

A FORMAL METHODOLOGY FOR ESTIMATING THE FEASIBLE PROCESSOR

SOLUTION SPACE FOR A SOFTWARE RADIO

James “Jody” Neel (Virginia Tech, Blacksburg, VA; janeel@vt.edu);
Pablo “Max” Robert (Virginia Tech, Blacksburg, VA); and

Jeffrey H. Reed (Virginia Tech, Blacksburg, VA)

ABSTRACT

Selecting the best choice of processing resources is a
problem faced in the course of developing any software
radio or multi-waveform platform. This problem can be
viewed as one of identifying the optimal design, typically
with reference to some function of cost, power, and area,
from the set of feasible processing solutions. Fortunately,
optimization theory provides the designer with numerous
tools and algorithms that can be used to quickly search even
the largest solution space. However, before applying these
optimization algorithms, the feasible solution space must be
identified - an onerous process in light of the large number
of µPs, DSPs, and FPGAs available for use and the even
larger number of ways that these resources can be combined
together. This paper presents a methodology for estimating
the elements of a multiple-processor multiple-waveform
feasible solution space.

1. INTRODUCTION

Selecting the processing elements is arguably the most
critical step in the design of a software radio. In the same
manner that PC applications are limited by the choice of the
PC’s processor, a software radio’s waveforms are limited by
the choice of processing resources. Ideally, a designer
would like to choose the processing elements in a way the
supports all anticipated waveforms with minimal cost, power,
and area. For PC applications this generally is only a matter
of choosing a processor with the lowest clock rate that
allows implementation of all desired applications.
 For software radio applications, microprocessors (µPs)
rarely provide sufficient performance to support physical
layer waveforms. Instead DSPs and FPGAs must be used.
Because DSPs and FPGAs exhibit significant architectural
variation between processors , a simple examination of a
chip’s clock rate is insufficient to estimate performance. In
the interest of using a single number for comparing
processors, BDTI has developed a metric based on
performance measures of suites of algorithms that can be

implemented on DSPs [1] and FPGAs [2]. While this is an
excellent tool for making general comparisons between
processors, it is not generally predictive of whether a
particular processor can support a particular waveform
because of the variety of specialized circuitry included with
DSPs and FPGAs, e.g., Viterbi co-processors [3], and two-
cycle butterfly units [4].
 Further, many radios make use of multiple and
heterogeneous processors, e.g., a DSP with a FPGA, and
split waveforms across the chips. So finding the best
processor solution implies also solving for both the best
waveform partition, significantly complicating this
optimization problem. Repeating this process for several
waveforms can be quite the daunting problem.
 Formalizing this optimization problem, suppose a
software radio must support a set of waveforms, Ω , while
simultaneously satisfying constraints on power
consumption, P, area, A, and cost, C. The problem is to
identify the combination of µPs, DSPs, and FPGAs and
waveform partitioning that satisfies these constraints while
maximizing some design function. The combinations of µPs,
DSPs, and FPGAs and the associated waveform partitions
that simultaneously satisfy all of these conditions form the
feasible processor solution space, (), , ,F P A CΩ . On this
set, any of a number of optimization routines can then be
used to find the best choice of processors and waveform
partitions. This paper focuses on the first aspect of this
problem – identifying (), , ,F P A CΩ – and presents a
methodology that can be applied to solve for (), , ,F P A CΩ .
 The remainder of this paper is organized as follows.
Section 2 presents a high level view of the proposed
methodology. Section 3 presents details of how waveforms
are broken into processing components. Sections 4 and 5
provide details on how this methodology handles DSPs and
FPGAs, respectively. Section 6 describes how the details
from the preceding sections are incorporated into an
identification of (), , ,F P A CΩ .

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Vocoder CRC
Conv.
Enc. Framing Interleaving

Crypto

Burst
Formatting

GMSK
ModulationRate MatchingDAC

RF
XMT

RF
RCV

ADC DDC PLL Demod MLSE

Deinterleave crypto

burst

FrameViterbi

Symb
track

CRCVocoder

13 kbps

270.833 kbps

(50,3)
(189,1/2, 5)

(456) 20 ms/block

30µs/symbol*30µs/TXOvsp1 / fDAC

* Since there are 8 timeslots, up to 30µs/symbol is available instead of raw 3.7 µs/symbol.

