
FINDING THE OPTIMUM PARTITIONING FOR MULTI-STANDARD RADIO
SYSTEMS

Hans-Martin Bluethgen, Christian Sauer, Matthias Gries, Wolfgang Raab,
Dominik Langen, Alexander Schackow, Manuel Loew, Ulrich Hachmann,

Nico Bruels, Ulrich Ramacher
Infineon Technologies AG, 81609 Munich, Germany,

Hans-Martin.Bluethgen@infineon.com

ABSTRACT

Future wireless communication systems must support multi-
ple radio standards and be capable of executing them con-
currently. Consequently, flexibility and programmability will
be two of the most important features. However, even a
flexible solution has to fulfill the traditional constraints on
silicon area and power dissipation. In this paper we address
the problem of designing a cost-efficient radio solution start-
ing from the application level. We describe a methodology
that drives the design in five phases from application to im-
plementation. We apply this approach in the design of our
solution for software-defined radio (SDR) terminals. Here,
an optimum partitioning between all components of a multi-
standard transceiver system has to be found. The outcome is
a heterogeneous platform with a multi-standard baseband
circuit and multiple front-ends. The baseband circuit con-
sists of multiple DSP cores and dedicated accelerators and is
fully software-programmable.

1. INTRODUCTION

Flexibility is becoming one of the most important design
criteria in future terminals for mobile communications and
wireless networks. In contrast to today’s dual-band single-
standard cell phones, future wireless terminals will have to
be multi-band, multi-standard and able to do handover be-
tween multiple standards and execute them concurrently.
With the further evolution from 2G to 4G communication
systems more and more standards have to be supported by
and integrated into wireless terminals [1]. In addition, in-
creasing design costs, e.g. in terms of manufacturing and
testing, require flexible platforms for design reuse.

On the other hand, silicon solutions for radio handsets
feature particularly tough constraints on silicon area and
power dissipation. Therefore, it is mandatory to carefully
design all components of a radio system taking trade-offs
between components and HW/SW into account. In this pa-
per we present a multi-standard radio solution for mobile

terminals including all components from RF front-end to
baseband. Finding the optimum partitioning among the
components and exploring HW/SW trade-offs follows a top-
down approach for the design of cost-efficient platforms for
communication systems. Our main goal is to support the
designer with quantitative estimations of the design quality
as early as possible during the design flow, where partition-
ing decisions have most impact on the performance and
costs of the platform.

This is why we have developed this approach taking
into account the importance of the application domain. One
major focus of our methodology is the proper characteriza-
tion of the domain and implementation of a representative
reference application. Using profiling results a fully flexible
platform architecture template can be customized and the
complexity of the design space significantly reduced to meet
costs constraints. Our methodology can be described by the
following phases:

1. Application-domain analysis: Identify and define repre-
sentative and comparable system-level benchmarks and
realistic workloads for algorithms and protocols by ana-
lyzing the application domain.

The availability of benchmarks is often an unresolved issue
for new application domains. We need to identify and spec-
ify representative system-level benchmarks including func-
tion, traffic model, and environment specification.

2. System function modeling: Implement a performance
indicative system-level reference application that cap-
tures essential system functions.

For performance indicativeness and evaluation of different
partitioning and mapping decisions, executable and modular
system-level reference applications are required to deter-
mine weight and interaction of function kernels. The model
must be independent of platform architectures.

3. Architecture-independent profiling: Derive architec-
ture-independent application properties by analyzing and
profiling the reference application.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Our approach particularly emphasizes this step to narrow
architectural choices. It is unfeasible to maintain several
prototypes of a complex architecture. Before the actual de-
velopment of the architecture starts we therefore use archi-
tecture-independent profiling to derive a good starting point
for exploring the platform design space.

4. Design space exploration: Perform a systematic search
of the architectural design space based on the reference
application and its properties; define and iteratively re-
fine the resulting platform architecture.

