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ABSTRACT 

Future wireless communication systems must support multi-
ple radio standards and be capable of executing them con-
currently. Consequently, flexibility and programmability will 
be two of the most important features. However, even a 
flexible solution has to fulfill the traditional constraints on 
silicon area and power dissipation. In this paper we address 
the problem of designing a cost-efficient radio solution start-
ing from the application level. We describe a methodology 
that drives the design in five phases from application to im-
plementation. We apply this approach in the design of our 
solution for software-defined radio (SDR) terminals. Here, 
an optimum partitioning between all components of a multi-
standard transceiver system has to be found. The outcome is 
a heterogeneous platform with a multi-standard baseband 
circuit and multiple front-ends. The baseband circuit con-
sists of multiple DSP cores and dedicated accelerators and is 
fully software-programmable. 

1. INTRODUCTION 

Flexibility is becoming one of the most important design 
criteria in future terminals for mobile communications and 
wireless networks. In contrast to today’s dual-band single-
standard cell phones, future wireless terminals will have to 
be multi-band, multi-standard and able to do handover be-
tween multiple standards and execute them concurrently. 
With the further evolution from 2G to 4G communication 
systems more and more standards have to be supported by 
and integrated into wireless terminals  [1]. In addition, in-
creasing design costs, e.g. in terms of manufacturing and 
testing, require flexible platforms for design reuse. 

On the other hand, silicon solutions for radio handsets 
feature particularly tough constraints on silicon area and 
power dissipation. Therefore, it is mandatory to carefully 
design all components of a radio system taking trade-offs 
between components and HW/SW into account. In this pa-
per we present a multi-standard radio solution for mobile 

terminals including all components from RF front-end to 
baseband. Finding the optimum partitioning among the 
components and exploring HW/SW trade-offs follows a top-
down approach for the design of cost-efficient platforms for 
communication systems. Our main goal is to support the 
designer with quantitative estimations of the design quality 
as early as possible during the design flow, where partition-
ing decisions have most impact on the performance and 
costs of the platform. 

This is why we have developed this approach taking 
into account the importance of the application domain. One 
major focus of our methodology is the proper characteriza-
tion of the domain and implementation of a representative 
reference application. Using profiling results a fully flexible 
platform architecture template can be customized and the 
complexity of the design space significantly reduced to meet 
costs constraints. Our methodology can be described by the 
following phases: 

1. Application-domain analysis: Identify and define repre-
sentative and comparable system-level benchmarks and 
realistic workloads for algorithms and protocols by ana-
lyzing the application domain. 

The availability of benchmarks is often an unresolved issue 
for new application domains. We need to identify and spec-
ify representative system-level benchmarks including func-
tion, traffic model, and environment specification. 

2. System function modeling: Implement a performance 
indicative system-level reference application that cap-
tures essential system functions. 

For performance indicativeness and evaluation of different 
partitioning and mapping decisions, executable and modular 
system-level reference applications are required to deter-
mine weight and interaction of function kernels. The model 
must be independent of platform architectures. 

3. Architecture-independent profiling: Derive architec-
ture-independent application properties by analyzing and 
profiling the reference application. 
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Our approach particularly emphasizes this step to narrow 
architectural choices. It is unfeasible to maintain several 
prototypes of a complex architecture. Before the actual de-
velopment of the architecture starts we therefore use archi-
tecture-independent profiling to derive a good starting point 
for exploring the platform design space. 

4. Design space exploration: Perform a systematic search 
of the architectural design space based on the reference 
application and its properties; define and iteratively re-
fine the resulting platform architecture. 

As a starting point, we use a set of embedded standard proc-
essors, as well as specialized processing engines. Using the 
functional reference, we profile the cores to derive a regular 
multi-processor solution. Such generic solution will be most 
flexible and reasonably programmable but is likely to fail 
area and power requirements. Therefore, the profile is used 
to identify optimization potential and to gradually refine the 
platform to a virtual prototype with efficient programming 
environment. 

5. Platform implementation and deployment: Implement 
the platform and provide a code generation framework 
for the platform to ease the deployment with efficient pro-
gramming abstractions. 

The virtual prototype serves as executable specification for 
the actual platform hardware and software implementation 
and as golden model for verification. In addition, it can 
make sense to revise an internally used programming ab-
straction after the exploration if a programmable architec-
ture is released as an open platform to the customer. 

