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ABSTRACT 
This paper presents a signal modulation classifier design 
using artificial neural networks. We analyze system-level 
issues including carrier synchronization, bandwidth 
estimation, and modulation classification. This is an 
extension of previous work with the addition of standard-
free signal classification as well as an in-depth analysis of 
the feature space used in the neural network. The results 
show promising classification statistics with over 80% 
success rates in the presence of noise even with higher-order 
digital modulations. 
 

1. INTRODUCTION 
 
Cognitive radios (CR) are intelligent communications 
devices that use knowledge of the external environment and 
user needs to reconfigure themselves to optimize quality of 
service (QoS). Work on creating these radios has focused on 
adaptation on the physical (PHY) and medium access 
control (MAC) layers, which allow waveform adaptation to 
improve QoS as well as better management of wireless 
resources like spectrum [1]. 
 Knowledge of the external environment is generally 
comprised of information extracted from the propagation 
channel modeling and the identification of other signals 
present on the channel. In the presence of additional radios, 
signal identification will provide the CR with the tools to 
either communicate with or avoid them. For this to be a 
feasible implementation, a cognitive radio requires an 
efficient signal classification system. Signal classification is 
the focus of this paper, which extends previous work in this 
area for application to cognitive radios. 
 Signal recognition is a systematic design challenge 
which requires hierarchical signal processing from radio 
frequency (RF) to baseband in order to obtain 
comprehensive knowledge from the carrier to the 
information bit stream. Unlike conventional radios, the CR 
approach requires the receiver to be aware of its radio 
environment. The challenge is in the design of a universal 
receiver that can recognize various modulated waveforms 
with distinct properties.  
 A major issue in conventional receiver design is 
synchronization, specifically carrier recovery and symbol 
timing if digital modulation is used. In modern commercial 

applications, power- and bandwidth-efficient modulation 
schemes make synchronization difficult [2]. Besides carrier 
recovery, symbol timing is essential for coherent 
demodulation. Although there are various symbol 
synchronization and timing algorithms in literature [3], most 
of them rely on prior knowledge of a given standard; 
information like symbol rate, filter characteristics, and 
modulation.  
 Since the CR approach does not assume that such key 
information is available, a standards-free method is required 
to extract these waveform features. Such a “cognitive” 
receiver must be able to synchronize to various signals and 
recognize their modulation to establish a link in the PHY 
layer.  
 The modulation classifier can be implemented at a 
digitized intermediate frequency (IF) by using temporal 
statistical analysis [4] when signal-to-noise ratio (SNR) is 
moderate or high or using spectral analysis when SNR is low 
[5]. It can also work with a digital baseband synchronizer 
like a vector-phase analyzer with a moderate SNR [6]. 
However, most previous work on modulation classification 
has assumed knowledge of the carrier frequency, the symbol 
rate, or the availability of infinite computational power [7], 
all of which are usually unavailable in any practical 
implementation.  
 A systematic understanding of synchronization for a 
cognitive radio receiver implementation is presented in 
Section 2. Section 3 analyzes different approaches to 
modulation classification. Section 4 proposes and explains a 
neural network for modulation classification, and Section 5 
provides performance evaluation through simulation. 
 

2. SYNCHRONIZATION FOR COGNITIVE RADIO 
 
2.1 Signal detection and carrier recovery at RF 
 
The RF signal is typically detected by energy correlation in 
analog circuitry and then downconverted to IF or baseband 
for further processing. For the standards-free approach of 
cognitive radios, the local oscillator (LO) should scan the 
complete target band in search of signals, and a signal 
carrier should be recovered without specific modulation 
knowledge.  Although this seems impossible, there are some 
general implementation practices we can make use of.  
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 First, pilot signals are popular in commercial standards, 
especially for broadcasting and multiple access systems. 
Pilot signals typically are pure tones or have very distinct 
information patterns which are easy to capture by a 
sweeping LO. By recognizing the information in the pilot 
tone, the receiver may identify the signal standard. 
 Second, when a pilot signal is not available, pure ad-hoc 
carrier recovery is needed. Fortunately, most narrow band 
signals fall into two groups. One is with strong carrier and 
the other is with suppressed carrier but a symmetric 
spectrum. For the first case, a conventional narrow-
bandwidth phase-lock loop (PLL) can recover the carrier; 
for the second case, a second-order nonlinear operation can 
remove the modulation and produce a frequency component 
at double the carrier frequency [8]. 
 The recovered carrier is a coarse estimation of the true 
carrier but close enough to initialize the PLL to achieve 
carrier synchronization. The RF signal is then 
downconverted to IF and digitized for a second 
downconversion to baseband where accurate IF carrier 
synchronization is obtained through digital signal processing 
(DSP). This process is explained in the next section. Both 
carrier recovery with and without prior signal knowledge 
can improve performance by applying a feedback loop from 
the baseband demodulator (or phase estimator) for fine 
tuning [3]. The blind signal carrier estimation in a CR 
receiver may have a larger offset which necessitates 
feedback information from baseband DSP. PLL loop gain 
can also be controlled according to feedback. The loop gain 
adjusts the trade-off between sensitivity and speed [9], 
which allows the PLL to acquire unknown signals. 
 
