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ABSTRACT 

 

In traditional hardware implementations of the CDMA 

standard IS-95 [1], signals received at the base station are 

despread at a rate of 1.2288 Megachips/sec prior to Walsh 

decoding. However, in a software implementation where low 

computational complexity is critical, despreading at such a 

high rate imposes a strain on computational resources. In 

this paper, we take advantage of the flexibility afforded by 

software implementations and develop three classes of 

Walsh decoding algorithms that do not require full 

despreading of incoming signals at the base station.  Two 

proposed classes of algorithms exploit the fact that Walsh 

codes are locally decodable codes, which have the surprising 

property that any bit of the message can be recovered (with 

some probability) by examining only a small number of 

symbols of the codeword. We also describe a third class of 

algorithms based on code puncturing. All these algorithms 

enable trading off computation for performance or, from 

another perspective, they enable the system to dynamically 

adapt the computational requirements of the despreader and 

subsequent Walsh decoder to changing channel conditions 

such that a target bit-error rate (BER) is maintained. These 

algorithms are applicable to other CDMA-based systems 

that use Walsh codes for orthogonal modulation, and the 

third class is also applicable to CDMA-based systems such 

as UMTS (3G WCDMA) that use codes for channelization. 

 

 

1. INTRODUCTION 

 

 The design of receiver algorithms for code division 

multiple access (CDMA) cellular phone signals is 

challenging because CDMA signals must be processed at 

high rates compared to other cellular phone standards. In the 

IS-95 reverse link (mobile to base station communication in 

the second-generation CDMA standard [1]), chip pulses are 

transmitted at a rate of 1.2288 Megachips/sec. In the 

receiver despreading process, each chip is multiplied by a 

bit of the user’s long code, where the long code is computed 

by applying a mask to a linear feedback shift register 

(LFSR). After the despreading process, the resulting 

sequence of bits must be further processed to determine the 

Walsh codewords transmitted by the mobile. The 

computation rate for long code computation, receiver 

despreading and Walsh decoding is thus roughly some 

multiple of 1.2288 MHz. Since a CDMA signal may 

propagate via many paths from mobile to base station, the 

base station receiver typically repeats the despreading and 

Walsh decoding processes for a number of received copies 

of the signal (usually four), thus scaling the computation rate 

by another factor. Furthermore, for a base station, the 

despreading and Walsh decoding processes for multiple 

paths must be performed for each mobile in the system, 

scaling the computation rate by yet another one to two 

orders of magnitude. Taking all this into consideration, these 

processes utilize a significant proportion of the available 

computational resources on a multi-GHz processor. 

 In this paper, we introduce classes of techniques to 

reduce the computational requirements of processing IS-95 

reverse link signals at the base station. These techniques are 

also applicable to other advanced CDMA-based receivers 

that use Walsh codes for orthogonal modulation, and the 

code puncturing technique can also be modified to a partial 

correlation technique for other CDMA-based receivers that 

use codes for channelization. In particular, we develop 

methods that process only a fraction of the despread signal 

to decode Walsh codewords. In turn, only a fraction of the 

received signal needs to be despread, and only a fraction of 

the long code needs to be computed.  

 The remainder of this paper is organized as follows.  

We review the reverse link of IS-95 in Section 2 and Walsh 

codes, used for orthogonal modulation in IS-95, in Section 

3. Three classes of Walsh decoding algorithms that use only 

a fraction of the despread signal are introduced in Section 4.  

The first is local decoding—a well known concept in the 

computational complexity and cryptography communities 

[2], but here we present the novel application of local 

decoding to a noncoherent receiver.  The second algorithm 

class is generalized local decoding, which is a novel and 

elegant generalization of local decoding. The third is 

punctured decoding, which follows from the observation that 

the generator matrix of a Walsh code contains all distinct 

columns. We analyze the performance of these algorithms 
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using the simulation of additive white Gaussian noise 

(AWGN) channels. The different classes of techniques are 

characterized by different tradeoffs between computational 

complexity and bit-error rate (BER). Section 5 explores a 

realistic wireless scenario in which base stations encounter 

reverse link channels with fluctuating instantaneous SNR. 

We present Walsh decoders based on local decoding, 

generalized local decoding, and punctured decoding that 

adapt the amount of computation according to the 

instantaneous SNR, so that a target BER is achieved with 

minimal computation. Conclusions are presented in 

Section 6. 

