
THE USE OF HARDWARE ACCELERATION IN SDR WAVEFORMS

David Lau Jarrod Blackburn Joel A. Seely
Altera Corporation Altera Corporation Altera Corporation
101 Innovation Dr 101 Innovation Dr 101 Innovation Dr
San Jose, CA 95134 San Jose, CA 95134 San Jose, CA 95134
(408) 544-8541 (408) 544-7878 (408) 544-8122
dlau@altera.com jblackbu@altera.com jseely@altera.com

ABSTRACT

In Software Defined Radios FPGAs can be used as both
an interconnect layer and a general-purpose
computational fabric implementing hardware acceleration
units. Typical implementations of software defined radio
(SDR) modems include a general purpose processor
(GPP), digital signal processor (DSP) and field
programmable gate array (FPGA). The FPGA fabric can
be used to offload either the GPP or DSP (or both).
Hardware acceleration units in conjunction with small
embedded microprocessors can be used as coprocessors
to the GPP or DSP, accelerating critical sections of either
DSP or GPP code in hardware. Moreover, with general
purpose routing resources available in the FPGA,
hardware acceleration units can run in parallel to further
enhance the total computational output of the system. The
algorithms and systems can be modeled in high-level
languages or tools such as C or Matlab/Simulink and
easily ported to hardware acceleration units running on
the FPGA. The creation and use of hardware acceleration
units and their performance over software
implementations will be discussed in this paper.

1. INTRODUCTION

In the past FPGAs were used as a convenient interconnect
layer between chips in a system. In software defined
radios (SDRs), FPGAs are being used increasingly as a
general-purpose computational fabric implementing signal
processing hardware that boosts performance while
providing lower cost and lower power. Typical
implementations of SDR modems include a general
purpose processor (GPP), digital signal processor (DSP),
and field programmable gate array (FPGA). However, the
FPGA fabric can be used to offload the GPP or DSP with
application specific hardware acceleration units. Soft-core
microprocessors can have their core extended with custom
logic, or separate hardware acceleration co-processors can
be added to the system. Furthermore, with general purpose
routing resources available in the FPGA, these hardware
acceleration units can run in parallel to further enhance the
total computational throughput of the system. Three
distinct types of hardware acceleration units and their

performance over software implementations will be
discussed in this paper

2. SOFTWARE DEFINED RADIO

The concept behind SDR is that more of the waveform
processing can be implemented in reprogrammable digital
hardware so a single platform can be used for multiple
waveforms. With the proliferation of wireless standards,
future wireless devices will need to support multiple air-
interfaces and modulation formats. SDR technology
enables such functionality in wireless devices by using a
reconfigurable hardware platform across multiple
standards.

SDR is the underlying technology behind the Joint
Tactical Radio System (JTRS) initiative to develop
software-programmable radios that can enable seamless,
real-time communication across the U.S. military services,
and with coalition forces and allies. The functionality and
expandability of the JTRS is built upon an open
architecture framework called the software
communications architecture. The JTRS terminals must
support dynamic loading of any one of more than 25
specified air interfaces or waveforms that are typically
more complex than those used in the civilian sector. To
achieve all these requirements in a reasonable form factor
requires extensive processing power of different kinds.

3. SDR SYSTEM ARCHITECTURE

Most SDR systems utilize a general purpose processor
(GPP), digital signal processor (DSP), and FPGA in their
architectures. The GPP, DSP, and FPGA are general
purpose processing resources that can be used for different
parts of the overall SDR system. Figure 1 shows the
typical functions found in SDR divided across each of
these devices. However there is a significant amount of
overlap between each of these elements. For example, an
algorithm running on the DSP could be implemented in
the GPP, albeit more slowly, or rewritten in HDL and run
in an FPGA as a coprocessor or hardware acceleration
unit.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

mailto:dlau@altera.com
mailto:jblackbu@altera.com
mailto:jseely@altera.com

GPP DSP

FPGA
•Low Speed Packet Processing
•Complex MAC Layer Protocols
•Network Level Protocols
•Waveform Management
•Tx Packet Construction
•Rx Packet Decode
•Waveform Load
•Waveform Execution Control