2.2 Synchronization at digital IF and channel bandwidth 
estimation 
 
In a CR receiver, unlike the conventional standard-specific 
case, the waveform recognition is ad-hoc and many key 
features need to be extracted from the signal instead of being 
known in advance. Most of these, including IF carrier 
frequency, symbol rate, pulse shape, and modulation, are 
waveform-related, so they have to be extracted at the digital 
IF stage with a high sampling ratio. The digital carrier 
synchronization can work under a small residual frequency 
offset and phase noise introduced by the preceding analog 
PLL. Both analog and digital PLLs can be aided by decision 
feedback from baseband and thus work jointly on a global 
synchronization [3]. An unknown IF carrier can be estimated 
either with open loop (feed-forward) or closed loop 
(feedback). With an open loop estimation, a peak-seeking 
FFT with appropriate smoothing provides a good starting 
point for a digital PLL; with closed loop estimation, phase-
increment detection provides high accuracy due to high 
sampling ratio.  

 For both analog and digital modulations, channel 
bandwidth needs to be estimated and adjusted in the 
cognitive receiver to match the incoming signal by adaptive 
filtering with demodulator feedback and symbol rate 
estimation. 
 

3. MODULATION CLASSIFICATION FOR CR  
 
3.1 Frequency, time, and vector domain signal analysis 
for modulation classification 
 
Modulation classification consists of signal feature 
extraction and pattern recognition. Different algorithms are 
useful depending on which features are extracted. 
Modulation-related signal features are either waveform-level 
features extracted at digital IF or symbol-level extracted at 
baseband. For analog modulations, only waveform-level 
features are available; however, the modulation schemes are 
relatively easier to see because digital modulations can be 
classified at IF, baseband, or jointly.  
 Waveform-level features are either temporal or spectral. 
Due to the random nature of the modulated signal and the 
sinusoidal nature of the carrier, the received signal has 
cyclostationarity which can be represented in terms of 
statistical moments [7]. At the symbol level, not only 
instantaneous phase calculation but also signal constellation 
and rotation statistics on the complex plane can be 
effectively used to classify the modulation, especially for 
high-order quadrature modulations. 
 
Temporal features 
A modulated signal can be represented in complex format as: 
 
 ( ) ( ) ( ) ( ) ( )( ){ }ttfjexptgtARets ϕπ += 2  (1) 
 
where A(t) is the amplitude, g(t) is the symbol pulse only 
existing in digital modulations, f(t) is the frequency and (t) 
is the phase. All temporal signal features are derived from 
these parameters [10] [11] [12]. 
 Temporal feature-based modulation classification is 
straightforward and easy to implement. However, this 
feature set is typically sensitive to noise and distortion. The 
trade-off between feature robustness and computational 
complexity is the key, which will be detailed in our 
proposed signal classification approach in later sections. 
 
Spectral features 
Compared to temporal features, spectral features are more 
stable against noise. The classic spectral analysis is based on 
the fast Fourier transform (FFT) to estimate the signal’s 
power spectral density (PSD) [13] [14]. Various averaging 
and windowing algorithms are proposed to achieve a 
balance between statistical stability and accuracy [15].   
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 All human-made communication signals have 
cyclostationary nature, i.e., their statistical properties vary 
periodically with time. This inherent feature is modulation 
specific and robust against severe noise and moderate 
distortion and can be extracted by second-order frequency 
correlation [7]. Higher-order spectral calculations are also 
used to classify higher-order modulation schemes. However, 
the huge computational cost makes these approaches almost 
impossible for on-line processing. 
 