As a starting point, we use a set of embedded standard proc-
essors, as well as specialized processing engines. Using the
functional reference, we profile the cores to derive a regular
multi-processor solution. Such generic solution will be most
flexible and reasonably programmable but is likely to fail
area and power requirements. Therefore, the profile is used
to identify optimization potential and to gradually refine the
platform to a virtual prototype with efficient programming
environment.

5. Platform implementation and deployment: Implement
the platform and provide a code generation framework
for the platform to ease the deployment with efficient pro-
gramming abstractions.

The virtual prototype serves as executable specification for
the actual platform hardware and software implementation
and as golden model for verification. In addition, it can
make sense to revise an internally used programming ab-
straction after the exploration if a programmable architec-
ture is released as an open platform to the customer.

In the following sections the five phases of this system-
level design approach are explained in detail. The method-
ology has been applied in case studies from the two domains
access platform ([2] [3]) and wireless communications. We
present the results and experiences we obtained by applying
the methodology in our project of a flexible multi-standard
radio system for handsets. It has to be noted that due to a
lack of appropriate tool support in some phases the method-
ology cannot be applied as straightforward as it is described,
making it necessary to perform some of the steps manually.
Section 7 finally closes with concluding remarks.

2. APPLICATION-DOMAIN ANALYSIS

In the first phase of our design flow, the goal is to under-
stand the application domain and derive design requirements
and define system environments for further benchmarking.
At this early stage of the design flow, essential functions
together with their specific parameters need to be derived.

Since we start from application level it is necessary to
define reasonable use cases that the final system solution has
to support. Figure 1 indicates the numerous wireless com-
munication standards which may have to be integrated into

future handsets. Use cases are defined by the set of standards
that are supported, and by the combinations of standards that
must run concurrently.

Figure 1: Trend of wireless communication standards (Source:

G. Fettweis, TU Dresden).

In general, communication systems consist of analog and
digital signal processing sections. The digital section is fur-
ther partitioned into a digital front-end and the baseband
(Figure 2). There is no clear rule for which components of
the digital signal processing chain are assigned to the digital
front-end or baseband, respectively.

Figure 2: General wireless communication system. The IF process-

ing section is omitted in the case of direct conversion.

For the realization of such a system as a chip set this parti-
tioning usually introduces interfaces between chip bounda-
ries. The current trend is to have an interface on the receive
side with a data rate of two times the chip or symbol rate. On
the transmit side the interface has a chip or symbol rate in-
terface.

In principle, it is possible to build a fully flexible RF
front-end out of programmable or tunable components.
These components are wideband antennas, amplifiers, mix-
ers and oscillators, tunable filters, and highly accurate digital
synthesizers. However, each of the standards that need to be
covered for a multi-standard radio comes with very tight
constraints which are difficult to meet even for the single-
standard case. Usually, using wideband components means
compromising some performance compared to the narrow-
band solution optimized for the single-standard case. There
are currently efforts to combine the analog signal paths of
related communication standards into a single flexible RF
front-end. Examples of related communication standards are
GSM/GPRS/WCDMA. However, it is unlikely that the ana-
log signal paths of different families of communication stan-
dards (e.g. wireless LAN and mobile phones) can be com-
bined in the near term. Figure 3 shows the block diagram of
a multi-standard radio system featuring multiple RF chips
for the different standards. This concept can be easily ex-

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

tended if more than two signal paths or completely different
air interfaces are required.

By comparing standards like WCDMA and WLAN
802.11a it becomes evident, that in the baseband sections
functional kernels and topologies are quite diverse.

The partitioning of a system into analog front-end, digi-
tal front-end and baseband processor has to take the follow-
ing issues into account.
1. The interface data rate resulting from a cut between com-

ponents.
2. The type of interface that is necessary to support this data

rate (parallel or serial, single-ended or differential). The
type of interface influences pin count and package, and
therefore cost.