In the following sections the five phases of this system-
level design approach are explained in detail. The method-
ology has been applied in case studies from the two domains 
access platform ( [2] [3]) and wireless communications. We 
present the results and experiences we obtained by applying 
the methodology in our project of a flexible multi-standard 
radio system for handsets. It has to be noted that due to a 
lack of appropriate tool support in some phases the method-
ology cannot be applied as straightforward as it is described, 
making it necessary to perform some of the steps manually. 
Section  7 finally closes with concluding remarks. 

2. APPLICATION-DOMAIN ANALYSIS 

In the first phase of our design flow, the goal is to under-
stand the application domain and derive design requirements 
and define system environments for further benchmarking. 
At this early stage of the design flow, essential functions 
together with their specific parameters need to be derived. 

Since we start from application level it is necessary to 
define reasonable use cases that the final system solution has 
to support. Figure 1 indicates the numerous wireless com-
munication standards which may have to be integrated into 

future handsets. Use cases are defined by the set of standards 
that are supported, and by the combinations of standards that 
must run concurrently. 

 
Figure 1: Trend of wireless communication standards (Source: 

G. Fettweis, TU Dresden). 

In general, communication systems consist of analog and 
digital signal processing sections. The digital section is fur-
ther partitioned into a digital front-end and the baseband 
(Figure 2). There is no clear rule for which components of 
the digital signal processing chain are assigned to the digital 
front-end or baseband, respectively. 

 
Figure 2: General wireless communication system. The IF process-

ing section is omitted in the case of direct conversion. 

For the realization of such a system as a chip set this parti-
tioning usually introduces interfaces between chip bounda-
ries. The current trend is to have an interface on the receive 
side with a data rate of two times the chip or symbol rate. On 
the transmit side the interface has a chip or symbol rate in-
terface. 

In principle, it is possible to build a fully flexible RF 
front-end out of programmable or tunable components. 
These components are wideband antennas, amplifiers, mix-
ers and oscillators, tunable filters, and highly accurate digital 
synthesizers. However, each of the standards that need to be 
covered for a multi-standard radio comes with very tight 
constraints which are difficult to meet even for the single-
standard case. Usually, using wideband components means 
compromising some performance compared to the narrow-
band solution optimized for the single-standard case. There 
are currently efforts to combine the analog signal paths of 
related communication standards into a single flexible RF 
front-end. Examples of related communication standards are 
GSM/GPRS/WCDMA. However, it is unlikely that the ana-
log signal paths of different families of communication stan-
dards (e.g. wireless LAN and mobile phones) can be com-
bined in the near term. Figure 3 shows the block diagram of 
a multi-standard radio system featuring multiple RF chips 
for the different standards. This concept can be easily ex-
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tended if more than two signal paths or completely different 
air interfaces are required. 

By comparing standards like WCDMA and WLAN 
802.11a it becomes evident, that in the baseband sections 
functional kernels and topologies are quite diverse. 

The partitioning of a system into analog front-end, digi-
tal front-end and baseband processor has to take the follow-
ing issues into account. 
1. The interface data rate resulting from a cut between com-

ponents. 
2. The type of interface that is necessary to support this data 

rate (parallel or serial, single-ended or differential). The 
type of interface influences pin count and package, and 
therefore cost. 

3. The technologies in which RF and baseband chip are fab-
ricated. This question influences the decision of where to 
put parts of the digital front-end. It depends on the silicon 
area they consume if implemented in either of the tech-
nologies. 

 
Figure 3: Multi-standard radio system. 

Application-domain analysis also includes deriving early 
estimates on the required processing power. Based on our 
experience it is necessary to plan with significant headroom 
in computing power. 

The optimization criteria silicon area and power con-
sumption become very important in the design space explo-
ration phase. During analysis it is important to find reason-
able ranges that might serve as stop criteria for area/power 
optimizations. 

3. SYSTEM FUNCTION MODELING 

In this phase of the design methodology the task is to design 
a complete model of the system function. A complete system 
function model in our view has to provide certain features in 
order to be useful in the subsequent phases of the design 
methodology. 
1. System function: Description of the system function 

comprised of function kernels, the interconnect between 
the kernels, and the system control. 