•Medium Speed Timing
•Critical Low Speed Signal Filter
•Sample Rate Decimation
•Sample Rate Interpolation
•Low Speed Mod and Demod
•Low Speed AGC
•Medium Speed FEC
•Medium Speed Packet Proc
•Simple MAC Layer Protocols

•Modem External Interface
•Down Conversion to Baseband
•Up conversion to IF
•Signal Filtering
•Sample Rate
Decimation/Interpolation
•High Speed Mod and Demod
•High Speed AGC
•High Speed FEC
•High Speed Packet Processing

Figure 1: Example architecture splitting SDR functions across GPP, DSP, and FPGA

4. HARDWARE ACCELERATION

Using FPGA resources for hardware acceleration can be
done in several ways. However, there are three basic
architectures: Custom instructions, custom peripherals as
coprocessors, and dynamically reconfigurable application-
specific processors. These hardware acceleration methods
have different features and unique benefits. Understanding
how and where to use each of these helps the system
architect better use the FPGA resources for offloading the
DSP and GPP in a SDR application.

5. SOFT-CORE PROCESSORS AND CUSTOM
INSTRUCTIONS

With the advent of large FPGAs, small, powerful,
processors integrated in the FPGA. This is accomplished
as either “hard-core” processors, which are a physical part
of the FPGA silicon, or “soft-core” processors which are
IP blocks downloaded as part of the design running on the
FPGA. These processors, hard-core or soft-core, are used
like any other embedded microprocessor. They even come
with industry standard tool chains including compilers,
instruction-set simulators, a full-suite of software debug
tools, and an integrated development environment. This
toolset is familiar to any embedded software engineer so
much so that it does not matter that the processor is

integrated on the FPGA or downloaded to the FPGA as a
bitstream.

However, these soft-core processors have a differentiating
factor over their hard-core counterparts – they are
infinitely flexible. Before downloading the processor, a
designer can choose different configuration options
trading off size for speed. A designer can also add a
myriad of peripherals, for memory control,
communications, I/O, and so forth.

Custom instructions, which take the flexibility of soft-core
processors one step further, are algorithm-specific
additions of hardware to the soft-core microprocessor’s
arithmetic logic unit (ALU). These new hardware
instructions are used in place of a time-critical piece of an
algorithm, recasting the software algorithm into a
hardware block. A RISC microprocessor with a custom
instruction blurs the division between RISC and CISC
because the custom instruction units can be multi-cycle
hardware blocks doing quite complex algorithms
embedded in a RISC processor with “standard
instructions” that take a single clock-cycle. Furthermore
several custom instructions can be added to an ALU,
limited only by the FPGA resources and the number of
open positions in the soft-core processor’s op-code table.
Figure 2 depicts the use of a custom instruction to extend
the ALU of Altera’s Nios II soft-core microprocessor.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Figure 2: Diagram of soft-core processor’s ALU

extended with a custom instruction.

When should custom instructions be used? The most
efficient use occurs when the algorithm to be accelerated
is a relatively atomic operation that is called often and
operates on data stored in local registers. A familiar
example would be adding floating point capabilities to the
processor. For many embedded processors, floating point
arithmetic instructions are implemented as library
subroutines that the compiler automatically invokes on
processors without dedicated floating-point instruction
hardware. These floating-point algorithms take many

floating point is typically used throughout the software
code rather than localized to a few function calls. If the
floating point instructions were part of the ALU, then
these software routines would be collapsed into calls to
the floating point hardware.

clock-cycles to execute. From an application perspective,

ith soft-core processors running on an FPGA, the
m

veral

ay

hat is

he cyclic redundancy-check algorithm was also added to

e

W
floating point functions can be implemented as custo
instructions extending a soft-core microprocessor’s ALU.
The performance improvement of these hardware custom
instructions over their software counterparts can be
dramatic. Table 1 provides a comparison between se
software library routines and the same function using a
custom instruction. Note: Even in this case the results m
vary depending on the design considerations for the
custom instruction such as the amount of pipelining t
chosen in the hardware implementation.