3. The technologies in which RF and baseband chip are fab-
ricated. This question influences the decision of where to
put parts of the digital front-end. It depends on the silicon
area they consume if implemented in either of the tech-
nologies.

Figure 3: Multi-standard radio system.

Application-domain analysis also includes deriving early
estimates on the required processing power. Based on our
experience it is necessary to plan with significant headroom
in computing power.

The optimization criteria silicon area and power con-
sumption become very important in the design space explo-
ration phase. During analysis it is important to find reason-
able ranges that might serve as stop criteria for area/power
optimizations.

3. SYSTEM FUNCTION MODELING

In this phase of the design methodology the task is to design
a complete model of the system function. A complete system
function model in our view has to provide certain features in
order to be useful in the subsequent phases of the design
methodology.
1. System function: Description of the system function

comprised of function kernels, the interconnect between
the kernels, and the system control.

2. Architectural independency: At this phase of the meth-
odology we do not want to impose any restrictions on the
implementation of parts of the system, no matter if it is

dedicated hardware, reconfigurable structures, or soft-
ware running on a DSP.

3. Simulation: The model should be executable and there-
fore can be used to develop algorithms. It also serves as
an executable specification for verification.

4. Constraints: The model has to contain the entire set of
timing, latency, and throughput constraints that is neces-
sary to verify a system implementation or an architecture
candidate against the system function model (i.e. the test
environment).

In the communications domain, there are several tools
available which are suited mainly for describing the signal
processing part of systems, e.g., Matlab/Simulink, CoCentric
System Studio, ML Designer, or Ptolemy, to name a few.
Currently, none of the tools supports all the features required
for a complete system function model as described before.
For the modeling of the baseband part of wireless communi-
cation systems we use Simulink and extend it with code gen-
eration capabilities for parallel processors.

4. ARCHITECTURE-INDEPENDENT PROFILING

After the reference application has been defined, architec-
ture-independent properties of the application are derived by
static analysis and/or simulation. The goal of this step is to
determine architecture-independent characteristics of the
functionality that can help pruning the design space and
finding a good starting point in the architecture space. The
analysis focuses on features of the reference implementation
like data types, primitive operations and sequences thereof,
communication between function kernels, or storage re-
quirements. In baseband processing some of these character-
istics like primitive operations and sequences thereof can be
obtained by profiling the reference model using conven-
tional profiling tools. Others like communication between
function kernels have to be estimated from the profiling re-
sults for the lack of appropriate tools. In the end we can de-
termine feasible building blocks for the platform architecture
as well as lower and upper bounds on the number of compu-
tation and communication resources.

5. DESIGN SPACE EXPLORATION

Having found a suitable entry point into the design space the
next task is to find the most cost efficient architecture for the
platform by exploring the design space. Design parameters
used here not only include silicon area and power consump-
tion but also the solution’s flexibility and simplicity of the
programming model. However, it is not possible to find the
optimum solution with respect to so many design parameters
in reasonable time. Therefore, we prune the design space by
assuming fixed budgets for silicon area and power consump-
tion that have to be agreed upon with the customer.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Finding the most flexible and easy-to-program solution
within a specified power and area budget means that we
1. Use the minimum number of general-purpose DSP cores

in parallel at the maximum clock frequency and supply
voltage so that the power budget is not exceeded,

2. Introduce as few application-specific instructions as pos-
sible if the area budget or performance requirements can-
not be met with 1.,

3. Use dedicated accelerators for algorithms with high com-
putational complexity if the area budget or performance
requirements cannot be met with 2.

With the entry point into the architecture design space
chosen as explained above, our estimations on power con-
sumption resulted in an architecture consisting of a cluster of
four single-instruction multiple-data (SIMD) DSP cores
(Figure 4). This kind of DSP core is particularly suited for
the computationally complex algorithms in communication
systems [4] [5]. Each SIMD core contains four processing
elements and operates with a clock frequency of 300 MHz.

Figure 4: Baseband platform.

