 
processing unit. The continued success of FPGAs and 
variations of ASICs in the deployment of high performance 
DSP algorithms makes them a very appealing 
implementation fabric. These silicon fabrics, however, are 
typically tailored for implementations with fixed-point 
arithmetic. Consequently, the implementation of the LS 
problem in these fabrics has the inherent challenge of 
sensitivity to round-off errors as incurred with fixed-point 
arithmetic. 

Exploring alternatives early in the design process, while 
its representation is still at a high level of abstraction, 
affords the most leverage in terms of impact on the final 

implementation speed and area cost. Algorithmic and 
architectural optimization can frequently yield multiple 
orders-of-magnitude impact on the speed-area solution 
space of an algorithm. Algorithmic synthesis tools that use a 
true top-down DSP design methodology enable a 
collaborative design effort between algorithm developers, 
system engineers and hardware designers by automating key 
process steps at different levels of abstraction for an direct 
implementation in fixed-point arithmetic hardware. 

This paper presents an effective methodology for the 
exploration of implementation alternatives of LS solution of 
linear systems of equations in fixed-point hardware. With 
the many available choices of algorithms, and the issues 
related to finite-precision effects in fixed-point arithmetic, 
the amount of effort required from a design team to arrive at 
an effective implementation can be formidable. We will 
describe a fine-grained parameterized model-based library 
and algorithm synthesis tool that can be used to automate 
the architecture tradeoff analysis and finite-precision effects 
allowing the design team to evaluate potential 
implementation options early and often in the design 
process. The goal of this methodology is to enable 
achieving an optimum implementation for a particular 
application. More specifically, this paper will explore 
different alternatives for a LS solution implementation 
based on matrix factorization methods in a beamforming 
application. These include Cholesky factorization, 
triangular-orthogonal (QR) factorization, and singular value 
decomposition (SVD) techniques. We will demonstrate how 
this methodology can be effectively used for Software 
Defined Radio (SDR) systems, and we will discuss in detail 
the architecture, micro-architecture, and finite precision 
tradeoff analysis of each of these alternatives. 
 

2. BEAMFORMING 
 
Figure 1 shows a basic narrowband beamformer with K 
sensor elements arranged in a Uniform Linear Array (ULA); 
this also shows a signal source sθ(t) impinging on the array 
at an angle of incidence θ. The K beamformer weights (w1, 
w2, …, wK) are used to linearly combine the array data 
observation samples (x1(n), x2(n), …, xK(n)), and these are 
set to ‘steer’ the response of the array for optimum 
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reception. The output of the beamformer is the scalar output 
y(n). 
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Figure 1 – Narrowband beamformer. 

A Generalized Sidelobe Canceller (GSC) is a special 
beamformer structure that allows the use of unconstrained 
optimization methods in the design of the optimum 
beamformer weights [3], [4]. The structure of the GSC is 
shown in Figure 2. 
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Figure 2 – Generalized Sidelobe Canceller (GSC). 

The overall response of the GSC is given by 
equation (1). 

 y(n) = x(wc – Bwa). (1) 

Here the constant beamformer weights wc are designed in a 
data-independent fashion; the matrix B blocks the passing 
of the input signal of interest in the lower path of the GSC; 
and the weights wa are designed in an optimum manner 
according to characteristics of the input data.. With the 
signal of interest removed, the weights wa steer their inputs 
(containing only interfering signals and noise) to generate a 
signal that is subtracted from the output of the data-
independent path. This effectively cancels, in an optimum 
manner, the interference from the output of the data 
independent part of the GSC. 

When the LS criterion is used, the computation of the 
optimum beamformer weights wa is based on the solution of 
a system of linear equations known as the deterministic 
normal equation [1]. 

 Rxwa = b. (2) 

Here Rx is the deterministic correlation matrix of the input 
to the unconstrained section of the GSC, namely xa = xB; 
and the vector b is the cross-correlation of the input xa and 
the ideal response. 

The optimum beamformer weights wa can then be 
obtained via inversion of the correlation matrix Rx. From a 
numerical stability point of view, it is well established that 
the best approach to matrix inversion is not to do it 
explicitly whenever possible 0. It is better instead to work 
with the system of linear equations represented by (2) and 
then solve this system using an adequate solution technique. 
A number of effective techniques exist for solving the 
deterministic normal equation in (2), this paper will focus 
on three LS solution techniques: Cholesky factorization, QR 
factorization, and SVD. These techniques are outlined in 
Section 3. Traditionally, implementations of the solution to 
(2) have been done with general purpose DSPs and floating-
point arithmetic. This type of implementation is less 
sensitive to round-off errors (finite-precision effects). A key 
disadvantage of these implementations, however, is the 
limited processing power they afford due to the small 
number of floating-point processing units commonly 
available per device. A very appealing alternative for 
implementation is to use FPGAs or ASICs which can offer 
large amounts of parallelism hundreds of computational 
units per device. One complication with these silicon fabrics 
is that they are typically tailored for fixed-point arithmetic, 
and implementation in fixed-point arithmetic is inherently 
challenging because of sensitivity to finite-precision effects. 
 