T
the table for comparison of a custom instruction in this
section and a better implementation as a co-processor to
be discussed in the next section. Although the CRC as a
custom instruction does provide some advantages over th
software only implementation of this algorithm, when the
operation is executed on a large block of memory, there
are other ways of implementing the hardware acceleration
unit that will be more efficient and provide better overall
throughput.

Software
Only

Custom
Instruction

FP Multiplication axb 2,874 19 151.26
FP Multiply and Negate -(axb) 3,147 19 165.63
FP Absolute |a| 1,769 18 98.28
FP Negate -(a) 284 19 14.95
CRC on 64KByte Block 2,359,312 860,179 2.74

CPU Clock Cycles

Operation
Speed

Increase

Table 1: Comparison of Throug mented in Software vs. Using a
Hardware Custom Instruction

6. HARDW ATION CO-

s

h is

n a
mory – i.e. the co-

 hput Between Algorithms Imple

ARE ACCELER
PROCESSORS

Hardware-acceleration co-processors can be used to
accelerate processors or DSPs. The processors can be
either stand-alone processors separate from the FPGA,
hard-core processors integrated in the FPGA, or soft-core
processors downloaded to the FPGA. Custom instruction

differ from hardware acceleration co-processors in that
custom-instructions are an extension of an ALU whic
relegated to a soft-core microprocessor. Figure 3 depicts
an architecture using a co-processor. One of the key
advantages to the co-processor is that it is wrapped i
DMA so it has direct access to me
processor can work on a block of memory without
intervention from the processor.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Situ n
could be tom instruction have one or more
of th

• not only use register variables
(non atomic).

e
are).

• Transformation of data is done on a large data
block.

Figure 3: In-System Hardware Acceleration Co-Processor

DR
applications. SDRs can benefit from co-processors for

 as higher-level application
vel hardware acceleration.

atio s where hardware acceleration co-processors
used over a cus

e following common characteristics:
Algorithms do

• Operations are more complex (often a subroutin
in softw

Program
Memory

Processor

D
M

A
D

M
A Accelerator

D
M

A
D

M
A

Data
Memory

ArbiterArbiter

Data
Memory

ArbiterArbiter

Avalon
Switch
Fabric

Program
Memory
Program
Memory

ProcessorProcessorProcessor

D
M

A
D

M
A Accelerator

D
M

A
D

M
A

D
M

A
D

M
A AcceleratorAccelerator

D
M

A
D

M
A

Data
Memory

Data
Memory

ArbiterArbiter

Data
Memory

Data
Memory

ArbiterArbiter

Avalon
Switch
Fabric

Table 2 provides several examples of hardware
acceleration co-processor performance over software only
implementations for some algorithms that are used in S

various DSP functions as well
le

Software Only

HW
Acceleration

Co-Processor
CRC on 64K Byte Block 2,359,312 43,925 53.71
Reed Solomon 25,769 985 26.16
Recursive Least Squares 13,323 1,357 9.82
FFT 179,237 11,933 15.02
Convolutional Encoder 290,858 21,869 13.30
Autocorrelation 491,030 11,955 41.07

Operation

CPU Clock Cycles

Speed
Increase

Table 2: Software Only and Hardware Acceleration Co-Processor Throughput Comparison

7. APPLICATIO RUCTION-SET

are

ing

e

N SPECIFIC INST
PROCESSORS

Application specific instruction-set processors (ASIPs) are
a special case of the hardware acceleration co-processors
above. An ASIP combines the flexibility of a softw
approach with the efficiency and performance of
dedicated hardware. An ASIP is a processor that has been

targeted to perform a specific task or set of related tasks.
One of the implementations of ASIPs allows for chang
the internal topology of the processor by changing the
functional interconnect of the larger building blocks.
Software defined radios implement algorithms in softwar
to improve portability, lifetime costs and retargetability.
However achieving cost and performance requirements
necessitates the use of application specific hardware. The

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

value of ASIPs on an FPGA is that they are composed o
smaller building blocks that can be reconfigured on the fly
to implement more than one higher level function. An
example relevant to SDRs would be fast Fourier transform
(FFT) blocks and finite impulse response (FIR) filters.
These two high-level algorithms share many common
blocks. By changing the interconnect between these sub-

instead of the FIR in hardware. Figure 4 shows an ASIP
architecture implementing an FFT/FIR ASIP. A sim
microcode instruction set is used to configure the
hardware

f

sub

blocks the ASIP can be altered to implement the FFT

ple

 blocks to perform either the FIR or the FFT as
eeded.

