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ABSTRACT
This paper presents a signal modulation classifiesign

applications, power- and bandwidth-efficient modioia
schemes make synchronization difficult [2]. Besidasrier

using artificial neural networks. We analyze systewel recovery, symbol timing is essential for coherent
issues including carrier synchronization, bandwidthdemodulation. Although there are various symbol
estimation, and modulation classification. This @&  synchronization and timing algorithms in literat{igd most

extension of previous work with the addition ofrstard-
free signal classification as well as an in-depthalgsis of
the feature space used in the neural network. Ekealts
show promising classification statistics with ov80%
success rates in the presence of noise even wjtlehbrder
digital modulations.

1. INTRODUCTION

Cognitive radios (CR) are intelligent communicasion
devices that use knowledge of the external enviesirand
user needs to reconfigure themselves to optimizdityuof
service (QoS). Work on creating these radios hassied on

of them rely on prior knowledge of a given standard
information like symbol rate, filter characteristicand
modulation.

Since the CR approach does not assume that sych ke
information is available, a standards-free mettsockquired
to extract these waveform features. Such a “coggfiti
receiver must be able to synchronize to variousatggand
recognize their modulation to establish a link e PHY
layer.

The modulation classifier can be implemented at a
digitized intermediate frequency (IF) by using temg
statistical analysis [4] when signal-to-noise rafgNR) is
moderate or high or using spectral analysis wheR &Now

adaptation on the physical (PHY) and medium accesgb]. It can also work with a digital baseband symctizer

control (MAC) layers, which allow waveform adaptetito

like a vector-phase analyzer with a moderate SNR [6

improve QoS as well as better management of wselesHowever, most previous work on modulation clasatiian

resources like spectrum [1].

has assumed knowledge of the carrier frequencysythol

Knowledge of the external environment is generallyrate, or the availability of infinite computationpbwer [7],

comprised of information extracted from the propeya
channel modeling and the identification of othegnsis
present on the channel. In the presence of addltiaulios,
signal identification will provide the CR with theols to
either communicate with or avoid them. For thisbi a
feasible implementation, a cognitive radio requiras
efficient signal classification system. Signal sléisation is
the focus of this paper, which extends previouskwarthis
area for application to cognitive radios.

all of which are usually unavailable in any praatic
implementation.

A systematic understanding of synchronization &or
cognitive radio receiver implementation is presdnia
Section 2. Section 3 analyzes different approactees
modulation classification. Section 4 proposes afulagns a
neural network for modulation classification, anecton 5
provides performance evaluation through simulation.

Signal recognition is a systematic design chakeng 2. SYNCHRONIZATION FOR COGNITIVE RADIO

which requires hierarchical signal processing fromadio
frequency (RF) to baseband in order
comprehensive knowledge from the carrier to
information bit stream. Unlike conventional raditise CR
approach requires the receiver to be aware of dtior
environment. The challenge is in the design of aearsal
receiver that can recognize various modulated veames
with distinct properties.

to obtain2.1 Signal detection and carrier recovery at RF
the

The RF signal is typically detected by energy datien in

analog circuitry and then downconverted to IF oseiend
for further processing. For the standards-free @gdr of
cognitive radios, the local oscillator (LO) showddan the
complete target band in search of signals, andgaaki

A major issue in conventional receiver design iscarrier should be recovered without specific motioma

synchronization, specifically carrier recovery asgimbol
timing if digital modulation is used. In modern cowrcial

knowledge. Although this seems impossible, theeesame
general implementation practices we can make use of
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First, pilot signals are popular in commerciahstards,
especially for broadcasting and multiple accesderys.
Pilot signals typically are pure tones or have veistinct
information patterns which are easy to capture by
sweeping LO. By recognizing the information in thiot
tone, the receiver may identify the signal standard

Second, when a pilot signal is not available, @déoc
carrier recovery is needed. Fortunately, most marand
signals fall into two groups. One is with strongria and

For both analog and digital modulations, channel
bandwidth needs to be estimated and adjusted in the
cognitive receiver to match the incoming signaldoiaptive
diltering with demodulator feedback and symbol rate
estimation.