 

2. IS-95 REVERSE LINK 

 

This section describes physical layer processing for the 

reverse link of IS-95 [1]. For simplicity, we focus on the 9.6 

kbps data rate of Rate Set I on the reverse traffic channel, 

but the concepts are similar for other vocoder rates and for 

the reverse access channel.   

 Figure 1 shows the physical layer processing of the 

reverse traffic channel at the mobile. The traffic channel bits 

for Rate Set I are encoded using a rate-1/3 convolutional 

encoder followed by block interleaving. After interleaving, 

the coded bits, at 28.8 kbps, are mapped six bits at a time 

into one of 64 possible Walsh codewords of length 64. This 

modulation provides additional coding gain and simplifies 

noncoherent detection of the data at the base station. The 

resulting 1±  symbol stream, now at a rate of 28.8 x 64/6 = 

307.2 ksps, is spread by a long code generated based on a 

mask assigned to the specific user. Specifically, each symbol 

of every Walsh codeword is spread onto four chips of the 

long pseudo-noise (PN) code, resulting in a spread spectrum 

signal with rate 1.2288 Megachips/sec. After long PN code 

spreading, the chips are fed into the quadrature spreading 

and modulation structure, which includes multiplication of 

the long code spreading output by short in-phase and 

quadrature-phase PN codes, a delay of the resulting 

quadrature-phase signal by half a PN chip, baseband 

filtering, and quadrature modulation. 

 Unlike the forward link of IS-95, the reverse link does 

not utilize a pilot channel and thus signal processing at the 

base station is noncoherent.  The term “noncoherent” means 

that the random phase associated with the received carrier is 

unknown, so detection is done by observing the envelope of 

the received signal. Under the assumption that proper timing 

synchronization has been achieved, the optimal noncoherent 

receiver structure for one path of the IS-95 reverse link [3] is 

depicted in Fig. 2. It is sufficient for our purposes to note 

that correlations of each of the 64 possible Walsh codewords 

with two signals derived from the received signal are 

combined into a set of nonnegative squared correlation 

values.  The 64 squared correlation values indicate the 

likelihood of each of the 64 possible Walsh codewords. 

Taking into account the interleaver and the six bits that each 

Walsh codeword represents, the set of 64 correlation values 

can be converted into soft information to be fed into a 

convolutional decoder [4]. 

 

3. WALSH CODES 

 

The Walsh code of length kn 2=  is a set of perfectly 

orthogonal codewords that can be defined and generated by 

the rows of a kk 22 ×  Hadamard matrix [5].  Starting with a 

11×  matrix ]0[1 =H , higher-order Hadamard matrices can 

be generated by the following recursion: 
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For example, 4H  can be recursively generated as 
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so that the Walsh codewords of length 4 in bipolar ( )1±  

form are ]1,1,1,1[0 ++++=w , ]1,1,1,1[1 −+−+=w , 

]1,1,1,1[2 −−++=w , and ]1,1,1,1[3 +−−+=w . Note that the 

codewords are mutually orthogonal; that is, the dot product 

of any pair of codewords is zero. 

Figure 1: IS-95 reverse link physical layer at mobile. 
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 Because of the special structure inherent in Walsh 

codes, it is well known that the correlations of a sequence 

with the k2  Walsh codewords can be efficiently computed 

in )log( nnO operations using the fast Hadamard transform 

(FHT) [5].  The FHT has the same butterfly structure as the 

fast Fourier transform (FFT) [6], but the coefficients for the 

FHT are 1±  rather than complex exponentials.  Thus, the 

correlations in the optimal noncoherent receiver described in 

Section 2 can be performed by two FHTs of length 64. 

 

4. SUBCODE-BASED WALSH DECODING 

 

Traditionally, Walsh codes are decoded by optimal Walsh 

decoding with fixed computational complexity. In this 

section we introduce algorithms that efficiently trade off 

computational complexity and BER based on the 

mathematical structures underlying Walsh codes. These 

algorithms are suboptimal but effective and form the basis of 

the dynamic adaptation algorithms of Section 5. 