Vector-space features 
Vector analysis applies only for digital modulations whose 
complex symbol formats can be represented as 
constellations in the inphase/quadrature (I/Q) plane [8]. This 
provides a graphical insight into the underlying modulation 
schemes [6]. It is a by-product of demodulation, which is 
typically used for accurate phase estimation and fine tuning 
[16]. The vector space is calculated at symbol rates with 
much lower computational cost than digital IF processing.  
 The symbol constellation is naturally the major feature 
in vector space. Its statistical distribution and variation can 
be easily calculated and matched to the signature of the 
modulation scheme and channel properties. As the output of 
a baseband synchronizer, it is sensitive to frequency offset, 
noise, and distortion. 
 
3.2 Feature recognition and pattern classification 
 
In doing pattern classification, two general techniques have 
emerged: decision theoretic and pattern recognition. It has 
been shown that the decision theoretic work is not as robust 
or useful as the pattern recognition approach [17]. 
 For the pattern recognition technique, there are various 
classification methods [18], among which artificial neural 
networks (ANN) [19] are the most suitable for signal 
classification. Their parallel distributed processing (PDP) 
structure provides flexibility and high reconfigurability for 
DSPs; their highly-connected network topology provides 
arbitrary nonlinear mapping for complicated signal feature 
sets; and their simple feed-forward calculation at each node 
(neuron) is suitable for on-line signal processing. ANNs can 
learn and adapt to complex, time-varying features and have 
fault tolerance, thus they are ideal statistical classifiers for 
modulation schemes [20]. 
 

4. COMPACT FEATURE SPACE AND OCON 
NEURAL NETWORK FOR MODULATION 

CLASSIFICATION 
 
The design of an ANN-based classification system involves 
data acquisition, feature extraction and recognition, and 
decision making. 
 
 

4.1 compact feature set in time-domain 
 
Temporal feature extraction is a straightforward approach 
using signal waveforms at digital IF when signal quality is 
relatively good, i.e., with moderate noise and slight 
distortion. Although cyclostationary spectral features are 
more robust against lower SNR and larger distortion, the 
frequency correlation computation is intensive for blind 
classification without prior knowledge of frequency. 
 Temporal features are derived from the general format 
of a communications signal as in equation (1), which 
basically contains the statistics of a signal’s amplitude, 
frequency, and phase variation. 
 Most modulation classifier systems in the literature are 
based on a standard set of features, with different ones 
added for specific modulation schemes. A typical feature set 
is listed in [4]. The features are statistical measures of these 
variations, where any given feature may be similar between 
different modulations but no two modulations are similar in 
all features. The choice of features is a trade-off between 
minimizing the number of features to reduce the ANN input 
size as well as computational complexity and including all 
necessary features for reliable modulation classification. A 
lot of previous work has already started to explore this trade-
off [4] [17] [20]. 
 The increase of feature set size significantly complicates 
the computation. It also takes a longer time for the network 
training process to converge. In our approach, we define five 
features, described by Equations (2) – (6). 
 The standard deviation of the direct value of the 
instantaneous amplitude: 
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 The standard deviation of the envelope of the direct 
value of the instantaneous amplitude, where ENV is a block 
averaging of the amplitude: 
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 The standard deviation of the direct value of the phase 
of the instantaneous signal: 
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 The standard deviation of the change in the phase of the 
instantaneous signal: 
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 The standard deviation of the absolute value of the 
change in the phase of the instantaneous signal: 
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 Note that these features only contain up to second-order 
statistics, and it is clear that phase information is 
emphasized because it is more sensitive to different 
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modulation schemes and less sensitive to white noise than 
instantaneous amplitude and frequency. 
 
