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ABSTRACT 

 
The standard design procedure for the M-path polyphase 
filter partitions the impulse response of a prototype low 
pass FIR filter. The resulting M-path filter, the core of 
multirate rate filters and filter banks, exhibit the desirable 
attributes of periodically time varying filters. These at-
tributes being, reduced computational burden for a given 
filtering task, and simultaneous access to multiple Nyquist 
zones. While we can not similarly partition the impulse 
response of a conventional IIR filter, we can design recur-
sive filters as a sum of sub filters with transfer functions 
of the form Hn(ZM) thus embedding the desired M-path 
partition in the design process. In addition to the M-to-1 
workload reduction obtained from an M-path polyphase 
filter, the M-path IIR filter offers an additional 4-to-1 to 
10-to-1 reduction relative to the comparable M-path FIR 
filter. Such filters are described in a number of text books 
but till recently design algorithms were not available to 
compute the coefficients required to satisfy a wide range 
of filter specifications. In this paper we describe the or-
ganization of these alternate filter structures, illustrate the 
result obtained from MATLAB based design routines, and 
compare the performance and workloads of the M-path 
recursive and  non-recursive filter systems. 
 

1. INTRODUCTION 
 

The sacrosanct Nyquist criteria we learned early in our 
signal processing education is that the sample rate for a 
signal should exceed the two sided bandwidth of the sig-
nal represented by those samples. It follows then, that 
when digital filter reduces the bandwidth of a signal, it 
should, as shown in figure 1, also proportionally reduce 
the sample rate of the now reduced bandwidth time series. 
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Figure 1. Digital Filter with M-to-1 Bandwidth Reduction 

and Sample rate Change 
 

 The task of simultaneously reducing the bandwidth and 
sample rate of a time series is performed by a multirate 
filter. These filters are traditionally implemented as non-
recursive filters that, knowing which output samples are 

scheduled to be discarded, simply avoids computing 
them. We note that when output samples are computed at 
the reduced output rate of 1/M-th the input rate the work-
load per output sample is amortized over M-input samples 
thus offering the desired M-to-1 workload reduction.  
 
Traditional recursive filters can not similarly reduce their 
output rate as part of the filtering process. This is because 
even when the output port does not require the output 
sample, and will discard it if offered, the recursive filter 
must still compute it since the recursion in the filter re-
quires it in order to compute the next output sample.  
 
If we are able to design the IIR filter with segments that 
only require every M-th sample in its recursion then that 
filter structure will be able to support the M-to-1 down 
sampling we obtain effortlessly from the partitioned FIR 
filter. We examine the process of partitioning the proto-
type FIR filter, shown in (1), to guide us to the structure 
of the resampled IIR filter. 
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In anticipation of the forthcoming M-to-1 down sampling, 
as shown in (2), we partition the Z-transform of the proto-
type filter, into a sum of Z-transforms containing poly-
nomials in ZM.  

            
11

(

0 0

( ) ( )

N
M M

r nM

r n

H Z h r nM Z
−

−
− +

= =

= +∑ ∑ )            (2) 

We can reorder (2) to obtain the polyphase structure, 
shown in (3), which as a sum of polynomials in ZM is a 
form that accommodates the processing of every M-th 
sample. 
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The partitioned form of this filter is, as shown in figure 2, 
a tapped delay line filter with sub filters in ZM replacing 
coefficient weights. We note that the M-units of delay at 
the input clock rate to the sub-filter is the same as one unit 
of delay at the output clock rate hence we can slide the 
resampler through the sub-filter, replacing the ZM at the 
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input rate with Z1 at the output rate.  The resampled filter 
is shown in figure 3 where the tapped delay line and the 
resampler set have been replaced with an equivalent 
commutator performing the resampling at the filter input 
rather than at its output.  
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Figure 2. Polyphase Partition of FIR Filter 
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Figure 2. Polyphase IIR Resampling Filters 
 
The polyphase partition of the FIR filter shown in (3) 
formed filters with Z-transforms written as polynomials in 
ZM, a requirement necessary to perform the M-to-1 re-
sampling in the filter. We noted in the introduction, that 
while it is not generally possible to similarly factor a re-
cursive filter, we can design IIR as polynomials in ZM for 
the arms in (3). Filter structures formed in this manner 
bear little resemblance to recursive filters traditionally 
implemented as cascade biquadratic (biquad) sections. A 
useful contender for the arms of the IIR polyphase filter is 
a cascade of one or more all-pass filters formed as first 
order and second order polynomials in ZM, as shown in 
(4) and in figure 3.  
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We note that in the implementation of (4) shown in figure 
(3) a single multiplier coefficient forms both the numera-
tor and denominator of the transfer function and that that 
the single coefficient simultaneously forms M-poles and a 

free set of M-zeros. These zeros reside outside the circle 
and migrate to the circle when the multiple paths interact 
through destructive cancellation.   
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Figure 3. First and Second Order All-Pass Filters in ZM 
 