3. MODULATION CLASSIFICATION FOR CR

3.1 Frequency, time, and vector domain signal analysis

the other is with suppressed carrier but a symmetrifor modulation classification

spectrum. For the first case, a conventional
bandwidth phase-lock loop (PLL) can recover theriegr
for the second case, a second-order nonlinear t@erean
remove the modulation and produce a frequency caemgo
at double the carrier frequency [8].

The recovered carrier is a coarse estimation ®ftrie
carrier but close enough to initialize the PLL tohigve
carrier  synchronization. The RF signal is
downconverted to IF and digitized for

narrow

Modulation classification consists of signal featur
extraction and pattern recognition. Different algons are
useful depending on which features are extracted.
Modulation-related signal features are either wanmaflevel
features extracted at digital IF or symbol-levelragted at
baseband. For analog modulations, only waveforratiev

thenfeatures are available; however, the modulatioeses are
a secondrelatively easier to see because digital modulatican be

downconversion to baseband where accurate IF carrielassified at IF, baseband, or jointly.

synchronization is obtained through digital sigpadcessing
(DSP). This process is explained in the next sectigoth
carrier recovery with and without prior signal kriedge
can improve performance by applying a feedback foom
the baseband demodulator (or phase estimator) if@ f
tuning [3]. The blind signal carrier estimation & CR

Waveform-level features are either temporal ocspé
Due to the random nature of the modulated signél tae
sinusoidal nature of the carrier, the received aigmas
cyclostationarity which can be represented in terofis
statistical moments [7]. At the symbol level, nonlyo
instantaneous phase calculation but also signadteltation

receiver may have a larger offset which necessitateand rotation statistics on the complex plane can be

feedback information from baseband DSP. PLL loom ga
can also be controlled according to feedback. Bog lgain
adjusts the trade-off between sensitivity and spfjd
which allows the PLL to acquire unknown signals.

2.2 Synchronization at digital IF and channel bandwidth
estimation

In a CR receiver, unlike the conventional standaeeific
case, the waveform recognition is ad-hoc and mazy k
features need to be extracted from the signaladsté being
known in advance. Most of these, including IF aarri
frequency, symbol rate, pulse shape, and modulatos
waveform-related, so they have to be extracteteatligital
IF stage with a high sampling ratio. The digitalrria
synchronization can work under a small residuaddescy
offset and phase noise introduced by the precedirajog
PLL. Both analog and digital PLLs can be aided bygision
feedback from baseband and thus work jointly orlodaj
synchronization [3]. An unknown IF carrier can Istirmated

effectively used to classify the modulation, esphyifor
high-order quadrature modulations.

Temporal features
A modulated signal can be represented in complexdbas:

s(t)= Re{A@a()exelizrt (1) + o)}

where A(t) is the amplitudeg(t) is the symbol pulse only
existing in digital modulationd(t) is the frequency ang(t)
is the phase. All temporal signal features arevedrifrom
these parameters [10] [11] [12].

Temporal feature-based modulation classificatien i
straightforward and easy to implement. Howevers thi
feature set is typically sensitive to noise andadi®n. The
trade-off between feature robustness and compuotdtio
complexity is the key, which will be detailed in rou
proposed signal classification approach in latetiges.

1)

Spectral features

either with open loop (feed-forward) or closed loopCompared to temporal features, spectral featuresvare

(feedback). With an open loop estimation, a peakisg
FFT with appropriate smoothing provides a goodtisigr
point for a digital PLL; with closed loop estimatiophase-
increment detection provides high accuracy due igh h
sampling ratio.

stable against noise. The classic spectral analybiased on
the fast Fourier transform (FFT) to estimate thgnal's
power spectral density (PSD) [13] [14]. Various raggng
and windowing algorithms are proposed to achieve a
balance between statistical stability and accufasy
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All  human-made communication signals
cyclostationary nature, i.e., their statistical gedies vary
periodically with time. This inherent feature is doutation

have4.1 compact feature set in time-domain

Temporal feature extraction is a straightforwarghrapch

specific and robust against severe noise and miderausing signal waveforms at digital IF when signadlgy is

distortion and can be extracted by second-ordejuérecy
correlation [7]. Higher-order spectral calculatiosm® also
used to classify higher-order modulation schemesvéver,
the huge computational cost makes these approatiest
impossible for on-line processing.