4.2 OCON neural network and system design 
 
Most previous work on ANN modulation classification uses 
multi-layer perceptron networks (MLPNs) that trade 
network complexity and computational cost for flexibility 
and robustness in classification. Azzouz [4] uses a huge 3-
layer MLPN, and two additional 2-layer MLPNs are added 
to distinguish specific modulation orders. 
 Modulation schemes are hidden in the received signals 
as second-order features which need strong nonlinear 
processing to extract. They can be grouped by their different 
modulating mechanisms, such as analog and digital 
modulation or frequency and phase-amplitude modulation, 
and these groups may be easily separated. However, similar 
modulations within the same group may only have subtle 
differences, and such differences are further corrupted by 
noise and distortion. All these effects make it difficult to 
apply a single, universal neural network for all the 
modulations under any scenario, even by expanding its size 
or using complicated neuron operations at each node.  
 We propose to look at each modulation in a different 
classifier sub-network. A one-class one-network (OCON) 
structure is created for each modulation type as shown in 
Figure 1. These networks each output a value, a probability 
of a match. The network with the highest output value is 
selected as the modulation type. Figure 1 shows a single 
OCON for one type of modulation. The other incoming lines 
to the MAXNET [21] are from other OCONs for the other 
modulation types. Each OCON is a simple MLPN with an 
input layer that takes five signal features and a single neuron 
output layer. Each OCON uses a radial basis function for 
pattern clustering. This system design is simple with small 
MLPNs and flexible since adding OCONs for new 
modulations is trivial. 
 The classification system is shown in Figure 2, where 
signal features are extracted after the analog signal is 
digitized at IF and passed through an OCON neural network, 
and the output is decoded into a modulation type. 

  
5. SIMULATION AND PERFORMANCE ANALYSIS 

 
We simulated the modulation classifier with seven 
modulations: AM, FM, BPSK, BFSK, QPSK, QAM8, and 
QAM16, which are typical modulations used in narrowband 
wireless communications. We evaluated the performance by 
creating real-world signals that were band limited and the 
digital signals were pulse shape filtered. We also 
investigated the performance dependency on different SNR 
values in an additive white Gaussian noise (AWGN) 
environment. We used SNR values of 50, 20, 10, and 0 dB 
as well as a low-noise system (100 dB) as a baseline. Table 
1 lists the success rate of classification for all SNR values. 
  

  
 The analog modulation information was generated by 
taking an audio waveform using MATLAB, sampled at 8 
kHz. The digital modulation information was generated as a 
pseudorandom sequence of bits with a rate of 1 kbps. The 
symbols were shaped using a square root raised cosine filter 
with a 0.5 roll-off factor. A total of 800 signals of each 
modulation type were created to the above specifications. 
One hundred of these signals were used to train each OCON 
and 700 signals were used in the testing of the parallel 
system. 
 Training took thirty thousand iterations in twenty 
minutes, which was well beyond what was required as about 
90% of the optimization of the networks was done in the 
first ten thousand iterations. The remaining fifteen or so 
minutes only trained another 10%. In this network, training 
is performed off-line, and the operational question is the 
length of time required to classify a newly observed signal. 
In the MATLAB simulation, the average time to classify is 
0.01 seconds for feature extraction and 0.025 seconds for 
classification. The time requirement would be greatly 
reduced in a live system because it would be executed on a 
more computationally efficient platform in compiled form. 

Table 1. Success Rate of Classification 
 Probability of Success for SNR 

Modulation 10 dB 20 dB 50 dB 100 dB 
AM 94.0 99.0 100.0 99.0 
FM 100.0 100.0 100.0 100.0 
BPSK 100.0 100.0 100.0 100.0 
QPSK 64.0 86.0 92.0 90.0 
BFSK 43.0 100.0 100.0 100.0 
QAM8 34.0 34.0 62.0 59.0 
QAM16 67.0 64.0 73.0 88.0 
Overall 68.7 83.3 89.6 90.9 

Figure 2. Information flow for ANN modulation classifier. 

Figure 1. OCON for a modulation as input to the MAXNET. 
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 The overall probability of successfully classifying any 
signal is over 80% for 20 dB SNR and above. This is 
comparable with the results presented in many of the papers 
reviewed. However, on closer inspection, we note that most 
of the confusion occurs when trying to differentiate between 
the quadrature modulation signals, QPSK, QAM8, and 
QAM16. Removing these from the system (as some previous 
work does) dramatically increases the overall probability of 
successful classification. The next section provides insight 
into how the neural network actually works. 
 