Recursive filters defined with denominators formed by 
polynomials in ZM have roots residing on vectors aligned 
with the M-roots of -1. Figure 4 illustrates the root loca-
tion alignment with the 8-roots of -1 for one path of an 8-
path filter formed by a cascade of three first order, in Z8, 
all-pass filters. Note that each multiply forms 8-poles and 
8-zeros and the three sub filters in this path form 24 poles 
and 24 zeros. If each path contributes a comparable num-
ber of poles and zeros the composite filter would contain 
192 poles and 192 zeros. Not bad for 24 multiplies! 
 

                  
 

Figure 4. 24-Poles and Reciprocal Zeros of Three 
First Order All Pass Filters in Z8 

 
We note that all-pass filters have a steady state gain of 
unity at all frequencies and are characterized by frequency 
dependent phase shift. All-pass filters find wide applica-
tion in phase equalizers that add frequency dependent 
phase to the phase of arbitrary recursive filters to obtain a 
composite linear phase profile. We also note that products 
(or cascades) of all-pass filters are still all-pass filters and 
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that sums of all-pass filters are not all-pass. We use this 
latter property to design our filter.  
 

2. M-PATH FILTER PROPERTIES 
 

The phase profiles of the separate paths in the M-path 
filter are constrained in the following manner. Over the 
frequency span assigned to the pass band, the phases are 
nearly identical. The spectral regions corresponding to 
this condition add coherently when the signals from the 
M-paths are added and thus exhibit a gain of M which is 
scaled to unity by multiplying by 1/M. Over the frequency 
span assigned to the stop band the phases differ by multi-
ples of (2π/M). Since the M roots of unity sum to zero, 
the spectral regions corresponding to this condition add 
destructively to zero thus forming the desired stop band. 
Figure 5 illustrates the phase profiles associated with 8-
path filters. We see here three profiles corresponding to a 
linear phase FIR, a linear phase IIR, and a non-linear 
phase IIR 8-path filter. Here we see the phase profile are 
identical in the low frequency band and then separate in 
successive frequency bands to form the stop band. 

 
Figure 5. Phase Profiles of Each Path in 8-Path Filter 

 
Figure 6 shows the same phase profile except the profiles 
have been de-trended by subtracting the average phase (or 
zero-th path phase) from the profiles. Here we see the 
constant phase differences in each successive frequency 
band that support the desired destructive interference. The 
regions which do not exhibit the constant phase difference 
are the transitions between successive bands and these 
transitions are responsible for amplitude transitions in M-
path IIR filters.  
 
The linear phase version of the M-path IIR filter is ob-
tained by setting the zero-th path in the set to a delay, the 
simplest all-pass filter. The design algorithm adjusts the 
phase of the remaining paths to match the phase slope of 
this reference path. None of the phase slopes are prede-
termined in the non-linear phase IIR filter, and this addi-
tional degree of freedom offers solutions requiring a small 

number of sub filters in each path. The two design options 
require different filter design algorithms. 
 

 
 
Figure 6. De-Trended Phase Profiles Paths in 8-Path Filter 
 
Since perfect destructive cancellation will be observed as 
a stop band zero, and since only a finite number of zeros 
reside in the stop band, the interval between the zeros 
exhibits stop band ripple with spectral attenuation levels 
controlled by the filter design parameters. The spectral 
region between the pass band and stop band is of course 
the transition bandwidth of the filter.  
 
The angles on the unit circle matching the sectoring lines 
shown in figure 3 correspond to the phase transition fre-
quencies shown in figures 5 and 6. The frequency re-
sponse between these transitions represents successive 
Nyquist zones in an M-path filter. Due to the aligned 
poles, an M-path recursive filter exhibits a gain transition 
at the frequency matching the phase transitions while the 
M-path non-recursive filter, without these aligned poles of 
course does not. When present, these transition bands are 
treated as don’t care zones similar to the side lobes be-
tween filter zeros in the CIC filter.  
 

3. M-PATH FILTER PERFORMANCE 
 

Traditional wisdom in the signal processing community is 
that recursive filters are always more efficient than a non 
recursive filter designed to same performance specifica-
tion. This proves not to be so when we include the option 
of sample rate change as suggest in figure 1. When we 
teach filter design with emphasis on system applications, 
we demonstrate that a resampled FIR filter always re-
quires fewer operations than its equivalent IIR. Another 
practical consideration is that most DSP architectures are 
optimized to perform inner products, and are capable of 
performing pipelined multiply accumulate operations 
more efficiently and in less time than a competing IIR 
implementation. We then claim that there is never a need 
to implement IIR filters more sophisticated than a one 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



pole filter, the leaky integrator. This proclamation is 
based on the FIR filter’s ability to avoid computing output 
samples that will be discarded in a subsequent down sam-
pling operation, an option that is not available to the IIR 
filter. This comparison is valid for an M-to-1 down sam-
pling filter as well as for a 1-to-M up sampling filter.  
  
