
THE USE OF HARDWARE ACCELERATION IN SDR WAVEFORMS 
 

David Lau Jarrod Blackburn Joel A. Seely 
Altera Corporation Altera Corporation Altera Corporation 
101 Innovation Dr 101 Innovation Dr 101 Innovation Dr 
San Jose, CA 95134 San Jose, CA 95134 San Jose, CA 95134 
(408) 544-8541 (408) 544-7878 (408) 544-8122 
dlau@altera.com jblackbu@altera.com jseely@altera.com

 
ABSTRACT 

In Software Defined Radios FPGAs can be used as both 
an interconnect layer and a general-purpose 
computational fabric implementing hardware acceleration 
units. Typical implementations of software defined radio 
(SDR) modems include a general purpose processor 
(GPP), digital signal processor (DSP) and field 
programmable gate array (FPGA). The FPGA fabric can 
be used to offload either the GPP or DSP (or both). 
Hardware acceleration units in conjunction with small 
embedded microprocessors can be used as coprocessors 
to the GPP or DSP, accelerating critical sections of either 
DSP or GPP code in hardware. Moreover, with general 
purpose routing resources available in the FPGA, 
hardware acceleration units can run in parallel to further 
enhance the total computational output of the system. The 
algorithms and systems can be modeled in high-level 
languages or tools such as C or Matlab/Simulink and 
easily ported to hardware acceleration units running on 
the FPGA. The creation and use of hardware acceleration 
units and their performance over software 
implementations will be discussed in this paper. 
 

1. INTRODUCTION 

In the past FPGAs were used as a convenient interconnect 
layer between chips in a system. In software defined 
radios (SDRs), FPGAs are being used increasingly as a 
general-purpose computational fabric implementing signal 
processing hardware that boosts performance while 
providing lower cost and lower power. Typical 
implementations of SDR modems include a general 
purpose processor (GPP), digital signal processor (DSP), 
and field programmable gate array (FPGA). However, the 
FPGA fabric can be used to offload the GPP or DSP with 
application specific hardware acceleration units. Soft-core 
microprocessors can have their core extended with custom 
logic, or separate hardware acceleration co-processors can 
be added to the system. Furthermore, with general purpose 
routing resources available in the FPGA, these hardware 
acceleration units can run in parallel to further enhance the 
total computational throughput of the system. Three 
distinct types of hardware acceleration units and their 

performance over software implementations will be 
discussed in this paper 

2. SOFTWARE DEFINED RADIO 

The concept behind SDR is that more of the waveform 
processing can be implemented in reprogrammable digital 
hardware so a single platform can be used for multiple 
waveforms. With the proliferation of wireless standards, 
future wireless devices will need to support multiple air-
interfaces and modulation formats. SDR technology 
enables such functionality in wireless devices by using a 
reconfigurable hardware platform across multiple 
standards.  
 
SDR is the underlying technology behind the Joint 
Tactical Radio System (JTRS) initiative to develop 
software-programmable radios that can enable seamless, 
real-time communication across the U.S. military services, 
and with coalition forces and allies. The functionality and 
expandability of the JTRS is built upon an open 
architecture framework called the software 
communications architecture. The JTRS terminals must 
support dynamic loading of any one of more than 25 
specified air interfaces or waveforms that are typically 
more complex than those used in the civilian sector. To 
achieve all these requirements in a reasonable form factor 
requires extensive processing power of different kinds.  

3. SDR SYSTEM ARCHITECTURE 

Most SDR systems utilize a general purpose processor 
(GPP), digital signal processor (DSP), and FPGA in their 
architectures. The GPP, DSP, and FPGA are general 
purpose processing resources that can be used for different 
parts of the overall SDR system. Figure 1 shows the 
typical functions found in SDR divided across each of 
these devices. However there is a significant amount of 
overlap between each of these elements. For example, an 
algorithm running on the DSP could be implemented in 
the GPP, albeit more slowly, or rewritten in HDL and run 
in an FPGA as a coprocessor or hardware acceleration 
unit.  
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GPP DSP

FPGA
•Low Speed Packet Processing 
•Complex MAC Layer Protocols 
•Network Level Protocols 
•Waveform Management 
•Tx Packet Construction 
•Rx Packet Decode 
•Waveform Load 
•Waveform Execution Control 