 A generator matrix for a binary linear code C  is a 

matrix G whose rows form a basis for C .  Thus, the 

codewords in binary form can be generated by computing 

c=xG for all k×1  binary row vectors x.  

 The generator matrix for the (64,6) Walsh code used in 

IS-95 is a 646×  matrix whose columns are the 64 distinct 

16×  binary vectors; i.e., 
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The special structure of this generator matrix makes it 

possible to efficiently decode the Walsh codeword without 

examining the entire codeword.  In this section, we describe 

three such techniques. 

 

4.1 Local Decoding 

 

The special structure of Walsh codes permits an estimate of 

one of the six input bits by observing only two of the 64 

symbols of the received Walsh codeword, via a process 

known as local decoding, which is well known in the 

computational complexity and cryptography communities 

[2].  To understand this technique, we label the symbols of 

the codeword as ],,,[ 6321,0 cccc K=c , where the subscripts 

are the decimal values of the corresponding binary column 

vectors in G. Suppose we wish to decode the zeroth bit of 

],,,,,[ 543210 xxxxxx=x  in the absence of receiver noise. 

We can obtain the value of 0x  by modulo-2 adding any pair 

of codeword components ic  and jc  for which the binary 

representations of i  and j  (and the corresponding columns 

in G) differ only in the zeroth bit position: 
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For example, 2c  and 34c  form one of the 32 possible pairs 

that can be used to decode 0x . In a practical situation in 

which Walsh codewords are represented in bipolar ( )1±  

format as opposed to binary format, the modulo-2 addition is 

replaced by normal multiplication of ic  and jc .  

Figure 2: Optimal noncoherent receiver structure for one IS-95 signal path. 
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 The signal-to-noise ratios (SNRs) encountered in 

practice are usually too low to reliably decode a bit by 

examining only one pair of codeword symbols. Instead, the 

sum of products of up to 32 bipolar pairs can be quantized to 

1±  to decode one bit in a “soft voting” procedure.  

 Our use of local decoding in a noncoherent system is 

novel. The resulting receiver structure is the same as in Fig. 

2 except that the two Walsh correlators are replaced by two 

local decoders that sum the products of the same pairs, and 

the subsequent squarers are eliminated since the 

multiplication of symbol pairs already squares θcos  and 

θsin .  The soft votes from the two local decoders are then 

added together to eliminate any dependency on θ , and the 

sum is quantized to 1±  to decode one bit. 

 The simulated AWGN BER for local decoding of the 

IS-95 reverse link as a function of both the number of pairs 

used to decode each bit and the SNR per information bit is 

depicted in Fig. 3. (For the purposes of computing SNR per 

information bit in this paper, “information bit” shall refer to 

bits at the input of the Walsh encoder and not the bits at the 

input of the convolutional encoder.) On the leftmost part of 

the graph is the baseline curve of optimal noncoherent 

decoding. The successive curves to the right are generated 

by locally decoding each input bit using 32, 16, 8, 4, 2 and 1 

pair(s) of codeword symbols. Although local decoding using 

32 pairs of codeword symbols makes use of the entire Walsh 

codeword, its performance is nearly 3 dB worse than 

optimal decoding because the relationships between symbols 

in different pairs are not fully exploited. Each reduction of 

the number of local decoding pairs by a factor of two causes 

an additional loss of 2 dB. 

  

4.2. Generalized Local Decoding 

 

To decode two input bits using local decoding, one pair of 

symbols in the Walsh codeword can decode one bit and 

another pair can decode the other bit. While local decoding 

can decode bits using few computational operations and 

examining potentially few codeword symbols, one might 

expect to get a lower BER by jointly decoding both input 

bits when constrained to examine only 4 of the 64 symbols 

of a received Walsh codeword.  

 We have developed an elegant generalization of local 

decoding to perform such joint decoding, which uses certain 

groups of four symbols in the Walsh codeword to jointly 

decode two input bits at low BERs. In local decoding, the 

two symbols ic  and jc  used to determine the bit tx  are 

chosen such that the binary representations of i  and j  

differ only in the t th bit position. In what we call 

generalized local decoding, the four symbols  gc , hc , ic  

and jc  used to determine the pair of bits sx  and tx  are 

chosen such that the binary representations of g , h , i  and 

j  all differ now in both the s th and t th bit positions. 