Vector -space features
Vector analysis applies only for digital modulatowhose
complex symbol formats can be represented
constellations in the inphase/quadrature (1/Q) @lg8). This
provides a graphical insight into the underlyingdulation
schemes [6]. It is a by-product of demodulationjolvhis
typically used for accurate phase estimation and funing
[16]. The vector space is calculated at symbolsratéh
much lower computational cost than digital IF pissieg.
The symbol constellation is naturally the majcatiee
in vector space. Its statistical distribution arafiation can
be easily calculated and matched to the signatfirthe
modulation scheme and channel properties. As thpubof
a baseband synchronizer, it is sensitive to frequeifset,
noise, and distortion.

3.2 Featurerecognition and pattern classification

In doing pattern classification, two general tecjueis have
emerged: decision theoretic and pattern recognitiohas
been shown that the decision theoretic work isasotobust
or useful as the pattern recognition approach [17].

For the pattern recognition technique, there amgous
classification methods [18], among which artificiaéural

relatively good, i.e., with moderate noise and htlig
distortion. Although cyclostationary spectral feat are
more robust against lower SNR and larger distortibie
frequency correlation computation is intensive fadind
classification without prior knowledge of frequency
Temporal features are derived from the generahéor
of a communications signal as in equation (1), twhic
basically contains the statistics of a signal's Etonge,

afrequency, and phase variation.

Most modulation classifier systems in the literatare
based on a standard set of features, with diffecerds
added for specific modulation schemes. A typicatdee set
is listed in [4]. The features are statistical nueas of these
variations, where any given feature may be sintiktween
different modulations but no two modulations amaiksir in
all features. The choice of features is a tradebeffveen
minimizing the number of features to reduce the ANput
size as well as computational complexity and inicigdall
necessary features for reliable modulation classifin. A
lot of previous work has already started to exptbie trade-
off [4] [17] [20].

The increase of feature set size significantly jglicates
the computation. It also takes a longer time fer tietwork
training process to converge. In our approach, efnd five
features, described by Equations (2) — (6).

The standard deviation of the direct value of the
instantaneous amplitude:

_ 18 A HLS
The standard deviation of the envelope of thectlire

)

networks (ANN) [19] are the most suitable for signa value of the instantaneous amplitude, where EN¥ lidock

classification. Their parallel distributed processi(PDP)
structure provides flexibility and high reconfigbiiity for
DSPs; their highly-connected network topology pdes
arbitrary nonlinear mapping for complicated sigfedture
sets; and their simple feed-forward calculatioeath node
(neuron) is suitable for on-line signal processiiiNs can
learn and adapt to complex, time-varying featurss laave
fault tolerance, thus they are ideal statisticaksifiers for
modulation schemes [20].

4. COMPACT FEATURE SPACE AND OCON
NEURAL NETWORK FOR MODULATION
CLASSIFICATION

The design of an ANN-based classification systevolires
data acquisition, feature extraction and recognjtiand
decision making.

averaging of the amplitude:

: : 3)
o =J§$;EM R

The standard deviation of the direct value of phase
of the instantaneous signal:

o (4)
i L

The standard deviation of the change in the pbatige
instantaneous signal:

N N (5)
ou = a3 0 LS 0

The standard deviation of the absolute value ef th
change in the phase of the instantaneous signal:

o= g mer S g el

Note that these features only contain up to secoddr
statistics, and it is clear that phase informatien
emphasized because it is more sensitive to differen

(6)
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modulation schemes and less sensitive to whiteenthian

instantaneous amplitude and frequency. i
P quency VAIREE [> Feaure j> ANN :> Decoder f‘>“1‘;‘;“e'j§'jt”

4.2 OCON neural network and system design Signalin

Figure 2. Information flow for ANN modulation classifier.