When we add the M-path IIR filter as an option in the 
comparison process, we find the results are different. In 
fact, if computational burden is the only criteria, the M-
path IIR filter outperforms the M-path FIR filter. To illus-
trate the relative workload and system performance we 
designed a set of 8-path filters to reduce the sample rate, 
by a factor of 8-to-1, of a time series collected by a DAC 
that collected data at 8-times the desired final sample rate. 
It is common to control the cost of analog anti-aliasing 
filters by collecting data at an over sampled rate and then 
reducing the bandwidth and sample digitally. The digital 
filter specifications for our example include a normalized 
frequency pass band from 0-to-0.9 with less than 0.1 dB 
pass band ripple with stop bands ± 0.9 centered at 2, 4, 6, 
and 8, the multiples of the input sample rate 2. Stop band 
attenuation must exceed 72 dB.  
 
Figure 7 presents the impulse response and frequency 
response of a FIR filter meeting these system require-
ments. Shown in the spectral plot is the attenuation 
boundary demarcations which also bound the don’t-care 
bands distributed in the stop band region. The FIR filter 
does not use the don’t-care bands. The prototype filter is 
seen to be of length 128 taps which when partitioned into 
an 8-path filter lead to a decimation filter requiring 16 
multiplies per input point. 
 

 
Figure 7. Time and Frequency Response: FIR Filter  

 
Figure 8 presents the impulse response and frequency 
response of an 8-path linear phase IIR filter meeting the 
same system requirements. Here we see the don’t-care 
bands between the demarcated attenuation boundaries are 
now occupied by the transition bands we discussed ear-
lier. Seven of the paths in the 8-path filter contain two 

first order filters in Z8 in cascade with three second order 
filters in Z8, requiring 8 multiplies per path for a total of 
56 multiplies in the entire filter. When amortized over the 
8-input samples, the workload per sample is seen to be 7 
multiplies per sample. This workload is less than half that 
of the 8-path FIR filter. We keep in mind that this filter is 
recursive and does not take advantage of the efficient 
multiply-accumulate option available to the FIR filter. 
 

 
Figure 8. Time and Frequency Response: Prototype 

 8-Path Linear Phase IIR Filter  
 
Figure 9 presents the impulse response and frequency 
response of an 8-path non-linear phase IIR filter meeting 
the same system requirements. Here again we see the 
don’t-care bands between the demarcated attenuation 
boundaries are now occupied by the transition bands we 
discussed earlier. The non-linear phase 8-path IIR struc-
ture contains four first order filters in Z8 in the first four 
paths and three first order filters in Z8 in the next four 
paths. The total number of multiplies in the filter is seen 
to be 28 and when amortized over the 8-input samples, 
the workload per sample is seen to be 3.5 multiplies per 
sample. This workload is again less than half that of the 8-
path linear phase IIR filter. Again, we note that this filter 
is recursive and does not take advantage of the efficient 
multiply-accumulate option available to the FIR filter. 
 
We commented earlier that the efficiency of the M-path 
IIR filter is related to the fact that each multiply spawns 
M poles and M zero. The number of roots formed by the 
aggregate of M paths containing multiple polynomials in 
ZM is quite large and is orders of magnitude greater than 
the number of roots we normally consider in conventional 
IIR filter structures. By way of comparison, an inverse 
Tchebyschev filter satisfying the same specifications as 
the FIR filter shown in figure 7 requires 11 poles and ze-
ros with an additional 8 poles and zeros if phase equal-
ized. The 11-pole filter implemented by biquad sections 
requires 28 multiplies to form the roots and appropriate 
distributed scale factors. An elliptic filter meeting the 
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filter specification requires 7 poles and zeros and when 
implemented by biquad sections requires 18 multiplies. 
Note this supports our earlier contention that a resampled 
FIR filter (16-M) out performs the comparable IIR filter 
(18-M).    
 

 
 

Figure 9. Time and Frequency Response:  
Prototype 8-Path Non-Linear Phase IIR Filter  

 
As a reference for comparison, figure 10 presents the pole 
zero diagram for the 128 tap FIR filter. As expected all 
the poles reside at the origin and the zeros reside on the 
unit circle as stop band zeros or if not on the circle appear 
off the circle in reciprocal pairs. We see that 12 zeros in 
the pass band region form reciprocal pairs with 6 non-
minimum phase zeros outside the circle, a characteristic 
of linear phase filters. The remaining 115 zeros are stop 
band zeros. 
 