 These four symbols are processed in a way that 

generalizes local decoding. In local decoding, tx  is 

determined by taking the product of codeword components 

ic  and jc  in bipolar format and quantizing to 1± . This 

process is equivalent to performing a 2-point FHT on the 

two-component vector ],[ ji cc  where ji < , and 

determining tx  to be the binary index of the maximum 

component of the FHT. That is, if the zeroth FHT 

component is largest then decode as 0, otherwise the first 

FHT component is largest and decode as 1. In generalized 

local decoding, a 4-point FHT is performed on the four-

component vector ],,,[ jihg cccc  where jihg <<< , and 

sx  and tx  are decoded as the binary index of the maximum 

component of the FHT where ts < . 

 Generalized local decoding works also for groups of 8, 

16, and 32 codeword symbols, for which 3, 4, and 5 bits are 

decoded respectively. Note that at one extreme, generalized 

local decoding for groups of 2 codeword symbols is simply 

local decoding, while at the other extreme generalized local 

decoding for the entire 64 symbols of the Walsh codeword is 

optimal Walsh decoding implemented by a 64-point FHT. 

All six input bits can be decoded using combinations of 

various-sized FHTs.  For example, one could use three 4-

point FHTs or two 8-point FHTs. 

 As in the previous section, multiple groups of codeword 

symbols can be processed and combined to decode input 

bits.  In local decoding, up to 32 pairs of codeword symbols 

can be used to decode one input bit because there are 32 

choices for the five fixed bits in the binary representation of 

the codeword symbol indices. In general, up to p−62  groups 

of p2 codeword symbols can be used to decode p  input bits 

Figure 3: BER of 2-point local Walsh decoding for AWGN 

channels as a function of SNR per information bit. 
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because there are p−62  choices for the fixed p−6  bits in 

the binary representation of the codeword symbol indices.  

Because the reverse link of IS-95 is noncoherent, the 

components of the p−62  FHTs are squared before being 

added component-wise. Figure 4 shows the simulated 

AWGN BER for generalized local decoding of the IS-95 

reverse link as a function of both the number of 8-point 

FHTs used to decode three bits and the SNR. From Figs. 3 

and 4, it is clear that if the number of codeword symbols 

examined to decode each input bit is fixed, better 

performance is obtained with higher-order FHTs. 

 

4.3. Punctured Decoding 

 

Thus far, we have been exploiting ( )pp ,2  codes that are 

found within the (64,6) Walsh code—that is, we have been 

using a subset of the codeword symbols to decode a subset 

of the input bits.  

 In this section, we use a subset of the codeword symbols 

to decode all 6 input bits. Since the columns of the generator 

matrix G for the (64,6) Walsh code include all possible 6-bit 

binary vectors, any )6,(n  binary linear code with 64<n  

and distinct generator matrix columns can be obtained by 

puncturing those symbols in the (64,6) Walsh code that 

correspond to unwanted columns in G. 

 For a given 64<n , the set of all possible )6,(n  linear 

codes created by distinct puncturing patterns has a wide 

range of BERs. For example, some )6,(n  codes have a row 

of zeros in their generator matrices and thus have a 

minimum Hamming distance of zero, while others maximize 

the minimum distance. In noncoherent systems such as IS-

95, the )6,(n  code that maximizes the minimum distance 

does not necessarily lead to the best BER, and can even lead 

to performance much worse than randomly choosing a  

)6,(n  code. Take for instance the (32,6) biorthogonal code, 

which is the (32,6) linear code with the maximum minimum 

distance. However, the complement of each codeword is 

also a codeword, so each codeword can be mistaken for its 

complement and vice-versa in a noncoherent system with 

unknown carrier phase. A more appropriate criterion for 

selecting a )6,(n  code for a noncoherent system is to 

maximize the minimum distance and simultaneously 

minimize the maximum distance. While tables of codes that 

maximize minimum distance are readily available and are 

constantly improved and expanded [7], we are not aware of 

similar tables that simultaneously consider both metrics. 

 Although the development of such tables would be an 

interesting area for future research, it is well known in 

coding theory that randomly generated codes are good codes 

with high probability, especially for long codeword lengths 

(large n ) [8]. In light of this, we can randomly select a 

subset of n  codeword symbols from the (64,6) Walsh code, 

thereby effectively obtaining an )6,(n  code that, with high 

probability, has good BER performance. 