•Medium Speed Timing 
•Critical Low Speed Signal Filter 
•Sample Rate Decimation 
•Sample Rate Interpolation 
•Low Speed Mod and Demod 
•Low Speed AGC 
•Medium Speed FEC 
•Medium Speed Packet Proc 
•Simple MAC Layer Protocols 

•Modem External Interface 
•Down Conversion to Baseband 
•Up conversion to IF 
•Signal Filtering 
•Sample Rate 
Decimation/Interpolation 
•High Speed Mod and Demod 
•High Speed AGC 
•High Speed FEC 
•High Speed Packet Processing 

 
Figure 1: Example architecture splitting SDR functions across GPP, DSP, and FPGA 

 

4. HARDWARE ACCELERATION 

Using FPGA resources for hardware acceleration can be 
done in several ways. However, there are three basic 
architectures: Custom instructions, custom peripherals as 
coprocessors, and dynamically reconfigurable application-
specific processors. These hardware acceleration methods 
have different features and unique benefits. Understanding 
how and where to use each of these helps the system 
architect better use the FPGA resources for offloading the 
DSP and GPP in a SDR application.  
 

5. SOFT-CORE PROCESSORS AND CUSTOM 
INSTRUCTIONS 

With the advent of large FPGAs, small, powerful, 
processors integrated in the FPGA. This is accomplished 
as either “hard-core” processors, which are a physical part 
of the FPGA silicon, or “soft-core” processors which are 
IP blocks downloaded as part of the design running on the 
FPGA. These processors, hard-core or soft-core, are used 
like any other embedded microprocessor. They even come 
with industry standard tool chains including compilers, 
instruction-set simulators, a full-suite of software debug 
tools, and an integrated development environment. This 
toolset is familiar to any embedded software engineer so 
much so that it does not matter that the processor is 

integrated on the FPGA or downloaded to the FPGA as a 
bitstream.  
 
However, these soft-core processors have a differentiating 
factor over their hard-core counterparts – they are 
infinitely flexible. Before downloading the processor, a 
designer can choose different configuration options 
trading off size for speed. A designer can also add a 
myriad of peripherals, for memory control, 
communications, I/O, and so forth.  
 
Custom instructions, which take the flexibility of soft-core 
processors one step further, are algorithm-specific 
additions of hardware to the soft-core microprocessor’s 
arithmetic logic unit (ALU). These new hardware 
instructions are used in place of a time-critical piece of an 
algorithm, recasting the software algorithm into a 
hardware block. A RISC microprocessor with a custom 
instruction blurs the division between RISC and CISC 
because the custom instruction units can be multi-cycle 
hardware blocks doing quite complex algorithms 
embedded in a RISC processor with “standard 
instructions” that take a single clock-cycle. Furthermore 
several custom instructions can be added to an ALU, 
limited only by the FPGA resources and the number of 
open positions in the soft-core processor’s op-code table. 
Figure 2 depicts the use of a custom instruction to extend 
the ALU of Altera’s Nios II soft-core microprocessor. 
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Figure 2: Diagram of soft-core processor’s ALU 

extended with a custom instruction. 
 
When should custom instructions be used?  The most 
efficient use occurs when the algorithm to be accelerated 
is a relatively atomic operation that is called often and 
operates on data stored in local registers. A familiar 
example would be adding floating point capabilities to the 
processor. For many embedded processors, floating point 
arithmetic instructions are implemented as library 
subroutines that the compiler automatically invokes on 
processors without dedicated floating-point instruction 
hardware. These floating-point algorithms take many 

floating point is typically used throughout the software 
code rather than localized to a few function calls. If the 
floating point instructions were part of the ALU, then 
these software routines would be collapsed into calls to
the floating point hardware.  
 

clock-cycles to execute. From an application perspective, 

 

ith soft-core processors running on an FPGA, the 
m 

 

veral 

ay 

hat is 

he cyclic redundancy-check algorithm was also added to 

 

e 

 

 

W
floating point functions can be implemented as custo
instructions extending a soft-core microprocessor’s ALU.
The performance improvement of these hardware custom 
instructions over their software counterparts can be 
dramatic. Table 1 provides a comparison between se
software library routines and the same function using a 
custom instruction. Note: Even in this case the results m
vary depending on the design considerations for the 
custom instruction such as the amount of pipelining t
chosen in the hardware implementation.  
 