5.2 Feature space analysis 
 
For illustration, only the 100 dB SNR (low-noise) and 10 dB 
SNR (noisy) results are compared, but the analysis applies to 
any SNR. The entire feature set consists of average standard 
deviation values for one hundred signals.  
  The feature space with multiple feature dimensions is 
the basis of pattern classification by neural networks, which 
is how the OCON is able to distinguish different modulation 
types. While certain features group modulation types 

together, other features help separate them. We explain the 
feature space by plotting subgroups of the feature set and 
show how different signals may be classified by the neural 
network’s clustering nature.  
 Figure 3 plots a feature sub-space of the standard 
deviation of the amplitude versus the standard deviation of 
the differential phase at 100 dB and 10 dB SNR. All 
modulations in the following plots use the same color and 
symbol convention. The low-noise signals in Figure 3 
illustrate how easily BPSK, FM, BFSK, and AM are 
differentiated. They exist in different sections of the feature 
space and can easily be distinguished with a radial basis 
function mapping. Conversely, QPSK, QAM8, and QAM16 
lie very close to each other, making separation difficult. 
 To see how added dimensionality increases the ability 
of the system to separate modulations, we look at a three-
dimensional plot of the standard deviation of amplitude, 
envelop, and differential phase, as shown in Figure 4 with 
both the 100 dB and the 10 dB SNR signals. Specifically, 
Figure 4a shows how in three dimensions, the QPSK, 
QAM8, and QAM16 signals distinguish themselves more 

(a) 

 

(b) 
Figure 3. Feature Space for standard deviation of amplitude 
versus differential phase for (a) 100 dB and (b) 10 dB SNR. 

(a) 

 

(b) 
Figure 4. Feature space for the standard deviation of amplitude, 

envelope, and differential phase for (a) 100 dB and (b) 10 dB. 
SNR. 
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than in two dimensions. Figure 4b confirms the problems 
with added noise and again shows how the QPSK, QAM8, 
and QAM16 crowd together due to noise. 
 It is difficult to separate high-order modulations such as 
QAM8 and QAM16 unless high-order statistical moments 
are calculated to “extract” the modulation-specific 
information for feature clustering. In the previous work, 
simple systems ignored these modulations, and complex 
systems traded high computational cost for acceptable 
performance. 
 

6. CONCLUSION AND FUTURE WORK 
 
One contribution to the signal classification system in this 
paper is the new network design using the parallel OCONs 
as opposed to a single MLPN. Our design allows great 
flexibility and on-line updates of classification systems as 
new modulation classification is required and developed. 
Another contribution is the analysis of the signal feature 
space for various modulation schemes. 
 While we have analyzed an OCON-ANN classifier for 
seven different modulations, this work is not without its 
problems and room for improvement. Specifically, we have 
shown the difficulty in distinguishing between the QAM 
modulations. More work needs to be done to find the 
optimal feature set for all of the modulations. The goal is to 
use the minimum number of features with the least 
computational cost. 
 Our work in this paper lacks an analysis of channel 
conditions other than AWGN and focuses on narrowband 
signals. Multipath fading and interferences, although these 
may be alleviated by equalization, make classification 
difficult. The current research is directed to design the 
complete cognitive wireless receiver that provides a system 
solution of waveform recognition from RF to baseband, as 
stated in the beginning sections. An additional goal is to 
build a system that can classify all existing/overlapping 
signals because we do not know which signal is the desired 
one. Spread spectrum and ultra-wideband signals offer even 
greater challenges to the operation of a modulation 
classifier. 
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2

Presentation Outline

Cognitive radio (CR) overview
Synchronization for CR
Modulation classification
Neural network for modulation identification
Waveform feature space analysis
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3

Cognitive Radio

Cognitive radios (CRs) are intelligent 
communications devices that are aware of 
the external environment and user needs to 
reconfigure themselves to optimize quality of 
service (QoS).
Physical (PHY) and MAC layer agility
Cross-layer performance optimization
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4

Radio Environment Awareness

Radio-domain cognition – a low-layer 
intelligence over SDR platform
Propagation channel modeling and tracking
Spectrum sensing and understanding
Waveform recognition and modulation 
identification

I don’t understand the meaning of “low-layer intelligence over SDR platform”.   Do you mean “…intelligence supervising the 
SDR platform”?
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Universal Waveform Recognition

Standard-based or standard-free waveform 
recognition
System-wide cognitive receiver design

Energy
Detection

RF
Tuning Synchronization Modulation

Identification

Signal
Input Demod

ADC Digital
IF

Universal
Carrier

Recovery

D D CMA
Eq.