2. Architectural independency: At this phase of the meth-
odology we do not want to impose any restrictions on the 
implementation of parts of the system, no matter if it is 

dedicated hardware, reconfigurable structures, or soft-
ware running on a DSP. 

3. Simulation: The model should be executable and there-
fore can be used to develop algorithms. It also serves as 
an executable specification for verification. 

4. Constraints: The model has to contain the entire set of 
timing, latency, and throughput constraints that is neces-
sary to verify a system implementation or an architecture 
candidate against the system function model (i.e. the test 
environment). 

In the communications domain, there are several tools 
available which are suited mainly for describing the signal 
processing part of systems, e.g., Matlab/Simulink, CoCentric 
System Studio, ML Designer, or Ptolemy, to name a few. 
Currently, none of the tools supports all the features required 
for a complete system function model as described before. 
For the modeling of the baseband part of wireless communi-
cation systems we use Simulink and extend it with code gen-
eration capabilities for parallel processors. 

4. ARCHITECTURE-INDEPENDENT PROFILING 

After the reference application has been defined, architec-
ture-independent properties of the application are derived by 
static analysis and/or simulation. The goal of this step is to 
determine architecture-independent characteristics of the 
functionality that can help pruning the design space and 
finding a good starting point in the architecture space. The 
analysis focuses on features of the reference implementation 
like data types, primitive operations and sequences thereof, 
communication between function kernels, or storage re-
quirements. In baseband processing some of these character-
istics like primitive operations and sequences thereof can be 
obtained by profiling the reference model using conven-
tional profiling tools. Others like communication between 
function kernels have to be estimated from the profiling re-
sults for the lack of appropriate tools. In the end we can de-
termine feasible building blocks for the platform architecture 
as well as lower and upper bounds on the number of compu-
tation and communication resources. 

5. DESIGN SPACE EXPLORATION 

Having found a suitable entry point into the design space the 
next task is to find the most cost efficient architecture for the 
platform by exploring the design space. Design parameters 
used here not only include silicon area and power consump-
tion but also the solution’s flexibility and simplicity of the 
programming model. However, it is not possible to find the 
optimum solution with respect to so many design parameters 
in reasonable time. Therefore, we prune the design space by 
assuming fixed budgets for silicon area and power consump-
tion that have to be agreed upon with the customer. 
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Finding the most flexible and easy-to-program solution 
within a specified power and area budget means that we  
1. Use the minimum number of general-purpose DSP cores 

in parallel at the maximum clock frequency and supply 
voltage so that the power budget is not exceeded,  

2. Introduce as few application-specific instructions as pos-
sible if the area budget or performance requirements can-
not be met with 1.,  

3. Use dedicated accelerators for algorithms with high com-
putational complexity if the area budget or performance 
requirements cannot be met with 2.  

With the entry point into the architecture design space 
chosen as explained above, our estimations on power con-
sumption resulted in an architecture consisting of a cluster of 
four single-instruction multiple-data (SIMD) DSP cores 
(Figure 4). This kind of DSP core is particularly suited for 
the computationally complex algorithms in communication 
systems  [4] [5]. Each SIMD core contains four processing 
elements and operates with a clock frequency of 300 MHz. 

 
Figure 4: Baseband platform. 

Iterative refinement led to 
– Specialized instructions for saturating operations and 

finite-field arithmetic 
– Long-instruction word (LIW) features for performing 

arithmetic operations and memory accesses in parallel 
– Multiple task contexts for exploiting concurrency as re-

flected by the system function model 
– Four-stage execution pipeline used in conjunction with 

the multiple task contexts to relax the timing requirements 
for the memories, reduce the memory’s supply voltage 
and thereby the power consumption. 

The cluster of SIMD cores is accompanied by dedicated 
programmable processors for channel encoding and decod-
ing as well as filtering operations. These dedicated proces-
sors account for almost half of the total processing power of 
the entire SDR platform  [6]. In addition, there is an ARM 
processor for the execution of the protocol stacks. 