Iterative refinement led to
– Specialized instructions for saturating operations and

finite-field arithmetic
– Long-instruction word (LIW) features for performing

arithmetic operations and memory accesses in parallel
– Multiple task contexts for exploiting concurrency as re-

flected by the system function model
– Four-stage execution pipeline used in conjunction with

the multiple task contexts to relax the timing requirements
for the memories, reduce the memory’s supply voltage
and thereby the power consumption.

The cluster of SIMD cores is accompanied by dedicated
programmable processors for channel encoding and decod-
ing as well as filtering operations. These dedicated proces-
sors account for almost half of the total processing power of
the entire SDR platform [6]. In addition, there is an ARM
processor for the execution of the protocol stacks.

We have developed a virtual prototype of the entire
platform based on SystemC [7]. The virtual prototype is a
cycle- and bit-accurate software-based simulator of the SDR
platform. The virtual prototype contains models of all proc-
essors, accelerators, busses, memories, and peripherals
which will be available in the real hardware. Therefore the
same software can be run on the virtual prototype as on the
real hardware. Although a virtual prototype need not neces-
sarily be cycle accurate and since the cycle accuracy reduces
the simulation speed compared to a transaction accurate
model, a cycle accurate virtual prototype offers several ad-
vantages over a transaction accurate model. In a transaction
accurate model each interaction with its environment, e.g.
the transfer of data, is modeled, but basically no timing in-
formation for a transaction is generated. However, in some
cases it is possible to give an estimation of the duration of a
transaction, e.g. the duration of a memory access in a single
processor system. In multi-processor systems this is not pos-
sible in general in an efficient and accurate way, as the dura-
tion of a transaction cannot be estimated locally in one mod-
ule but has to be derived from the state of the entire system.
There may also exist feedback loops, e.g. the higher the
utilization of a bus arbiter is, the higher is the probability
that a module does not get the bus granted and it has to re-
peat its request. Consequently, the utilization of the bus arbi-
ter increases further. Cycle-accurate models interact with
their environment with the same timing as real hardware.
Hence, the duration of a transaction is given implicitly by
the model in an absolutly accurate way. Thus we can use our
virtual prototype for the SDR application domain to check if
our architecture-software combination meets the real-time
requirements. Furthermore, cycle-accurate models help to
specify modules in detail before writing code on register
transfer level (RTL) in a hardware description language
(HDL) and they offer the possibility to use the virtual proto-
type to verify the HDL descriptions.

As described above we are focusing on (heterogeneous)
multi-processor platforms. For the SDR prototype, we cur-
rently deploy three different types of processors in order to
meet the real-time requirements. The first type is a general-
purpose core, currently an ARM926 (precompiled SystemC
model). The second type is a DSP core with single-
instruction multiple-data (SIMD) extensions. This processor
is highly configurable, e.g. the number of functional units
within the processor can be adapted to the level of data par-
allelism of the application. The third group of processing
units is hardware accelerators for compute-intensive tasks,
such as FIR filtering. The accelerators have been modeled
completely in SystemC like the rest of the virtual prototype
including busses, memories, and peripherals.

The hardware accelerator for channel decoding is a pro-
grammable core. 32 parallel add-compare-select units (AC-
SUs) are available for fast Turbo and Viterbi trellis opera-
tions. A trace-back unit for Viterbi and hardware support for

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

the UMTS Turbo internal interleaver are implemented. A
programmable general purpose part is used for parameter
preparation, data path configuration, data transfer over the
system bus and communication with the system. The decod-
ing operations are performed by a special trellis data path
that is controlled by the general purpose part. The special
trellis data path is flexible such that Turbo and Viterbi algo-
rithms for various communication standards can be proc-
essed. Local memory is available in order to reduce the
number of bus transfers and to speed up the decoding proc-
ess.