PSF
Decimator

Timing

FFT + windowing
Statistical moments
Vector space

Feedback
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6

General Synchronization Design Challenge

Carrier recovery is modulation-specific or 
pilot-aided
Symbol timing is data-aided
Equalization is based on known link standard
Demodulation is after known matched filter
System-level design reform is needed for 
universal synchronization 
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7

Communication Signal Analysis Methods

A hybrid, hierarchical signal feature 
classification approach is designed 

Where: digital IF and baseband
Methods: temporal, spectral, and vector space
How: using neural network for signal classification
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Waveform Features

Temporal statistical features
Statistical moments with different orders
User-defined metrics based on basic statistics

Spectral statistical features
Power spectral density (PSD)
Cyclostationarity features

Vector-space features
Constellation distribution
Complex phase swing and rotation
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Design Considerations

Suitability for embedded DSP
Efficiency for low-power on-line processing
Adaptation for wireless channel variations
Flexibility for reconfigurability and hardware 
compatibility
Robustness for reliable performance
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Modulation Classifier Options

Decision theoretic
Threshold control
Error misleading
Difficult to reconfigure

Ad-hoc direct classify
Input encoding
Training needed
Network configuration

Multi-layer 
Perceptron 
Network.
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Neural Networks for Direct Classification

Parallel distributed processing (PDP) nature
Flexibility in topology and connection 
configuration
Arbitrary nonlinear mapping capability
Simplicity for on-line processing
Self-learning and adaptation
Robust against noisy inputs
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One-class-one-network (OCON) 
Multi-layer perceptron network (MLPN) 

Large, heavy computation, slow
OCON with maxnet decision maker

2-layer (5+1) small sub-net for each modulation 
Simple voting at maxnet output
Easy to reconfigure, and VERY fast
Ideal for DSP implementation
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Waveform Features
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Modulating mechanisms define how amplitude, frequency 
and phase vary, not their values
Waveform changes in time and frequency
Signal constellation moves in real and complex domain

AM (modulation index =1) BPSK (pulse-shaping roll-off = 0.5)

Note that I have changed your wording in the second and third bullet 
items to make the structure parallel.  But aren’t changes in time and 
frequency exactly the same as changes in the complex domain?   I
don’t think that the second and third bullets are disjoint things.  They 
have some overlap but seem to be presented as if they are different.
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Waveform Features in Time Domain

- Standard deviation of the absolute value of the phase changeσ|Δφ|

- Standard deviation of the change in phaseσΔφ

- Standard deviation of the phaseσφ

- Standard deviation of signal envelopeσENV

- Standard deviation of the signal amplitudeσa

Only five basic statistics need to be calculated
Represent up to second-order statistics  It isn’t clear to me what this means

Phase information is emphasized because 
More sensitive to different modulation schemes
Less sensitive to noise than instantaneous amplitude and 
frequency

In MATLAB, the average time to classify is 0.01 seconds for 
feature extraction and 0.025 seconds for classification
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A Typical Performance with AWGN 

What causes the problem at low SNR ? 

90.989.683.368.7Overall
88.073.064.067.0QAM16
59.062.034.034.0QAM8
100.0100.0100.043.0BFSK
90.092.086.064.0QPSK
100.0100.0100.0100.0BPSK
100.0100.0100.0100.0FM
99.0100.099.094.0AM
100 dB50 dB20 dB10 dBModulation

Probability of Success for SNR

Table 1. Success Rate of Classification
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Modulation Schemes in Feature Space

0 0.2 0.4 0.6 0.80

0.1

0.2
0.5

1

1.5

2

σa

σENV

σ
| ∆
φ
|

AM

QPSK

QAM16 QAM8 BFSK

FM

BPSK

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



0 0.2 0.4 0.6 0.8
1.4

1.6

1.8

2

2.2

2.4

σa
σ
φ

0 0.2 0.4 0.6 0.8
1.4

1.6

1.8

2

2.2

2.4

σa

σ
φ

Modulation Schemes in Feature Space 
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SNR=50dB SNR=10dB

Separation reduced by noise 
Differentiation is determined by feature space definition
Trade-off between computational cost and performance
Trade-off between network size and nonlinearity
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How Dimension Helps
Modulation signals at SNR = 10 dB :
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Status of Work

New network design of parallel OCONs as 
opposed to conventional single MLPN
Analysis of the signal feature space for 
various modulation schemes that no paper 
did before
Illustration of the difficulty in QAM 
modulations that no paper explained before
Combinatorial signal identification approach 
is under CWT’s current research 
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