Most previous work on ANN modulation classificatioges
multi-layer perceptron networks (MLPNs) that trade 5. SSIMULATION AND PERFORMANCE ANALYSIS
network complexity and computational cost for flahiy
and robustness in classification. Azzouz [4] uségige 3- e simulated the modulation classifier with seven
layer MLPN, and two additional 2-layer MLPNs aredad  podulations: AM, FM, BPSK, BFSK, QPSK, QAMS, and
to distinguish specific modulation orders. _ ~ QAM16, which are typical modulations used in narawd

Modulation schemes are hidden in the receivedagn \yjreless communications. We evaluated the perfocmdry
as second-order features which need strong nonline@reating real-world signals that were band limitedi the
processing to extract. They can be grouped by dierent  gigital signals were pulse shape filtered. We also
modulating mechanisms, such as analog and digitahyestigated the performance dependency on diffeB&R
modulation or frequency and phase-amplitude momwlat \ajyes in an additive white Gaussian noise (AWGN)
and these groups may be easily separated. How&wlar  enyironment. We used SNR values of 50, 20, 10,Gdé
modulations within the same group may only havetlsub ¢ \well as a low-noise system (100 dB) as a baseliable
differences, and such differences are further @edi by 1 jists the success rate of classification foSNR values.
noise and distortion. All these effects make itficifit to
apply a single, universal neural network for alleth Table 1. Success Rate of Classification
modulations under any scenario, even by expandingiie Probability of Success for SNR
or using complicated neuron operations at each.node Modulation 10 dB 20 dB 50dB 100 dB

We propose to look at each modulation in a differe AM 94.0 99.0 100.0 99.0
classifier sub-network. A one-class one-network (D{ EM 100.0 100.0 100.0 100.0
structure is created for each modulation type aswehin BPSK 100.0 100.0 100.0 100.0
Figure 1. These networks each output a value, baitity QPSK 64.0 86.0 92.0 90.0
of a match. The network with the highest outputueals BFSK 43.0 1000 1000  100.0
selected as the modulation type. Figure 1 showmgles 82326 ‘Z‘;'g 23'8 328 22'8
OCON for one type of modulation. The other incomings Sverall 687 83.3 89.6 90.9

to the MAXNET [21] are from other OCONSs for the eth
modulation types. Each OCON is a simple MLPN with a
input layer that takes five signal features anthgls neuron
output layer. Each OCON uses a radial basis fundiio
pattern clustering. This system design is simplt wmall
MLPNs and flexible since adding OCONs for new
modulations is trivial.

The classification system is shown in Figure 2emgh
signal features are extracted after the analogakids
digitized at IF and passed through an OCON newtlark,
and the output is decoded into a modulation type.

The analog modulation information was generated by
taking an audio waveform using MATLAB, sampled at 8
kHz. The digital modulation information was generhas a
pseudorandom sequence of bits with a rate of 1.Kbps
symbols were shaped using a square root raisedecter
with a 0.5 roll-off factor. A total of 800 signalsf each
modulation type were created to the above spetifica
One hundred of these signals were used to traim @&ON
and 700 signals were used in the testing of thallehr
system.

L Training took thirty thousand iterations in twenty

minutes, which was well beyond what was requiredtasut
90% of the optimization of the networks was donehia
first ten thousand iterations. The remaining fiftegr so
minutes only trained another 10%. In this netwdr&ining
is performed off-line, and the operational questisnthe
length of time required to classify a newly obsergignal.
In the MATLAB simulation, the average time to clifgss
’_' 0.01 seconds for feature extraction and 0.025 skcdor

’—> classification. The time requirement would be dyeat

reduced in a live system because it would be erecah a

more computationally efficient platform in compilézm.