We have developed a virtual prototype of the entire 
platform based on SystemC  [7]. The virtual prototype is a 
cycle- and bit-accurate software-based simulator of the SDR 
platform. The virtual prototype contains models of all proc-
essors, accelerators, busses, memories, and peripherals 
which will be available in the real hardware. Therefore the 
same software can be run on the virtual prototype as on the 
real hardware. Although a virtual prototype need not neces-
sarily be cycle accurate and since the cycle accuracy reduces 
the simulation speed compared to a transaction accurate 
model, a cycle accurate virtual prototype offers several ad-
vantages over a transaction accurate model. In a transaction 
accurate model each interaction with its environment, e.g. 
the transfer of data, is modeled, but basically no timing in-
formation for a transaction is generated. However, in some 
cases it is possible to give an estimation of the duration of a 
transaction, e.g. the duration of a memory access in a single 
processor system. In multi-processor systems this is not pos-
sible in general in an efficient and accurate way, as the dura-
tion of a transaction cannot be estimated locally in one mod-
ule but has to be derived from the state of the entire system. 
There may also exist feedback loops, e.g. the higher the 
utilization of a bus arbiter is, the higher is the probability 
that a module does not get the bus granted and it has to re-
peat its request. Consequently, the utilization of the bus arbi-
ter increases further. Cycle-accurate models interact with 
their environment with the same timing as real hardware. 
Hence, the duration of a transaction is given implicitly by 
the model in an absolutly accurate way. Thus we can use our 
virtual prototype for the SDR application domain to check if 
our architecture-software combination meets the real-time 
requirements. Furthermore, cycle-accurate models help to 
specify modules in detail before writing code on register 
transfer level (RTL) in a hardware description language 
(HDL) and they offer the possibility to use the virtual proto-
type to verify the HDL descriptions. 

As described above we are focusing on (heterogeneous) 
multi-processor platforms. For the SDR prototype, we cur-
rently deploy three different types of processors in order to 
meet the real-time requirements. The first type is a general-
purpose core, currently an ARM926 (precompiled SystemC 
model). The second type is a DSP core with single-
instruction multiple-data (SIMD) extensions. This processor 
is highly configurable, e.g. the number of functional units 
within the processor can be adapted to the level of data par-
allelism of the application. The third group of processing 
units is hardware accelerators for compute-intensive tasks, 
such as FIR filtering. The accelerators have been modeled 
completely in SystemC like the rest of the virtual prototype 
including busses, memories, and peripherals. 

The hardware accelerator for channel decoding is a pro-
grammable core. 32 parallel add-compare-select units (AC-
SUs) are available for fast Turbo and Viterbi trellis opera-
tions. A trace-back unit for Viterbi and hardware support for 
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the UMTS Turbo internal interleaver are implemented. A 
programmable general purpose part is used for parameter 
preparation, data path configuration, data transfer over the 
system bus and communication with the system. The decod-
ing operations are performed by a special trellis data path 
that is controlled by the general purpose part. The special 
trellis data path is flexible such that Turbo and Viterbi algo-
rithms for various communication standards can be proc-
essed. Local memory is available in order to reduce the 
number of bus transfers and to speed up the decoding proc-
ess. 

The SystemC model is bit-true and cycle-accurate. This 
means that all relevant signals are modeled with the appro-
priate bit widths and all pipeline stages are present, i.e. the 
micro architecture has been modeled in SystemC and the 
refinement in VHDL must be done only in non-critical 
places. The SystemC model can be directly translated into 
VHDL and it serves as a reference for simulation: traces of 
arbitrary internal signals of the SystemC model can used as 
stimuli or reference pattern in a VDHL simulation. This 
eases the verification of the corresponding parts in the 
VHDL model. 

Cycle-accurate modeling of the instruction pipeline of 
the general purpose part, the six-stage pipeline of the special 
trellis data path and the access cycles to the local memory 
provides the exact number of cycles necessary for a decod-
ing process, e.g. the pipeline stalls due to taken branches are 
included in the model of the instruction pipeline. Since 
throughput is crucial, the cycle-accurate model enables the 
verification. 

The SDR filter accelerator is a configurable coprocessor 
for multi-threaded FIR filtering on complex input data. It 
can locally store up to four different filter contexts at the 
same time. The datapath can be configured to support differ-
ent FIR filter modes. Four independent I/O processes for 
external memory access are running concurrently. 