Figure 11 shows the pole zero diagram of the 8-path, lin-
ear phase IIR filter. This filter required 64 delays in the 
reference path, path-0, and 2 first order filters in Z8 in 
cascade with 3 second order filters in Z8 for the remaining 
7 paths. Accounting for the additional delays inserted in 
each path we find that the filter contains a total of 520 
poles and 514 zeros. Of this number, 119 zeros are stop 
band zeros, 7 are non-minimum phase zeros, and the re-
maining zeros act to shield the influence of the distributed 
poles on the stop band zeros. We can also identify the 
poles aligned with the 8-roots of -1 near the unit circle 
responsible for the phase and gain transition bands. 
  
Figure 12 shows the pole zero diagram of the 8-path, non-
linear phase IIR filter. This filter required 4 first order 
filters in Z8 in the first four paths and 3 first order filters in 
Z8 in the remaining four paths. Accounting for the addi-
tional delays inserted in each path we find that the filter 
contains a total of 232 poles and 226 zeros. Since the fil 
ter only uses first order filters in Z8 we note that all poles 
are aligned with the 8-roots of -1. Of the 226 zeros, 63 are 

                
 

Figure 10. Pole-Zero Plot of 128 Tap FIR Filter  
 

            
 

Figure 11. Pole-Zero Plot for Prototype 8-Path  
Linear Phase IIR Filter  

 

           
 

Figure 12. Pole-Zero Plot for Prototype 8-Path IIR  
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stop band zeros, with the remaining zeros buffering the 
influence of the distributed poles and the stop band zeros.  
 

4. NYQUIST ZONE FILTERING 
 

The 1-to-M up sampling or the M-to-1 down sampling 
embedded in the M-path polyphase filter enables the filter 
to operate in any Nyquist zone of the resampling process. 
As a result of the resampling process that occurs prior to 
the filtering process, all the Nyquist bands alias to base 
band. Due to their different pre-alias center frequencies, 
the aliases have distinct phase profiles thus can be sepa-
rated by their unique phase profiles. Earlier we demon-
strated the constant phase offset between each path of the 
8-path filter and the different values of phase offset in the 
different Nyquist bands. These phase profiles are identical 
to the phase profiles of the signal spectra in the aliased 
Nyquist zones. We can extract the signal from any of 
these zones, even if they have aliased to base band, by 
setting the phase difference in that zone to zero. We ac-
complish this by applying complex phase rotations to the 
signal outputs from each path. The zone that exhibits zero 
phase difference in the phase rotated polyphase filter is 
the one that survives the summation of the path sums. 
This process is equivalent to a cascade of a quadrature 
down conversion, a pair of low pass filters, and a down 
sampler but operated in the opposite order. By reversing 
the order, the filter is real since the data does not become 
complex till after the filter as opposed to becoming com-
plex prior to the filter. This is shown in figure 13. 
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Figure 13. Polyphase Partition and Phase Rotators  
to Extract Alias from k-th Nyquist Zone 

 
Suppose we want to extract the signal from the selected 
Nyquist zone but we do not want to translate the signal to 
base band nor reduce the sample rate. It would seem that 
the workload could not be reduced because we have been 
denied access to the resampling option. The resampling 
option is so efficient we can embed it in the solution. 
What we do is down sample and extract the alias at the 
reduced sample rate and then up sample with the phase 
rotators to reinsert the spectra at its initial (or different) 
Nyquist zone. This option is shown in figure 14. If we use 
the linear-phase IIR filter to accomplish this, the work-

load is 9 multiplies per input sample and 9 multiplies per 
output sample and since the input and output rate are the 
same, the workload is 18 ops per input/output sample. A 
standard IIR elliptic band-pass filter meeting these speci-
fications has 16-poles and requires 40 multiplies while a 
comparable FIR filter requires 128 multiplies. The com-
putational cost of down sampling, alias extracting, alias 
assignment and up sampling is seen to be smaller the sin-
gle band-pass filter. 
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Figure 14. Cascade Polyphase Down Sampler and Up-
Sampler to Extract k-th Nyquist Zone 

   
5: CONCLUSIONS 

 
We have discussed and reviewed the structure of digital 
recursive filters that are capable of being partitioned into 
M-path polyphase filters in a manner similar to the parti-
tion of the finite duration impulse response of a non re-
cursive filter. This structure is the sum of products of all-
pass, first order and second order polynomials in ZM, fil-
ters. We demonstrated some of the unusual properties of 
this class of filters including the phase profiles of the 
separate paths, the presence of don’t care spectral bands, 
and the existence of unusually large number of roots in 
the composite filter. We also demonstrated the significant 
reduction in computation load that can be realized using 
polyphase IIR filters 
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