T
the table for comparison of a custom instruction in this 
section and a better implementation as a co-processor to
be discussed in the next section. Although the CRC as a 
custom instruction does provide some advantages over th
software only implementation of this algorithm, when the 
operation is executed on a large block of memory, there 
are other ways of implementing the hardware acceleration
unit that will be more efficient and provide better overall 
throughput. 
 

Software 
Only

Custom 
Instruction

FP Multiplication axb 2,874 19 151.26
FP Multiply and Negate -(axb) 3,147 19 165.63
FP Absolute |a| 1,769 18 98.28
FP Negate -(a) 284 19 14.95
CRC on 64KByte Block 2,359,312 860,179 2.74

CPU Clock Cycles

Operation
Speed 

Increase

 
 

Table 1: Comparison of Throug mented in Software vs. Using a 
Hardware Custom Instruction 

 

6. HARDW ATION CO-

s 

h is 

n a 
mory – i.e. the co-

 hput Between Algorithms Imple

 

ARE ACCELER
PROCESSORS 

Hardware-acceleration co-processors can be used to 
accelerate processors or DSPs. The processors can be 
either stand-alone processors separate from the FPGA, 
hard-core processors integrated in the FPGA, or soft-core 
processors downloaded to the FPGA. Custom instruction

differ from hardware acceleration co-processors in that 
custom-instructions are an extension of an ALU whic
relegated to a soft-core microprocessor. Figure 3 depicts 
an architecture using a co-processor. One of the key 
advantages to the co-processor is that it is wrapped i
DMA so it has direct access to me
processor can work on a block of memory without 
intervention from the processor.  
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Situ n
could be tom instruction have one or more 
of th

•  not only use register variables 
(non atomic).  

e 
are). 

• Transformation of data is done on a large data 
block. 

 
 

 
Figure 3: In-System Hardware Acceleration Co-Processor 

DR 
applications. SDRs can benefit from co-processors for 

 as higher-level application 
vel hardware acceleration.  

 

 

atio s where hardware acceleration co-processors 
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Table 2 provides several examples of hardware 
acceleration co-processor performance over software only 
implementations for some algorithms that are used in S

various DSP functions as well
le

Software Only

HW 
Acceleration 

Co-Processor
CRC on 64K Byte Block 2,359,312 43,925 53.71
Reed Solomon 25,769 985 26.16
Recursive Least Squares 13,323 1,357 9.82
FFT 179,237 11,933 15.02
Convolutional Encoder 290,858 21,869 13.30
Autocorrelation 491,030 11,955 41.07

Operation

CPU Clock Cycles

Speed 
Increase

 
 

Table 2: Software Only and Hardware Acceleration Co-Processor Throughput Comparison 

 

7. APPLICATIO RUCTION-SET 

 

are 

 

ing 

e 

 

N SPECIFIC INST
PROCESSORS 

Application specific instruction-set processors (ASIPs) are
a special case of the hardware acceleration co-processors 
above. An ASIP combines the flexibility of a softw
approach with the efficiency and performance of 
dedicated hardware. An ASIP is a processor that has been

targeted to perform a specific task or set of related tasks. 
One of the implementations of ASIPs allows for chang
the internal topology of the processor by changing the 
functional interconnect of the larger building blocks. 
Software defined radios implement algorithms in softwar
to improve portability, lifetime costs and retargetability. 
However achieving cost and performance requirements 
necessitates the use of application specific hardware. The 
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value of ASIPs on an FPGA is that they are composed o
smaller building blocks that can be reconfigured on the fly 
to implement more than one higher level function. An 
example relevant to SDRs would be fast Fourier transform 
(FFT) blocks and finite impulse response (FIR) filters. 
These two high-level algorithms share many common 
blocks. By changing the interconnect between these sub-

instead of the FIR in hardware. Figure 4 shows an ASIP 
architecture implementing an FFT/FIR ASIP. A sim
microcode instruction set is used to configure the 
hardware

f 

sub 

blocks the ASIP can be altered to implement the FFT 

ple 

 blocks to perform either the FIR or the FFT as 
eeded. 