Figure 4: Combined FFT/FIR ASIP Architecture

 and

P took

e

e DSP, the results often strongly favor the
ASIP approach.

ity

g

nt

uilding blocks for computation, offers
romising architectural options that are helping to make

SDRs a reality.

on-
pecificProcessors, Altera
DR Forum Technical Conference, November 2004

ocessing With Matrix
fic

tegrated Processors, Altera
DR Forum Technical Conference, November 2004

n

M O D 0 M O D 1 M O D 2

IN D E X0 IN D E X1 IN D E X2 IN D E X3 IN D E X4

M E M 1R E G IS TE R
F ILE 0

M E M 2

R E G IS T E R 0
A D D /S U B 0 A D D /S U B 1

A D D /S U B 2

M U LT IP LY

R E G IS T E R
FILE 0

A C C U M U LA T E 0 A C C U M U LA T E 1

M E M 1

A software/hardware comparison was made between
running a 1024 point radix-2 FFT on a TI C62x DSP
doing the same filter on the FIR/FFT ASIP. The TI
implementation took 20840 clock cycles and the ASI
21850 clock cycles. The overall throughput for both
implementations was near parity. However, the relative siz
(and power and cost) of the ASIP approach is superior to
utilization of an entire DSP for the same algorithms. In
situations where specific SDR algorithms can be offloaded
from the DSP to the FPGA to either decrease the processing
power needed in th

8. CONCLUSIONS

Software defined radios require extensive processing power
to realize the portability of waveforms and reconfigurabil
that has been promised. The use of FPGAs for hardware
acceleration, through custom instructions added to soft-core
processors, hardware acceleration co-processors enhancin

the processing power of GPPs and DSPs, or application
specific instruction-set processors providing tight, efficie
reconfigurable b
p

9. REFERENCES

[1] Reconfigurable Radio With FPGA-Based Applicati
S
S

[1] Reconfigurable Antenna Pr
Decomposition Using FPGA-Based Application-Speci
In
S

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2004 Altera Corporation

Hardware Acceleration & SDR
Waveforms

Hardware Acceleration & SDR
Waveforms

Joel SeelyJoel Seely

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2
© 2004 Altera Corporation - Confidential

Waveform Processing Waveform Processing
General-
Purpose

Processor
(GPP)

Digital
Signal

Processor
(DSP)

FPGA
•Medium Speed Timing

•Critical Low-Speed Signal Filter

•Sample Rate Decimation

•Sample Rate Interpolation

•Low-Speed Modulation &
Demodulation

•Low-Speed AGC

•Medium-Speed FEC

•Medium-Speed Packet
Processing

•Simple MAC Layer Protocols

•Modem External Interface

•Down Conversion to Baseband

•Up Conversion to IF

•Signal Filtering

•Sample Rate Decimation/Interpolation

•High-Speed Mod & Demod

•High-Speed AGC

•High-Speed FEC

•High-Speed Packet Processing

•Low-Speed Packet Processing

•Complex MAC Layer Protocols

•Network-Level Protocols

•Waveform Management

•Tx Packet Construction

•Rx Packet Decode

•Waveform Load

•Waveform Execution Control

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3
© 2004 Altera Corporation - Confidential

Soft Processor Core for Control
Co-Processing Engines
− FEC
− RAKE
− FFT

Waveform Example: Implementing
SSW on FPGA
Waveform Example: Implementing
SSW on FPGA