OENV

MAXNET

000 0¢

—
|
=
>

Figure 1. OCON for a modulation asinput to the MAXNET.
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The overall probability of successfully classifyi@ny together, other features help separate them. Whiaxihe
signal is over 80% for 20 dB SNR and above. This ideature space by plotting subgroups of the feasateand
comparable with the results presented in many @fptipers show how different signals may be classified by nieeral
reviewed. However, on closer inspection, we nog thost network’s clustering nature.
of the confusion occurs when trying to differergifietween Figure 3 plots a feature sub-space of the standard
the quadrature modulation signals, QPSK, QAMS8, andleviation of the amplitude versus the standardatievi of
QAM16. Removing these from the system (as someiquev the differential phase at 100 dB and 10 dB SNR. All
work does) dramatically increases the overall pbdligp of modulations in the following plots use the sameoca@nd
successful classification. The next section pravidesight symbol convention. The low-noise signals in Figule

into how the neural network actually works. illustrate how easily BPSK, FM, BFSK, and AM are
differentiated. They exist in different sectionstié feature
5.2 Feature space analysis space and can easily be distinguished with a rduhals

function mapping. Conversely, QPSK, QAM8, and QAM16
For illustration, only the 100 dB SNR (low-noise)dal0 dB lie very close to each other, making separatioficdi.

SNR (noisy) results are compared, but the anafysities to To see how added dimensionality increases thétyabil
any SNR. The entire feature set consists of avestagelard of the system to separate modulations, we look tiree-
deviation values for one hundred signals. dimensional plot of the standard deviation of atnplk,

The feature space with multiple feature dimersi@n envelop, and differential phase, as shown in Figungith
the basis of pattern classification by neural nekaowhich  both the 100 dB and the 10 dB SNR signals. Spetiific
is how the OCON is able to distinguish differentdulation  Figure 4a shows how in three dimensions, the QPSK,
types. While certain features group modulation $ype QAMS8, and QAM16 signals distinguish themselves more

(b) (b)
Figure 3. Feature Space for standard deviation of amplitude Figure 4. Feature space for the standard deviation of amplitude,
versus differential phasefor (a) 100 dB and (b) 10 dB SNR. envelope, and differential phase for (a) 100 dB and (b) 10 dB.
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than in two dimensions. Figure 4b confirms the peots  [2] L. E. Franks, "Carrier and bit synchronizatian data
with added noise and again shows how the QPSK, QAMS ((::ommum_catpn . 2318 tut08r|al ;.ejl.v(ﬁwf]!;)EEJ.gS-l(-)rans.
and QAM16 crowd together due to noise. ommunicationsvol. 28, no. 8, pp. —112y, :

Q. o 9 . . [3] H. Meyr, M. Moeneclaey, and S. A. FechteDigital

It is difficult to separate high-order modulatiosigch as L . e

) o Communication Receivers - Synchronization, Channel

QAM8 and QAM16 unless high-order Stat'St'C?I momgnt Estimation, And Signal Processingew York: John Wiley &
are calculated to “extract” the modulation-specific Sons, 1998.

information for feature clustering. In the previousrk, [4] E. E. Azzouz and A. K. Nandi, “Procedure fant@matic

simple systems ignored these modulations, and empl recognition of analogue and digital modulations)’|EEE
systems traded high computational cost for accéptab  Proc. Communicationsol. 143, no. 5, 1996, pp. 259-266.
performance. [5] S. L. Marple, "A tutorial overview of modernpectral

estimation," iNEEE Proc. ICASSP1989, pp. 2152-2157.

[6] B. G. Mobasseri, "Constellation shape as ausblsignature
6. CONCLUSION AND FUTURE WORK for digital modulation recognition," itlEEE Conf. of Military
Communications1999, pp. 442-446.
One contribution to the signal classification sgst this  [7] W. A. Gardner, Statistical Spectral Analysis - A
paper is the new network design using the par@lleDNs Nonprobabilistic TheoryEnglewood Cliffs, NJ: Prentice-Hall,

as opposed to a single MLPN. Our design allows tgrea  1988. o o
flexibility and on-line updates of classificatioystems as [8] J- G. ProakisDigital Communications4 ed., New York:
new modulation classification is required and deped. McGraw Hill, 2000.