 

Figure 4: Combined FFT/FIR ASIP Architecture 
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A software/hardware comparison was made between 
running a 1024 point radix-2 FFT on a TI C62x DSP
doing the same filter on the FIR/FFT ASIP. The TI 
implementation took 20840 clock cycles and the ASI
21850 clock cycles. The overall throughput for both 
implementations was near parity. However, the relative siz
(and power and cost) of the ASIP approach is superior to
utilization of an entire DSP for the same algorithms. In 
situations where specific SDR algorithms can be offloaded 
from the DSP to the FPGA to either decrease the processing 
power needed in th

8. CONCLUSIONS 

Software defined radios require extensive processing power 
to realize the portability of waveforms and reconfigurabil
that has been promised. The use of FPGAs for hardware 
acceleration, through custom instructions added to soft-core 
processors, hardware acceleration co-processors enhancin

the processing power of GPPs and DSPs, or application
specific instruction-set processors providing tight, efficie
reconfigurable b
p
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Waveforms

Hardware Acceleration & SDR 
Waveforms
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Waveform Processing Waveform Processing 
General-
Purpose 

Processor 
(GPP)

Digital 
Signal 

Processor 
(DSP)

FPGA
•Medium Speed Timing

•Critical Low-Speed Signal Filter

•Sample Rate Decimation

•Sample Rate Interpolation

•Low-Speed Modulation & 
Demodulation

•Low-Speed AGC

•Medium-Speed FEC

•Medium-Speed Packet 
Processing

•Simple MAC Layer Protocols

•Modem External Interface

•Down Conversion to Baseband

•Up Conversion to IF

•Signal Filtering

•Sample Rate Decimation/Interpolation

•High-Speed Mod & Demod

•High-Speed AGC

•High-Speed FEC

•High-Speed Packet Processing

•Low-Speed Packet Processing

•Complex MAC Layer Protocols

•Network-Level Protocols

•Waveform Management

•Tx Packet Construction

•Rx Packet Decode

•Waveform Load

•Waveform Execution Control
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Soft Processor Core for Control
Co-Processing Engines
− FEC
− RAKE
− FFT

Waveform Example: Implementing 
SSW on FPGA
Waveform Example: Implementing 
SSW on FPGA
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Waveform Processing Waveform Processing 
Different Waveforms Have Different 
Requirements
− Some Are Relatively Small & Low Bandwidth

Can Process in DSP &/or GPP Alone

Latest Waveforms Need High Bandwidth for 
Processing
− Massively Parallel Architectures for Things like 

Forward Error Correction
− Logic, Memory & MACs
− FPGAs Required

Waveforms Still in Development
− SRW to be Completed in 2007
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Why FPGAs for SDRs?Why FPGAs for SDRs?
Can Offload Both General Purpose Processor & 
Digital Signal Processor
Glues Everything Together
FPGAs Have Many of the Building Blocks for SDRs
−Soft Microprocessor Cores
−DSP Functionality (Such as Multipliers)
−Phase-Locked Loops (PLLs)
−Configurable I/O Pins
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Hardware AccelerationHardware Acceleration
3 Methods
− Custom Instructions

Computational
− Co-Processor Peripherals

Computational
− Application-Specific Instruction-Set Processors 

(ASIPs)
Combination Architectural & Computational

Other Architectural Methods
− Massively Parallel Applications
− How You Wire Up Your Blocks Becomes Critical in 

High-Throughput Applications
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Hardware Acceleration With 
Custom Instructions

Hardware Acceleration With 
Custom Instructions
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Software Bottleneck OptionsSoftware Bottleneck Options
When the Processing Power of a GPP is 
Too Small, You Can
− Go to Higher-Performance Processor
− Re-Code in Assembly
− Offload Processor to DSP
− Offload Processor to FPGA 

Custom Instructions
Co-Processors
ASIPs
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Custom InstructionsCustom Instructions
Extend Soft-Core 
Microprocessors
Can Execute in a Single 
Cycle
− No Overhead for Call 

to Custom Hardware

Custom 
Instruction

Custom 
InstructionL1

L0 L0

Optional FIFO, Memory, Other Logic

Nios® II Processor

Your
Custom
Logic

Your
Custom
Logic
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Several Levels of CustomizationSeveral Levels of Customization
Optional Interface to FIFO, Memory, Other Logic