The SystemC SDR filter accelerator model consists of a 
main controller, a memory interface controller, a datapath 
and datapath controller, local memories for storing input 
samples, filter coefficients and output samples, a slave inter-
face, two task FIFOs, and a set of local registers. 

In the SystemC model of the filter accelerator a high-
level description of both the filter datapath and the datapath 
controller has been implemented for simulation performance 
reasons. The datapath latency is modeled by the use of a 
configurable counter. 

The SDR virtual prototype provides several tools for 
analyzing the soft- and hardware. First, the general purpose 
cores can be debugged and profiled by using a graphical de-
bugger. Second, internal state, instructions, and data trans-
fers of all modules can be logged. Third, statistical data can 
be gathered on the utilization of the shared modules like 
busses and memories. Furthermore, it is possible to track the 
execution status of threads on the general purpose proces-

sors without instrumenting the software. The results can be 
displayed graphically. An example is shown in Figure 5. An 
802.11b implementation is running on the parallel DSP clus-
ter. The traces show single threads running, blocking, and 
synchronizing. 
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Figure 5: Traces of parallel WLAN 802.11b implementation. 

Having the virtual prototype and analysis tools leads to fast 
and very accurate analyses of the performance of an applica-
tion. Together with the configurability of the virtual proto-
type the architecture can be optimized very efficiently. 

6. PLATFORM IMPLEMENTATION AND 
DEPLOYMENT 

The virtual prototype serves as an executable specification 
for the actual platform hardware and software implementa-
tion and as a golden model for their verification. As the 
needed functionality and timing requirements for each mod-
ule have been accurately analyzed before, hardware design-
ers are relieved from redesigning modules repeatedly due to 
flaws in the specification. Depending on the level of detail in 
the virtual prototype, the translation of complete modules to 
HDL can be straightforward, e.g. if an accelerator is mod-
eled with all pipeline stages and precise widths of all data 
paths. In this case a lot of iterations in the architecture re-
finement can be avoided. Another main advantage of having 
a detailed virtual prototype is that the amount of written 
specification can be reduced significantly, in our experience 
from a few thousand to a few hundred pages. This reduces 
the probability of errors introduced in the design process just 
by simple misunderstandings. 

A very cumbersome task in the chip design process is 
always the setup of appropriate test benches. Here, for the 
verification of the virtual prototype test benches with cycle-
accurate stimuli have already been written. These test 
benches can be reused during the platform implementation 
almost unchanged. 

A successful deployment of a programmable platform 
can only be achieved if the programmer/user is relieved 
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from understanding the architecture in full detail. An ap-
proach is a layer of firmware that provides sufficient ab-
straction for the customer in an API/library based manner 
 [8]. Ideally, the vendor who understands his platform in full 
detail provides this layer. This way, only the firmware pro-
grammer is faced with the problem of coordinating the exe-
cution of software portions on different processing elements 
manually that must be optimized individually on assembly 
level – a tedious burden that frequently leads to suboptimal 
usage of hardware resources. This task would highly benefit 
from tools that are able to generate at least the part of the 
software coordinating the parallel execution on different 
processing elements, ideally from the system function 
model  [9]. 

7. CONCLUSION 

Within the next few years we will see a transition from dual-
band single-standard to multi-band multi-standard terminals. 
Our system-level design methodology for flexible yet cost-
efficient communication platforms is based on five phases 
that emphasizes the role of systematic domain analysis and 
system function modeling to ease system-level decisions, 
such as the partitioning of functionality onto platform re-
sources. Starting from system level, a flexible platform ar-
chitecture is developed and iteratively refined going down to 
circuit level. This process is application-driven, and relies 
on the use of virtual prototypes for analyzing and optimizing 
the architecture using representative reference applications. 
This virtual prototype is used again in the final deployment 
phase to facilitate development and verification of RTL 
code. In a case study the development of a multi-standard 
radio system demonstrated the application of different do-
main-specific tools throughout the phases. Tools had to be 
developed and extended to support the refinement process. 
The final goal of our effort is to automate at least each of the 
single phases if not the entire approach. 

Currently, a prototype chip of the baseband platform for 
terminals is being designed in a 90-nm CMOS technology. 
A multi-standard demonstrator with this chip running 

WCDMA and 802.11b will be set up by the end of March 
2006. 
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