3. LEAST-SQUARES SOLUTION TO LINEAR 
SYSTEM OF EQUATIONS 

 
A linear system of equations can be cast in linear algebra 
terms as follows: 

 Ax = y, (3) 

where: 

1) A is an mxn data matrix containing the coefficients of 
the variables involved in the set of equations, 

2) x is an nx1 vector with n variables involved in the set 
of equations, 

3) y is an mx1 observation vector with the equations right 
hand side values. 

Depending on the dimensions of the system, and the 
rank of the data matrix A, the system can have different 
types of solution (or no solution at all). The specific type of 
system of equations we will focus on in this paper is the 
over-determined system of equations. This is the case where 
the number of equations is larger than the number of 
unknowns (m>n), resulting in a rectangular matrix A. This 
type of system of equations arises in a number of important 
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areas such as radar, sonar, and other sensor array processing 
applications in general. In these applications, snapshots of 
sensor data form the rows of the matrix and the number of 
columns is determined by the number of sensors in the 
array. 

An over-determined system of equations does not have, 
usually, an exact solution. The solution to this type of 
system requires instead some error criterion to judge the 
optimality of such solution e.g., the minimization of the 2-
norm of the error as in a LS solution. The following sub-
sections outline the LS solution to an over-determined 
system of equations and the use of different matrix 
factorization techniques to find this solution. 
 
3.1. Least-Squares Solution 
 
The LS solution of an over-determined system of equations 
as defined in (3) is the vector x that minimizes the 2-norm 
of the error. This can be expressed as follows for the case of 
real-valued matrices and vectors [5] 

 
2

min yx
nRx

−
∈

A . (4) 

Differentiating this error measure with respect to the vector 
x results in the symmetric system of equations known as the 
normal equations. 

 ATAx = ATy. (5) 

When the data matrix A has full column rank (i.e., it has 
linearly-independent columns), the LS solution of the 
normal equations is unique; multiple techniques to solve 
equation (5) are available. On the other hand, if A is rank 
deficient, the LS solution is not unique and more specialized 
techniques are required to find the optimum LS solution. 
 
3.2. LS Solution with Cholesky Factorization 
 
Cholesky factorization is applicable when the data matrix A 
is full rank. To solve the normal equations using Cholesky 
factorization, the covariance of the data matrix A is used in 
conjunction with the cross-correlation of the matrix A and 
the observation vector. The covariance matrix of A is 
defined as 

 C = ATA. (6) 

The cross-correlation is defined as 

 p = ATy. (7) 

The normal equations can then be expressed as 

 Cx = p. (8) 

Cholesky factorization can be applied to the covariance 
matrix C when this is positive definite. In such case, this 
factorization can be expressed as follows 

 C = RRT, (9) 

where R is an nxn upper-triangular matrix called the 
Cholesky factor of C. Substituting for C in (8) we obtain 

 RTx = z, (10) 

where 

 Rz = p. (11) 

The LS solution x can then be computed via back-
substitution in (11) to obtain z, and then forward-
substitution in (10) using the computed z.  
 
3.3. LS Solution with QR Factorization 
 
Triangular-orthogonal factorization – commonly known as 
QR factorization – is also applicable when the data matrix A 
is full rank. In this technique, the data matrix A is factored 
as the product of two matrices 

 A = QR, (12) 

where Q is an mxm orthogonal (unitary in complex case) 
matrix such that QQ-T = I, and R is an mxn upper-triangular 
matrix. The structure of the R matrix is of the form 

 , (13) 
⎥
⎦

⎤
⎢
⎣

⎡
=

0
R

R 1

where the R1 sub-matrix is of dimensions nxn and 0 is the 
null matrix of dimensions (m-n)xn.  

Substituting for A in the normal equations in (5), we 
have the equivalent system of equations 

 Rx = b, (14) 

where 

 QTy = b. (15) 

The LS solution can then be found via back-substitution of 
the reduced system of equations given by 

 R1x = b1, (16) 

where b1 is the nx1 vector containing the first n elements of 
the vector b. 
 
3.4. LS Solution with SVD 
 
SVD is applicable to the LS solution even when the data 
matrix A is rank deficient. In general, the SVD of an mxn 
matrix A is defined as the factorization 

 A = USVT. (17) 
where: 

1) U∈Rmxm is an orthogonal (unitary in the complex case) 
matrix. The columns of U are the left singular vectors 
of A. 
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2) V∈Rnxn is an orthogonal (unitary in the complex case) 
matrix. The columns of V are the right singular 
vectors of A. 