Internal 
Register File

a

5

b 5

5

c

readra

readrb

writerc

n

8
Extended

clk

clk_en
reset
start

Multi-Cycle done

dataa

32datab

32

Combinatorial result

32
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Why Custom Instruction?Why Custom Instruction?
Dramatically Accelerate Software Algorithms
− Reduce Complex Sequence of Instructions to One 

Instruction
Typical Flow
− Profile Code (gprof)
− Identify Critical Inner Loop
− Create Custom Instruction Logic

Replace One or All Instructions in Inner Loop
− Import Custom Instruction Logic Into Design
− Call Custom Instruction From C or Assembly
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When Should Custom Instructions 
be Used?
When Should Custom Instructions 
be Used?

Operation to be Accelerated is “Atomic”
− Such as Math-Library Subroutines

Multiple Clock Cycles
Operates on Data Stored in Registers
− Doesn’t Need to Access External Memory
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Example of Custom InstructionExample of Custom Instruction

Example: Floating Point Multiply

float a, b, result_slow, result_fast;

result_slow = a * b;        /* Takes 2,874 clock cycles  */
result_fast = nm_fpmult(a, b);  /* Takes 19 clock cycles */

Much Faster Than DSPs!

float a, b, result_slow, result_fast;

result_slow = a * b;        /* Takes 2,874 clock cycles  */
result_fast = nm_fpmult(a, b);  /* Takes 19 clock cycles */

Much Faster Than DSPs!
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Custom Instruction Performance 
Examples
Custom Instruction Performance 
Examples

Software 
Only

Custom 
Instruction

FP Multiplication axb 2,874 19 151.26
FP Multiply & Negate -(axb) 3,147 19 165.63
FP Absolute |a| 1,769 18 98.28
FP Negate -(a) 284 19 14.95
CRC on 64-KByte Block 2,359,312 860,179 2.74

CPU Clock Cycles

Operation
Speed 

Increase
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Hardware Acceleration With 
Co-Processor Peripherals

Hardware Acceleration With 
Co-Processor Peripherals
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Co-Processor PeripheralsCo-Processor Peripherals

Program
Memory

Processor

D
M

A
D

M
A Accelerator

D
M

A
D

M
A

Data
Memory

ArbiterArbiter

Data
Memory

ArbiterArbiter

Avalon
Switch 
Fabric

Not Part of ALU So
− Processor to Be 

Accelerated Can Be 
External to FPGA

− Can Have Own Master 
Interface

− Processor & Accelerator 
Run Concurrently
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Custom Instruction vs. Co-ProcessorCustom Instruction vs. Co-Processor
Custom Instruction Can Execute in a Single Cycle
− No Overhead for Call to Custom Hardware

Access to Same Hardware as Peripheral Takes Multiple Cycles
− Write DataA, Then Write DataB & Finally Read Result

− Co-Processor Peripheral Can Run in Parallel With CPU

Custom 
Instruction

Custom 
InstructionL1

L0 L0

Custom 
Peripheral
Custom 

PeripheralL1
L0

L0
ResultResult
DataBDataB
DataADataA0x400

0x404
0x408

Peripheral Memory Map
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Co-Processor PeripheralsCo-Processor Peripherals
Situations Where Hardware Acceleration 
Co-Processors Could be Used Over a 
Custom Instruction Have One or More of 
the Following Common Characteristics:
− Algorithms Do Not Only Use Register 

Variables (Non Atomic)
− Operations Are More Complex (Often a 

Subroutine in Software) 
− Transformation of Data Is Done on a Large 

Data Block
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When Should Co-Processor 
Peripherals Be Used?
When Should Co-Processor 
Peripherals Be Used?