Analog to
Digital

Analog to
Digital

Digital to
Analog

Digital to
Analog

XX

VCO

SwitchSwitch

VCO

XX

Power
Amplifier
Power

Amplifier

Low Noise
Amplifier

Low Noise
Amplifier

In
te

rf
ac

e

NCO

XX

NCO

XX

CORDIC
Co-

Processor

CORDIC
Co-

Processor

Soft
Core

Processor

Soft
Core

Processor

FFT

Spreader

De-
Spread

Convolutional
Encoder MemoryMemory

RAKE
Receiver

Viterbi
Decoder

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

4
© 2004 Altera Corporation - Confidential

Waveform Processing Waveform Processing
Different Waveforms Have Different
Requirements
− Some Are Relatively Small & Low Bandwidth

Can Process in DSP &/or GPP Alone

Latest Waveforms Need High Bandwidth for
Processing
− Massively Parallel Architectures for Things like

Forward Error Correction
− Logic, Memory & MACs
− FPGAs Required

Waveforms Still in Development
− SRW to be Completed in 2007

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5
© 2004 Altera Corporation - Confidential

Why FPGAs for SDRs?Why FPGAs for SDRs?
Can Offload Both General Purpose Processor &
Digital Signal Processor
Glues Everything Together
FPGAs Have Many of the Building Blocks for SDRs
−Soft Microprocessor Cores
−DSP Functionality (Such as Multipliers)
−Phase-Locked Loops (PLLs)
−Configurable I/O Pins

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

6
© 2004 Altera Corporation - Confidential

Hardware AccelerationHardware Acceleration
3 Methods
− Custom Instructions

Computational
− Co-Processor Peripherals

Computational
− Application-Specific Instruction-Set Processors

(ASIPs)
Combination Architectural & Computational

Other Architectural Methods
− Massively Parallel Applications
− How You Wire Up Your Blocks Becomes Critical in

High-Throughput Applications

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2004 Altera Corporation

Hardware Acceleration With
Custom Instructions

Hardware Acceleration With
Custom Instructions

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

8
© 2004 Altera Corporation - Confidential

Software Bottleneck OptionsSoftware Bottleneck Options
When the Processing Power of a GPP is
Too Small, You Can
− Go to Higher-Performance Processor
− Re-Code in Assembly
− Offload Processor to DSP
− Offload Processor to FPGA

Custom Instructions
Co-Processors
ASIPs

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

9
© 2004 Altera Corporation - Confidential

Custom InstructionsCustom Instructions
Extend Soft-Core
Microprocessors
Can Execute in a Single
Cycle
− No Overhead for Call

to Custom Hardware

Custom
Instruction

Custom
InstructionL1

L0 L0

Optional FIFO, Memory, Other Logic

Nios® II Processor

Your
Custom
Logic

Your
Custom
Logic

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

10
© 2004 Altera Corporation - Confidential

Several Levels of CustomizationSeveral Levels of Customization
Optional Interface to FIFO, Memory, Other Logic

Internal
Register File

a

5

b 5

5

c

readra

readrb

writerc

n

8
Extended

clk

clk_en
reset
start

Multi-Cycle done

dataa

32datab

32

Combinatorial result

32

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

11
© 2004 Altera Corporation - Confidential

Why Custom Instruction?Why Custom Instruction?
Dramatically Accelerate Software Algorithms
− Reduce Complex Sequence of Instructions to One

Instruction
Typical Flow
− Profile Code (gprof)
− Identify Critical Inner Loop
− Create Custom Instruction Logic

Replace One or All Instructions in Inner Loop
− Import Custom Instruction Logic Into Design
− Call Custom Instruction From C or Assembly

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

12
© 2004 Altera Corporation - Confidential

When Should Custom Instructions
be Used?
When Should Custom Instructions
be Used?

Operation to be Accelerated is “Atomic”
− Such as Math-Library Subroutines

Multiple Clock Cycles
Operates on Data Stored in Registers
− Doesn’t Need to Access External Memory

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

13
© 2004 Altera Corporation - Confidential

Example of Custom InstructionExample of Custom Instruction

Example: Floating Point Multiply

float a, b, result_slow, result_fast;

result_slow = a * b; /* Takes 2,874 clock cycles */
result_fast = nm_fpmult(a, b); /* Takes 19 clock cycles */

Much Faster Than DSPs!

float a, b, result_slow, result_fast;

result_slow = a * b; /* Takes 2,874 clock cycles */
result_fast = nm_fpmult(a, b); /* Takes 19 clock cycles */

Much Faster Than DSPs!