The SystemC model is bit-true and cycle-accurate. This
means that all relevant signals are modeled with the appro-
priate bit widths and all pipeline stages are present, i.e. the
micro architecture has been modeled in SystemC and the
refinement in VHDL must be done only in non-critical
places. The SystemC model can be directly translated into
VHDL and it serves as a reference for simulation: traces of
arbitrary internal signals of the SystemC model can used as
stimuli or reference pattern in a VDHL simulation. This
eases the verification of the corresponding parts in the
VHDL model.

Cycle-accurate modeling of the instruction pipeline of
the general purpose part, the six-stage pipeline of the special
trellis data path and the access cycles to the local memory
provides the exact number of cycles necessary for a decod-
ing process, e.g. the pipeline stalls due to taken branches are
included in the model of the instruction pipeline. Since
throughput is crucial, the cycle-accurate model enables the
verification.

The SDR filter accelerator is a configurable coprocessor
for multi-threaded FIR filtering on complex input data. It
can locally store up to four different filter contexts at the
same time. The datapath can be configured to support differ-
ent FIR filter modes. Four independent I/O processes for
external memory access are running concurrently.

The SystemC SDR filter accelerator model consists of a
main controller, a memory interface controller, a datapath
and datapath controller, local memories for storing input
samples, filter coefficients and output samples, a slave inter-
face, two task FIFOs, and a set of local registers.

In the SystemC model of the filter accelerator a high-
level description of both the filter datapath and the datapath
controller has been implemented for simulation performance
reasons. The datapath latency is modeled by the use of a
configurable counter.

The SDR virtual prototype provides several tools for
analyzing the soft- and hardware. First, the general purpose
cores can be debugged and profiled by using a graphical de-
bugger. Second, internal state, instructions, and data trans-
fers of all modules can be logged. Third, statistical data can
be gathered on the utilization of the shared modules like
busses and memories. Furthermore, it is possible to track the
execution status of threads on the general purpose proces-

sors without instrumenting the software. The results can be
displayed graphically. An example is shown in Figure 5. An
802.11b implementation is running on the parallel DSP clus-
ter. The traces show single threads running, blocking, and
synchronizing.

0

2

4

6

8

10

12

14

16

18

33
82

42

34
07

99

34
33

55

34
59

12

34
84

69

35
10

26

35
35

82

35
61

39

35
86

96

36
12

53

36
38

09

36
63

65

36
89

22

37
14

79

37
40

35

37
65

92

37
91

49

38
17

06

38
42

62

Proc 1
Proc 2
Proc 3
Proc 4
Proc 5
Proc 6
Proc 7
Proc 8
Proc 9

Figure 5: Traces of parallel WLAN 802.11b implementation.

Having the virtual prototype and analysis tools leads to fast
and very accurate analyses of the performance of an applica-
tion. Together with the configurability of the virtual proto-
type the architecture can be optimized very efficiently.

6. PLATFORM IMPLEMENTATION AND
DEPLOYMENT

The virtual prototype serves as an executable specification
for the actual platform hardware and software implementa-
tion and as a golden model for their verification. As the
needed functionality and timing requirements for each mod-
ule have been accurately analyzed before, hardware design-
ers are relieved from redesigning modules repeatedly due to
flaws in the specification. Depending on the level of detail in
the virtual prototype, the translation of complete modules to
HDL can be straightforward, e.g. if an accelerator is mod-
eled with all pipeline stages and precise widths of all data
paths. In this case a lot of iterations in the architecture re-
finement can be avoided. Another main advantage of having
a detailed virtual prototype is that the amount of written
specification can be reduced significantly, in our experience
from a few thousand to a few hundred pages. This reduces
the probability of errors introduced in the design process just
by simple misunderstandings.

A very cumbersome task in the chip design process is
always the setup of appropriate test benches. Here, for the
verification of the virtual prototype test benches with cycle-
accurate stimuli have already been written. These test
benches can be reused during the platform implementation
almost unchanged.