Algorithms May Work on External Memory 
(Non Atomic)
− Not Just Processor Registers

Operations Are More Complex 
− Often Complex Software Subroutines

Transformation of Data Is Done on a Large 
Data Block
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Co-Processor Peripheral Example: CRCCo-Processor Peripheral Example: CRC

Implementing the Shift & XOR for Each Bit Takes 
Many Clock Cycles: ~50
Software Algorithms Tend to Use Look-Up Tables 
to Precompute Each Byte
Parallel Hardware is Fastest
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Accelerating SoftwareAccelerating Software
Example: CRC Algorithm (64 Kbytes)

Hardware
Accelerator
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Co-Processor Peripheral 
Performance Examples
Co-Processor Peripheral 
Performance Examples

Software 
Only

Hardware 
Acceleration 
Co-Processor

CRC on 64-KByte Block 2,359,312 43,925 53.71
Reed Solomon 25,769 985 26.17
Recursive Least Squares 13,323 1,357 9.82
FFT 179,237 11,933 15.02
Convolutional Encoder 290,858 21,869 13.30
Autocorrelation 491,030 11,955 41.07

Operation

CPU Clock Cycles

Speed 
Increase

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



© 2004 Altera Corporation

Hardware Acceleration With 
Application-Specific Processors

Hardware Acceleration With 
Application-Specific Processors
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ASIP ApproachASIP Approach
Build Application-Specific Processors
− Easy to Think of Them as Custom Processors

Application-Specific Integrated Processor Has 
− Flexible Number of Functional Units
− Connections Between Functional Units as Defined 

by the Algorithm
− Program to Allow Flexible (& Dynamic) Control
− Software-Based Design Flow

Software Process Brings 
Productivity vs. RTL
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Example ASIPExample ASIP

ALU2

CORDIC

Prog CounterProg Counter

ALU1 RF2

Multiple Function Units
Partitioned Register Files
Sparse, Irregular Connectivity
Typically Very High fMAX

Control Complexity in Software

Program
Microcode
Program

Microcode

RF1 *

*
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Simple Hardware
– 322 Logic Elements (LEs)
– 1 18x18 Multiplier

High Performance 
– 230 MHz in a 

Stratix –5 FPGA
– 1,024 Point FFT Takes 

21,850 Cycles (95 µs)

Less than 3% of Available 
Logic in Smallest Altera®

Stratix II FPGA

Reconfigurable FFT/FIR Filter ModuleReconfigurable FFT/FIR Filter Module

INDEX1 INDEX2 INDEX3 INDEX4INDEX0

MOD 0 MOD 1 MOD 2

MEM1

ADD/SUB0 ADD/SUB1

ACCUMULATE 0 ACCUMULATE 1

MEM2

MULTIPLY

MEM1

REGISTER
FILE 0

REGISTER 0

ADD/SUB2

REGISTER
FILE 0
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FFT/FIR Control ProcessorFFT/FIR Control Processor

Processors Implement 
Control Structures Very 
Cheaply & Densely

Complete Processor
Can Perform Any Task
52 Logic Elements (LEs) 
& 2 M4K Memories

+/-

RF

RF

8 Bit Data/
Address/
Register

Immediate

Sign, Carry+=1

prog
mem
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Reconfiguration & ASIPsReconfiguration & ASIPs
ASIPs Use a Program 
− Sequential Instruction-Level Parallelism
− Can be Quickly & Easily Reprogrammed by Changing 

the Contents of Program Memory
Conventional Hardware Description 
− Behavior Encoded in a Number of Parallel Processes
− Reconfiguration Requires New FPGA Image - Literally 

Rewiring the Device
ASIPs Can Combine Flexibility of DSPs with Processing 
Power of FPGAs
Migrate to Structured ASIC (e.g., Altera HardCopy®

Structured ASIC) 
− Does Not Compromise the Reconfigurability
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Benchmark ResultsBenchmark Results
Application Technology Size

(LEs)
fMAX

(MHz)

160

278

160

278 

TI C54 160 42,000

332 221 1 21,000

236

229

Block-FIR
40 samples, 16-tap

16-bit data

IIR
2-Biquad

ASIP
(Radix2) 302 4 11,092

FFT 
(1,024 pt, 16-bit)

ASIP
(Radix4)

578 4 5,335

18x18 
Multi-
pliers

Actual
(Clocks)

TI C54 793

ASIP 74 1 8

1ASIP 56 640

TI C54 17
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SummarySummary
FPGAs Provide Several General Methods 
for Hardware Acceleration
− Custom Instructions
− Co-Processor Peripherals
− ASIPs

Performance Improvements Come Through
− Accelerating Algorithm
− Architectural Enhancements

These FPGA Hardware Acceleration Methods 
are Complimentary to GPP & DSP in SDR 
Systems
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Thank YouThank You

Joel SeelyJoel Seely
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