I - - . [9] L. W. Couch,Digital and Analog Communication Systeris
Another contribution is the analysis of the sigfedture ed., Englewood Cliffs, NJ: Prentice Hall, 2001.

space for various modulation schemes. [10] A. V. Rosti and V. Koivunen, "Classificationf dMFSK
While we have analyzed an OCON-ANN classifier for modulated signals using the mean of complex eneglap

seven different modulations, this work is not withadts Proc. EUSIPCO-20002000, pp. 581-584.

problems and room for improvement. Specifically, heve  [11] S.-Z. Hsue and S. S. Soliman, "Automatic matioh

shown the difficulty in distinguishing between tk@AM classification using zero crossing," lBEE Proc. Radar and

Signal Processingl990, vol. 137, pp. 459-464.

modulations. More work needs to be done to find thele]J Lopatka and M. Pedzisz, "Automatic modiati

optimal featgrg set for all of the modulations. WI Is to classification using statistical moments and ayuz#assifier,"
use the minimum number of features with the least ;, Signal Processing Proceedings, WCCC-ICZB00, pp.
computational cost. 1500-1506.

Our work in this paper lacks an analysis of ch&nne[13] S. M. Kay and S. L. Marple, "Spectrum analy&isnodern
conditions other than AWGN and focuses on narrowban perspective,"Proceedings of the IEEEvol. 69, pp. 1380-
signals. Multipath fading and interferences, altffouhese 1419, 1981. _ _
may be alleviated by equalization, make classificat [14] S. L. Marple, "A tutorial overview of modernpectral

sce . . . estimation," iNEEE Proc. ICASSPpp. 2152-2157, 1989.
difficult. The current research is directed to dasithe [15] D. G. ChildersModern Spectrum Analysislew York: John

complete cognitive wireless receiver that providesystem Wiley & Sons, 1978.

solution of waveform recognition from RF to basehaas [16] K. Umebayashi and R. H. Morelos-Zaragoza, "Atimod of
stated in the beginning sections. An additionall geato non-data-aided  carrier recovery  with  modulation
build a system that can classify all existing/oapding identification," in Proc. IEEE Global Telecommunication
signals because we do not know which signal isdésired Conference2001, pp. 3375-3379.

one. Spread spectrum and ultra-wideband signags effen  [17] Z. Yaqin, R. Guanghui, W. Xuexia, W. Zhilu, Guemal,
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Presentation Outline

Cognitive radio (CR) overview
Synchronization for CR

Modulation classification

Neural network for modulation identification
Waveform feature space analysis



Cognitive Radio

Cognitive radios (CRs) are intelligent
communications devices that are aware of
the external environment and user needs to
reconfigure themselves to optimize quality of
service (Qo0S).

Physical (PHY) and MAC layer agility
Cross-layer performance optimization



Radio Environment Awareness

Rac
Inte
Pro

lo-domain cognition — a low-layer
ligence over SDR platform

pagation channel modeling and tracking

Spectrum sensing and understanding

Waveform recognition and modulation
identification

| don’t understand the meaning of “low-layer intelligence over SDR platform”. Do you mean “...intelligence supervising the
SDR platform™?



Universal Waveform Recognition

Standard-based or standard-free waveform
recognition

System-wide cognitive receiver design

Universal) ( _ _\ " Decimator
Carrier ADC D'ﬁ;tal PSF Feedback

Recovery \ ) \Timing
Signal >

Input Energy RF o Modulation
= Detection = Tuning = | Synchronization | & Identification

=) | Demod

Statistical moments

— N . .
FFT + windowin
D | D% CMA J
_ Eq./ Vector space




General Synchronization Design Challenge

Carrier recovery is modulation-specific or
pilot-aided

Symbol timing Is data-aided

Equalization is based on known link standard
Demodulation is after known matched filter

System-level design reform is needed for
universal synchronization



Communication Signal Analysis Methods

A hybrid, hierarchical signal feature
classification approach is designed

o Where: digital IF and baseband
o Methods: temporal, spectral, and vector space
o How: using neural network for signal classification

Feature
J\ :> HiG :> Extractor

Signal In

o)

ANN

)

Decoder

5

Modulation
Type Out

Cwr



Waveform Features

Temporal statistical features

o Statistical moments with different orders

0 User-defined metrics based on basic statistics
Spectral statistical features

o Power spectral density (PSD)

o Cyclostationarity features

Vector-space features

o Constellation distribution
o Complex phase swing and rotation



Design Considerations

Suitablility for embedded DSP
Efficiency for low-power on-line processing
Adaptation for wireless channel variations