A successful deployment of a programmable platform
can only be achieved if the programmer/user is relieved

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

from understanding the architecture in full detail. An ap-
proach is a layer of firmware that provides sufficient ab-
straction for the customer in an API/library based manner
 [8]. Ideally, the vendor who understands his platform in full
detail provides this layer. This way, only the firmware pro-
grammer is faced with the problem of coordinating the exe-
cution of software portions on different processing elements
manually that must be optimized individually on assembly
level – a tedious burden that frequently leads to suboptimal
usage of hardware resources. This task would highly benefit
from tools that are able to generate at least the part of the
software coordinating the parallel execution on different
processing elements, ideally from the system function
model [9].

7. CONCLUSION

Within the next few years we will see a transition from dual-
band single-standard to multi-band multi-standard terminals.
Our system-level design methodology for flexible yet cost-
efficient communication platforms is based on five phases
that emphasizes the role of systematic domain analysis and
system function modeling to ease system-level decisions,
such as the partitioning of functionality onto platform re-
sources. Starting from system level, a flexible platform ar-
chitecture is developed and iteratively refined going down to
circuit level. This process is application-driven, and relies
on the use of virtual prototypes for analyzing and optimizing
the architecture using representative reference applications.
This virtual prototype is used again in the final deployment
phase to facilitate development and verification of RTL
code. In a case study the development of a multi-standard
radio system demonstrated the application of different do-
main-specific tools throughout the phases. Tools had to be
developed and extended to support the refinement process.
The final goal of our effort is to automate at least each of the
single phases if not the entire approach.

Currently, a prototype chip of the baseband platform for
terminals is being designed in a 90-nm CMOS technology.
A multi-standard demonstrator with this chip running

WCDMA and 802.11b will be set up by the end of March
2006.

8. ACKNOWLEDGEMENT

The authors wish to thank C. Grassmann, M. Richter,
M. Sauermann, and A. Troya for their work and contribu-
tions to this project.

9. REFERENCES

[1] U. Ramacher, “Next Generation Embedded Communication
Systems: Reconfigurability, Flexibility and Programmability”,
Intel Corp. Hillsboro/Oregon, On Chip Reconfigurable Com-
puting and Communications Workshop, May 2003.

[2] C. Sauer, M. Gries, S. Sonntag, “Modular Reference Imple-
mentation of an IP-DSLAM”, 10th IEEE Symposium on
Computers and Communications (ISCC), June 2005.

[3] C. Sauer, M. Gries, S. Sonntag, “Modular Domain-Specific
Implementation and Exploration Framework for Embedded
Software Platforms”, 42nd Design Automation Conference
(DAC), June 2005.

[4] J.-P. Giacalone, “Trends in Programmable DSP Architecture
for new Generation Wireless Modems”, European Solid-State
Circuits Conference, Lisbon, September 2003.

[5] G. Fettweis; M. Bolle; J. Kneip; M. Weiss, “OnDSP: A New
Architecture for Wireless LAN Applications”, Embedded
Processor Forum, San Jose, May 2002.

[6] H.-M. Bluethgen, C. Grassmann, W. Raab, U. Ramacher,
J. Hausner, “A Programmable Baseband Platform for Soft-
ware-Defined Radio”, SDR Technical Conference, Phoenix,
USA, November, 2004.

[7] Functional Specification for SystemC 2.0, Update for Sys-
temC 2.0.1, Version 2.0-Q, http://www.systemc.org, April
2002.

[8] C. Grassmann, M. Sauermann, H.-M. Bluethgen,
U. Ramacher, "System-Level Hardware Abstraction for Soft-
ware-Defined Radios", SDR Technical Conference, Phoenix,
USA, November, 2004.

[9] R. Hossain, M. Wesseling, C. Leopold, “Virtual Radio En-
gine: A Programming Concept for Separation of Application
Specifications and Hardware Architectures”, 14th IST Mobile
& Wireless Communication Summit, Dresden, June 2005.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