 The maximum-likelihood decoder for the resulting 

)6,(n  code is the minimum-distance decoder which, in the 

case of bipolar codewords, is equivalent to taking the 

correlations of the 64 possible codewords of length n  with 

the punctured received codeword, and selecting the 

codeword corresponding to the maximum. This set of 64 

correlations can still be efficiently computed using an FHT 

on the received codeword with the n−64  unwanted 

codeword symbols set to zero.  In a noncoherent system 

such as IS-95, the receiver structure is similar to Fig. 2, 

except that puncturing is prior to the Walsh correlations. 

 Figure 5 shows the simulated AWGN BER curves for 

randomly punctured codes and for codes with only minimum 

distance optimized, with parameters (60,6), (56,6), (48,6), 

(32,6), and (16,6). The fact that the biorthogonal (32,6) code 

has indistinguishable codewords in noncoherent systems is 

reflected by the poor BER when compared to the ensemble 

of (32,6) codes. For the other code lengths simulated, the 

performance of the code with maximum minimum distance 

is similar to the average performance of codes in the 

ensemble, and even slightly better in the high SNR regime 

where errors are perhaps mostly caused by codewords at the 

minimum distance. 

 

5. ADAPTIVE SUBCODE-BASED  

WALSH DECODING 

 

Like typical wireless channels, the IS-95 reverse link 

encounters large fluctuations in instantaneous SNR. The 

fluctuations due to path loss and shadowing are partially 

mitigated by open-loop and closed-loop power control, but 

the rapid SNR fluctuations due to multipath fading remain, 

especially at high mobile speeds. The techniques presented 

in the previous section provide a variety of operating points 

in the tradeoff plane between BER and computational 

Figure 4: BER of generalized 8-point local Walsh decoding for 
AWGN channels as a function of SNR per information bit. 
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complexity at a fixed SNR, so in theory if we knew the 

instantaneous SNR, we could choose the specific technique 

(and thus, operating point) at that time to achieve the target 

BER with as little computation as possible. However, this 

kind of information is not necessarily available or accurate 

at the base station. 

 To address this issue, we can test a series of suboptimal 

Walsh decoding algorithms with operating points that  

simultaneously move towards higher computational 

complexity and lower BERs until the target BER is 

achieved.  Although we cannot know the true BER, we can 

get an indication by monitoring a reliability metric generated 

by the Walsh decoding algorithm until it exceeds a 

threshold.  The suboptimal Walsh decoding techniques can 

be chosen such that only an incremental amount of 

computation is required for the next, slightly more complex 

technique. This idea of incrementally increasing 

computation until sufficient reliability is achieved is similar 

in spirit to decoding “rateless” codes [9,10].  

 We test our adaptive algorithms by simulating the IS-95 

reverse link, assuming that the fluctuating SNR per 

information bit at the base station has a lognormal 

distribution with mean 4.7 dB and variance 1.5 dB. Each 

adaptive Walsh decoding technique at a particular stopping 

threshold corresponds to a point in the tradeoff plane 

between BER and computational complexity, averaged over 

many IS-95 frames experiencing independent fades.  

 Due to implementation-specific software optimizations, 

it is not very meaningful or realistic to count the total 

number of algorithmic operations for long code generation, 

despreading, and Walsh decoding as a measure of 

computational complexity.  Rather, we take as a measure the 

average number of Walsh codeword symbols used to decode 

all six input bits, because the computation for long code 

generation, despreading, and Walsh decoding is roughly 

linear in this quantity. 

 The tradeoff between BER and average computational 

complexity for adaptive local decoding is shown in Fig. 6. In 

this algorithm, the number of pairs used to locally decode 

one of the six input bits is increased by increments of one 

until the magnitude of the sum of the pair products exceeds a 

threshold. Since there are 64 possible terminations to the 

algorithm, we call this a 64-stage algorithm. Each point was 

generated by assuming a specific stopping threshold, and 

assuming that the order in which the pairs are examined is 

chosen at random. The curve is traced out from left to right 

as the threshold increases from 0 to infinity; at low 

thresholds the algorithm typically stops after looking at few 

pairs, while at high thresholds the algorithm typically stops 

after looking at many pairs.  The reason the tradeoff curve 

here is not a very good one is that even if few pairs are used 

to decode each of the six bits, most of the pairs for each of 

the six bits do not correspond to the same Walsh codeword 

symbols, and computational complexity becomes very high. 