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

14
© 2004 Altera Corporation - Confidential

Custom Instruction Performance
Examples
Custom Instruction Performance
Examples

Software
Only

Custom
Instruction

FP Multiplication axb 2,874 19 151.26
FP Multiply & Negate -(axb) 3,147 19 165.63
FP Absolute |a| 1,769 18 98.28
FP Negate -(a) 284 19 14.95
CRC on 64-KByte Block 2,359,312 860,179 2.74

CPU Clock Cycles

Operation
Speed

Increase

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2004 Altera Corporation

Hardware Acceleration With
Co-Processor Peripherals

Hardware Acceleration With
Co-Processor Peripherals

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

16
© 2004 Altera Corporation - Confidential

Co-Processor PeripheralsCo-Processor Peripherals

Program
Memory

Processor

D
M

A
D

M
A Accelerator

D
M

A
D

M
A

Data
Memory

ArbiterArbiter

Data
Memory

ArbiterArbiter

Avalon
Switch
Fabric

Not Part of ALU So
− Processor to Be

Accelerated Can Be
External to FPGA

− Can Have Own Master
Interface

− Processor & Accelerator
Run Concurrently

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

17
© 2004 Altera Corporation - Confidential

Custom Instruction vs. Co-ProcessorCustom Instruction vs. Co-Processor
Custom Instruction Can Execute in a Single Cycle
− No Overhead for Call to Custom Hardware

Access to Same Hardware as Peripheral Takes Multiple Cycles
− Write DataA, Then Write DataB & Finally Read Result

− Co-Processor Peripheral Can Run in Parallel With CPU

Custom
Instruction

Custom
InstructionL1

L0 L0

Custom
Peripheral
Custom

PeripheralL1
L0

L0
ResultResult
DataBDataB
DataADataA0x400

0x404
0x408

Peripheral Memory Map

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

18
© 2004 Altera Corporation - Confidential

Co-Processor PeripheralsCo-Processor Peripherals
Situations Where Hardware Acceleration
Co-Processors Could be Used Over a
Custom Instruction Have One or More of
the Following Common Characteristics:
− Algorithms Do Not Only Use Register

Variables (Non Atomic)
− Operations Are More Complex (Often a

Subroutine in Software)
− Transformation of Data Is Done on a Large

Data Block

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

19
© 2004 Altera Corporation - Confidential

When Should Co-Processor
Peripherals Be Used?
When Should Co-Processor
Peripherals Be Used?

Algorithms May Work on External Memory
(Non Atomic)
− Not Just Processor Registers

Operations Are More Complex
− Often Complex Software Subroutines

Transformation of Data Is Done on a Large
Data Block

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

20
© 2004 Altera Corporation - Confidential

Co-Processor Peripheral Example: CRCCo-Processor Peripheral Example: CRC

Implementing the Shift & XOR for Each Bit Takes
Many Clock Cycles: ~50
Software Algorithms Tend to Use Look-Up Tables
to Precompute Each Byte
Parallel Hardware is Fastest

regreg

xo
r/s

hi
ft

xo
r/s

hi
ft

xo
r/s

hi
ft

xo
r/s

hi
ft

xo
r/s

hi
ft

xo
r/s

hi
ft

in(15) in(14) in(0)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

21
© 2004 Altera Corporation - Confidential

Accelerating SoftwareAccelerating Software
Example: CRC Algorithm (64 Kbytes)

Hardware
Accelerator

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

C
lo

ck
 C

yc
le

s

Software Only Custom
Instruction

53 Times
Faster

3 Times
Faster

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

22
© 2004 Altera Corporation - Confidential

Co-Processor Peripheral
Performance Examples
Co-Processor Peripheral
Performance Examples

Software
Only

Hardware
Acceleration
Co-Processor

CRC on 64-KByte Block 2,359,312 43,925 53.71
Reed Solomon 25,769 985 26.17
Recursive Least Squares 13,323 1,357 9.82
FFT 179,237 11,933 15.02
Convolutional Encoder 290,858 21,869 13.30
Autocorrelation 491,030 11,955 41.07