Flexibility for reconfigurability and hardware
compatibility

Robustness for reliable performance



Modulation Classifier Options

Incoming
signal

&

Decision theoretic

2 Threshold control
o Error misleading
o Difficult to reconfigure

MLPN [——™""

Multi-layer — BPSK

Perceptron

Network. » QPSK
with hidden p— BFSK
layers > QAMS

Ad-hoc direct classify
2 Input encoding

o Training needed

2 Network configuration



Neural Networks for Direct Classification

Parallel distributed processing (PDP) nature

Flexibility in topology and connection
configuration

Arbitrary nonlinear mapping capability
Simplicity for on-line processing
Self-learning and adaptation

Robust against noisy inputs



One-class-one-network (OCON)

Multi-layer perceptron network (MLPN)
o Large, heavy computation, slow

OCON with maxnet decision maker

o 2-layer (5+1) small sub-net for each modulation
o Simple voting at maxnet output

o Easy to reconfigure, and VERY fast

o ldeal for DSP implementation

D—LL

MAXNET

0006

-

Olag|

o
o
o ’
o




Note that | have changed your wording in the second and third bullet
items to make the structure parallel. But aren’t changes in time and

‘ K/ a‘ 7 e fO rm F e ature S frequency exactly the same as changes in the complex domain? |
don't think that the second and third bullets are disjoint things. They

have some overlap but seem to be presented as if they are different.

s(t) = A(t)g(t) cos(2f ()t + 4(t)) = A(t)g(t) Refe #Vei2 Ot}

Modulating mechanisms define how amplitude, frequency
and phase vary, not their values

Waveform changes in time and frequency
Signal constellation moves in real and complex domain

AM (modulation index =1) BPSK (pulse-shaping roll-off = 0.5)



Waveform Features in Time Domain

o - Standard deviation of the signal amplitude

Opyy - otandard deviation of signal envelope

Op - Standard deviation of the phase

Orp - Standard deviation of the change in phase

O|pp| - otandard deviation of the absolute value of the phase change

Only five basic statistics need to be calculated
Represent up to second-order statiStiCS i isnt ciear to me what this means
Phase information is emphasized because

o More sensitive to different modulation schemes

o Less sensitive to noise than instantaneous amplitude and
frequency

In MATLAB, the average time to classify is 0.01 seconds for
feature extraction and 0.025 seconds for classification



A Typical Performance with AWGN

Table 1. Success Rate of Classification

Probability of Success for SNR

Modulation 10 dB 20 dB 50 dB 100 dB
AM 94.0 99.0 100.0 99.0
FM 100.0 100.0 100.0 100.0
BPSK 100.0 100.0 100.0 100.0
QPSK 64.0 86.0 92.0 90.0
BFSK 43.0 100.0 100.0 100.0
QAMS 34.0 534.U 02.0 59.0
QAM16 67.0 64.0 73.0 88.0
Overall 68.7 83.3 89.6 30.Y

What causes the problem at low SNR ?



Modulation Schemes in Feature Space
2




Modulation Schemes in Feature Space

24 2.4
SNR=500B SNR=10dR
22 22/
o 2 b—e— 2
18" 18/
16 16
14 ‘ 7 ‘ 14! w ‘ ‘ ‘
0 0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8
QAMS Sa c,
QAM16
AM Separation reduced by noise

———— FM

Differentiation is determined by feature space definition
Trade-off between computational cost and performance
Trade-off between network size and nonlinearity

—— BPSK
QPSK
BFSK




———+—— QAMS
QAM16
AM

How Dimension Helps

———— FM
Modulation signals at SNR =10 dB :

———— BPSK
3 3 QPSK

BFSK

0.8

0.6

| | | | 0.2 04
0.08 0.06 0.04 0.02 0 o '

CeEny Senv o,

Two-dimension feature sub-space Three-dimension feature sub-space



Status of Work

New network design of parallel OCONSs as
opposed to conventional single MLPN

Analysis of the signal feature space for

various modulation schemes that no paper
did before

lllustration of the difficulty in QAM
modulations that no paper explained before

Combinatorial signal identification approach
Is under CWT's current research

Cwr
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