 Figure 6 also shows the tradeoff curve for an adaptive 

generalized local decoding algorithm using 8-point FHTs.  

This 8-stage algorithm increments the number of 8-point 

FHTs used to decode three of the six input bits until the 

metrics for the three bits all cross a threshold.  When each 

additional 8-point FHT is used, the squared correlations are 

added to the sum of squared correlations of the 8-point 

FHTs already used. The metric for each bit, for the purposes 

algorithm termination, is the absolute difference between the 

maximum sum of squared correlations over all three-bit 

input patterns with a zero in that bit position and the 

maximum sum of squared correlations over all those patterns 

with a one in that bit position. This adaptive generalized 

local decoding algorithm creates a better tradeoff than 

adaptive local decoding.  

 The tradeoff curve for adaptive punctured decoding is 

also shown in Fig. 6, corresponding to a 64-stage algorithm 

in which up to all 64 Walsh codeword symbols are used to 

decode all six input bits. When an additional codeword 

symbol is used, the length of the 64 correlations is extended 

by that additional symbol.  The metric for each bit, for the 

purposes of stopping the algorithm, is the absolute 

difference between the maximum squared correlation over 

all six-bit input patterns with a zero in that bit position and 

the maximum squared correlation over all those patterns 

with a one in that bit position. This 64-stage algorithm 

approaches the BER of optimal noncoherent decoding (the 

BER of the rightmost point on the curve) with lower 

computational complexity. Note that adaptive random 

punctured decoding has the better tradeoff at low BERs, 

while adaptive generalized 8-point local decoding has the 

better tradeoff at higher BERs. 

 In Fig. 7, we compare the BER and computational 

complexity of optimal noncoherent decoding specifically to 

adaptive random punctured decoding.  While optimal 

decoding requires a fixed amount of computation regardless 

Figure 5: BER of punctured Walsh decoding for AWGN  

channels as a function of SNR per information bit. 
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of SNR, similar BERs can be achieved by adaptive random 

punctured decoding with an amount of computation that 

decreases as SNR increases. If the goal is to achieve a target 

BER of 210− , the computation of adaptive random 

punctured decoding is even less. 

 Although we have used the same threshold at each stage 

of these multi-stage algorithms for convenience, there is no 

reason that different thresholds cannot be used at different 

stages.  For a given algorithm, varying the thresholds at each 

stage generates different tradeoff curves.  Thus, unlike Fig. 

6, the set of points in the tradeoff plane achievable by a 

particular adaptive algorithm is a region rather than a curve.  

While it is difficult to analytically or numerically determine 

the optimal thresholds that achieve points that lie on the 

lower left border of the achievable region, it is possible to 

find distinct thresholds for each stage that generate 

improved tradeoff curves.  This is an interesting area for 

future research.  

 Furthermore, adaptive algorithms with fewer stages may 

be more practical.  For example, a 2-stage adaptive local 

decoding algorithm looks at a certain number of pairs, and 

then decides whether to examine the remaining pairs. If 

designed correctly, the reduction in the number of stages can 

simplify the algorithm and yet retain a similar tradeoff. 

 

6. CONCLUSIONS 

 

In this paper, we have developed several classes of 

algorithms that reduce the amount of computation required 

for Walsh decoding and, in turn, for despreading and long 

code generation. These algorithms are made possible by 

software radio’s inherent flexibility, which allows us to 

monitor reliability metrics as successively larger portions of 

a Walsh codeword are examined and to detect the codeword 

when reliability is sufficient.  

 Software radio compels a paradigm shift in the design 

of new signal processing algorithms. This paper provides a 

flavor of how algorithms can be designed for software rather 

than traditional hardware. 
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Figure 6: Tradeoff between BER and average computational 

complexity for the three classes of adaptive subcode-based Walsh 

decoding. The SNR per information bit is lognormally distributed 

with mean 4.7 dB and variance 1.5 dB. 
 

Figure 7: BER and average computational complexity of 

adaptive random punctured decoding as a function of average 

SNR per information bit.  The variance of the SNR is 1.5 dB. 
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