3) S = diag(σ1, σ2,…, σp) is an mxn diagonal matrix with 
p = min(m, n) and (σ1, σ2,…, σp) are the singular 
values of A. 

By substituting A with its SVD in the normal equations (5) 
we obtain after simplification 

 SVTx = UTy. (18) 

To compute an LS solution of the system of equations 
involves creating the Moore-Penrose pseudo inverse of A 
given by A+=VS+UT, with S+ being a diagonal matrix 
formed with the multiplicative inverses of the non-zero 
singular values of A placed on the diagonal. The LS 
solution is then given by 

 x = A+y. (19) 

 
4. GSC BEAMFORMING EXAMPLE 

 
The GSC beamformer floating-point MATLAB model 
consists of two parts: 1) a top-level script, and 2) a 
synthesizeable model of the LS algorithms (Cholesky, QR, 
and SVD). The top-level script generates the input signals 
and echoes the results to analyze the performance the 
beamformer, this includes: 

• A ULA array of sensors with 4 unity gain, omni-
directional elements operating in a narrowband 
environment. 

• A narrowband input signal of interest impinging at an 
angle of 0o; this angle is commonly referred to as 
broadside. 

• A narrowband interfering signal impinging at an angle 
of 10o and with the same amplitude as the signal of 
interest. This results in a signal-to-interference ratio of 0 
dB. 

• Uncorrelated white noise to model receiver noise at a 
level of -20 dB relative to the signal of interest. 

The top-level script performs the data-independent 
steering of the input sensor data vector as shown in 
Figure 2. It also applies a blocking matrix B to the input to 
generate the interference-and-noise-only data vector xa. This 
script also invokes the various LS algorithms in a streaming 
fashion to perform the adaptation of the spatial filter for 
optimum interference cancellation. 

The second part of the GSC beamformer MATLAB 
model are the various synthesizable LS algorithm functions 
(Cholesky, QR, and SVD) which perform optimum 
cancellation of the interferer signal.  

Figure 3 shows the beampatterns of the GSC. The top 
plot shows the beampattern of the data-independent portion 
of the GSC. This shows that the interferer signal impinging 
at 10o suffers an attenuation of approximately 2dB relative 
to that of the desired signal at 0o; this small attenuation is 
the cause of the distortion in the received signal from the 
broadside. The middle plot shows the overall GSC 
beampattern. The improvement in the cancellation of the 
interfering signal can be seen with the larger attenuation at 
10o. This is what accounts for the cancellation of the 
interferer signal obtained at the output of the GSC. The 
bottom plot is a zoomed view of the overall GSC 
beampattern to highlight the attenuation around 10o. 

 

 
Figure 3 - GSC beam patterns using the QRD-RLS technique. 

 
5. GENERATION OF THE FIXED-POINT MODEL 

 
The starting point in our methodology for obtaining a 
hardware implementation is the original, golden reference 
floating-point MATLAB model of the GSC. The next step 
is to define a fully parameterized fixed-point MATLAB 
model. This model is directly coupled to the original 
floating-point MATLAB model to maintain lockstep with 
this golden reference as we move closer to the actual 
hardware implementation. There are three critical aspects 
for efficiency in this step: 

1) The ability to intuitively associate fixed-point 
parameters with variables in the floating-point 
MATLAB algorithm description. This defines the 
numerical precision for variables and the operations 
performed on these in the algorithm. 

2) The ability to quickly evaluate the finite-precision 
effects on the overall performance of the algorithm. 
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3) Automatic testbench generation to ensure identical 
functionality between the golden reference floating-
point and fixed-point MATLAB models. 

It is important to note that the process of defining a 
fully parameterized fixed-point MATLAB model is 
typically an iterative process. Iterations in this process aim 
at minimizing the word-lengths associated with variables 
and operations in the algorithm to minimize eventual 
hardware implementation costs. At the same time, the 
parameterization must be such that the finite-precision 
effects of the algorithm are minimized.  

In the case of the GSC, the numerical performance of 
the implicit matrix inversion operation is measured by the 
attenuation shown in the overall beampattern. With this 
metric, several iterations were performed to define optimum 
fixed-point arithmetic parameters for each LS algorithm 
using the flow graph shown in Figure 4. This flow graph is 
annotated on the right with the key capabilities of the 
AccelChip DSP Synthesis tool which enable the efficient 
execution of this step in the methodology. 

 

Figure 4 – Fixed-point model definition. 

Several input word-lengths were exercised with the 
intermediate variables sized accordingly to avoid overflows. 
The effect on the attenuation in the beampattern of the GSC 
is shown in Figures 5, 6 and 7 for each LS algorithm. 