Operation

CPU Clock Cycles

Speed
Increase

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2004 Altera Corporation

Hardware Acceleration With
Application-Specific Processors

Hardware Acceleration With
Application-Specific Processors

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

24
© 2004 Altera Corporation - Confidential

ASIP ApproachASIP Approach
Build Application-Specific Processors
− Easy to Think of Them as Custom Processors

Application-Specific Integrated Processor Has
− Flexible Number of Functional Units
− Connections Between Functional Units as Defined

by the Algorithm
− Program to Allow Flexible (& Dynamic) Control
− Software-Based Design Flow

Software Process Brings
Productivity vs. RTL

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

25
© 2004 Altera Corporation - Confidential

Example ASIPExample ASIP

ALU2

CORDIC

Prog CounterProg Counter

ALU1 RF2

Multiple Function Units
Partitioned Register Files
Sparse, Irregular Connectivity
Typically Very High fMAX

Control Complexity in Software

Program
Microcode
Program

Microcode

RF1 *

*

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

26
© 2004 Altera Corporation - Confidential

Simple Hardware
– 322 Logic Elements (LEs)
– 1 18x18 Multiplier

High Performance
– 230 MHz in a

Stratix –5 FPGA
– 1,024 Point FFT Takes

21,850 Cycles (95 µs)

Less than 3% of Available
Logic in Smallest Altera®

Stratix II FPGA

Reconfigurable FFT/FIR Filter ModuleReconfigurable FFT/FIR Filter Module

INDEX1 INDEX2 INDEX3 INDEX4INDEX0

MOD 0 MOD 1 MOD 2

MEM1

ADD/SUB0 ADD/SUB1

ACCUMULATE 0 ACCUMULATE 1

MEM2

MULTIPLY

MEM1

REGISTER
FILE 0

REGISTER 0

ADD/SUB2

REGISTER
FILE 0

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

27
© 2004 Altera Corporation - Confidential

FFT/FIR Control ProcessorFFT/FIR Control Processor

Processors Implement
Control Structures Very
Cheaply & Densely

Complete Processor
Can Perform Any Task
52 Logic Elements (LEs)
& 2 M4K Memories

+/-

RF

RF

8 Bit Data/
Address/
Register

Immediate

Sign, Carry+=1

prog
mem

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

28
© 2004 Altera Corporation - Confidential

Reconfiguration & ASIPsReconfiguration & ASIPs
ASIPs Use a Program
− Sequential Instruction-Level Parallelism
− Can be Quickly & Easily Reprogrammed by Changing

the Contents of Program Memory
Conventional Hardware Description
− Behavior Encoded in a Number of Parallel Processes
− Reconfiguration Requires New FPGA Image - Literally

Rewiring the Device
ASIPs Can Combine Flexibility of DSPs with Processing
Power of FPGAs
Migrate to Structured ASIC (e.g., Altera HardCopy®

Structured ASIC)
− Does Not Compromise the Reconfigurability

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

29
© 2004 Altera Corporation - Confidential

Benchmark ResultsBenchmark Results
Application Technology Size

(LEs)
fMAX

(MHz)

160

278

160

278

TI C54 160 42,000

332 221 1 21,000

236

229

Block-FIR
40 samples, 16-tap

16-bit data

IIR
2-Biquad

ASIP
(Radix2) 302 4 11,092

FFT
(1,024 pt, 16-bit)

ASIP
(Radix4)

578 4 5,335

18x18
Multi-
pliers

Actual
(Clocks)

TI C54 793

ASIP 74 1 8

1ASIP 56 640

TI C54 17

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

30
© 2004 Altera Corporation - Confidential

SummarySummary
FPGAs Provide Several General Methods
for Hardware Acceleration
− Custom Instructions
− Co-Processor Peripherals
− ASIPs

Performance Improvements Come Through
− Accelerating Algorithm
− Architectural Enhancements

These FPGA Hardware Acceleration Methods
are Complimentary to GPP & DSP in SDR
Systems

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2004 Altera Corporation

Thank YouThank You

Joel SeelyJoel Seely

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