Figures 5, 6 and 7 were used to select the word-lengths 
for hardware implementation of the various LS algorithms. 
For the Cholesky factorization technique Figure 5 was used 
to select a 16-bit implementation, for the QRD-RLS 
technique Figure 6 was used to select a 16-bit 

implementation, for the SVD technique Figure 7 was used 
to select a 13-bit implementation.  

 

 
Figure 5 – Finite-precision effects of the Cholesky factorization 

technique on the GSC Beampattern. 

 
Figure 6 – Finite-precision effects of the QRD-RLS technique 

on the GSC Beampattern. 

 
Figure 7 – Finite-precision effects of the SVD technique on the 

GSC Beampattern. 
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With this, the end result of this step in our methodology 
is a fully parameterized, fixed-point MATLAB model of the 
GSC for each LS algorithm. Equally important, these 
models have all the information for sizing of signals and 
arithmetic operations necessary for the generation of a bit-
accurate hardware implementation. 

The foundation for efficiency in the execution of this 
methodology is the use of the AccelChip DSP Synthesis 
tool to enable a high level of automation. This was 
demonstrated via the implementation of a GSC beamformer 
in an FPGA fabric. The results show the effectiveness of the 
methodology when used in the implementation of 
challenging SDR algorithms in fixed-point arithmetic 
hardware. 

 
6. HARDWARE IMPLEMENTATION 

  

Figure 8 – Hardware implementation generation. 

The final step in the methodology is to efficiently generate 
the hardware implementation. There are two critical aspects 
to achieve efficiency in this step: 

1) The ability to quickly evaluate the impact of hardware 
resource utilization (e.g., multipliers, pipeline stages, 
etc.) throughout the algorithm. This ultimately allows 
one to optimally tailor the hardware architecture of the 
implementation to meet area/speed requirements. 

2) The ability to automatically generate an 
implementation that is bit-accurate against the fixed-
point model of the DSP algorithm. With this, the 
hardware implementation unambiguously satisfies the 
numerical precision requirements. 

As in the case of defining the fixed-point arithmetic 
parameters, generation of a suitable hardware 
implementation is done iteratively. The iterations in this 
step are aimed at finding the optimum balance of resource 
utilization and speed of operation to meet the overall system 
area/speed requirements. The process of generating the 
hardware implementation using the AccelChip methodology 
is summarized in the flow graph in Figure 8. This flow 
graph is annotated on the right with the capabilities of the 
AccelChip DSP Synthesis tool which enable the efficient 
execution of this step. 

Implementation results for each LS algorithm are 
shown in Table 1. These results were obtained using Xilinx 
ISE, targeting a Virtex-4 XC4VSX55 device with an overall 
goal of maximum speed of operation and minimum use of 
hardware multipliers. 
 

Table 1 - Implementation results. 
Cholesky QR SVD 

Occupied Slices 1011 (4%) 3076 (12%) 8926 (36%) 
DSP48s 37 1 129 

Sustainable data rate 0.07 Msps 1.7 Msps 0.04 Msps 
 

8. REFERENCES 
 
[1] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood 

Cliffs, New Jersey, 1986. 
7. CONCLUSIONS 

 [2] N.J. Higham, Accuracy and Stability of Numerical 
Algorithms, Society for Industrial and Applied Mathematics, 
Philadelphia, Pennsylvania, 2002. 

This paper presented an efficient methodology for the 
exploration of implementation alternatives of LS solution of 
linear systems of equations in fixed-point hardware. There 
are three essential steps in this methodology. First, the 
capture of the DSP algorithm in a floating-point MATLAB 
model. Second, definition of fixed-point parameters directly 
coupled to the floating-point MATLAB algorithm 
description. Finally, automated generation of a hardware 
implementation that matches the fixed-point model and 
meets area/speed requirements. 

[3] D.H. Johnson and D.E. Dudgeon, Array Signal Processing 
Concepts and Techniques, Prentice-Hall, Upper Saddle River, 
New Jersey, 1993. 

[4] B.D. VanVeen and K. Buckley, “Beamforming: A Versatile 
Approach to Spatial Filtering,” IEEE ASSP Magazine, pp. 4-
24, April 1988. 

[5] G. Golub, C. Van Loan, Matrix Computations, Third Edition, 
John Hopkins University Press, Baltimore, Maryland, 1996. 

[6] D. Rabinkin, W. Song, M. Vai, and H. Nguyen, “Adaptive 
Array Beamforming with Fixed-Point Arithmetic Matrix 
Inversion using Givens Rotations,” Proc. SPIE, 2001.

 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved


	Search by Author
	Search by Session/Paper