1 / fADC 30µs/RXOvsp

20 ms/block

Figure 1 Componentization of a GSM Transceiver

2. METHODOLOGY OVERVIEW

Given the set of waveforms, Ω , to support, this paper
proposes the following methodology to estimate the feasible
processor solution space (), , ,F P A CΩ .
1. Identify an initial pool of candidate processors, F’,

containing µPs, DSPs, and FPGAs.
2. Survey the required waveforms, Ω , to identify the

required waveform components and component
execution times.

3. Estimate resource utilization for each component as
implemented on each processor in F’.

4. Using the results of step 3, form the set of processor
solutions from examining all possible processor and
waveform partition combinations.

5. Form the feasible processor solution space,
(), , ,F P A CΩ , by removing from F all combinations of

processors that violate constraints P, A, C and/or have
insufficient resources to support Ω .

The following sections detail how each of these steps can
be accomplished.

3. COMPONENT IDENTIFICATION

In this step, the waveforms in Ω are broken into their
constituent processing elements (components) and the
timing requirements for these processing elements are
identified. While there exist many different ways to partition
a waveform that yield different components (e.g., modulation
and filtering may be treated as two sequential, but separate,
components or combined into a single component), one
logical breakdown is by clock domains and processing

blocks. Considering an arbitrary waveform, it is expected that
some portions of the processing will occur at the sample
rate, some at the symbol rate, some at the frame rate, and
perhaps some other portions at waveform/implementation
specific rates. Within many of these clock domains,
waveform processes operate on blocks of data, e.g.,
interleaving and error correction, rather than on continuous
streams of data, thus introducing other logical boundaries
for componentization. In addition to this componentization,
multirate components that span clock domains are also
encountered and further componentization beyond clock
boundaries and block interfaces is also possible.
 With this in mind, a waveform’s processes are first
separated by clock domain and then subdivided by
processing blocks. Each of these subdivisions would then
be deemed a waveform component. Further subdivisions
may be useful, but the choice of subdivisions and utility of
these subdivisions will be a function of the waveforms in
Ω . This approach also permits an immediate rough
identification of timing requirements for each component.
 For instance, consider the componentization of a GSM
physical layer transceiver waveform shown in Figure 1. In
this componentization there are six distinct clock domains,
each determined by a specific component in the domain. The
vocoder processes blocks of data at a rate of 20ms/block.
Supporting GSM modulation requires a minimal symbol
processing rate of 30 µs/symbol. The modulation and
demodulation/synchronization processes are frequently
oversampled, specifying two additional clock domains. The
sampling rates of the ADC and DAC specify two other clock
domains (assuming that the ADC and DAC do not have the
same sampling rate and are not equal to the modulation

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

rates). Within these clock domains, further componentization
is primarily determined by logical block processing
boundaries, the exception being the componentization
indicated for the demodulation operation which has
arbitrarily been divided into components for phase recovery,
symbol timing recovery, and symbol demodulation. Each
component must then operate at least as fast as the rate
indicated for that clock domain.

 4. ESTIMATING COMPONENT RESOURCE
UTILIZATION ON PROCESSORS

The optimization problem necessitates estimates of the
processing resources, power, and area needed to implement
each waveform component. Of the three parameters,
estimating processing resources is the least straight-forward
and demands the most attention.

4.1 Estimating DSP Processing Resources

Motivated by the fact that even though different processors
include different circuits that impact cycle counts in different
ways, all processors must perform the same operations to
implement the same component, the proposed methodology
uses the following steps to estimate DSP processing
resources:
1. Predict the number and type of operations required to

support the component.
2. Form a cycle estimate by subtracting from the operations

prediction the cycle modifiers identified from a review of
the chip’s architecture.

This approach has the advantage of being able to quickly
generate cycle estimates for a component for a large number
of different processors armed only with the knowledge of the
architecture of each processor. Further this approach
naturally lends itself to computer implementations, valuable
in light of the size of (), , ,F P A CΩ .

4.1.1 Operations Prediction
To predict the operations required the waveform component
is first described in pseudo-code with an eye on capturing all
relevant operations, including memory accesses, loop
control operations, and pipeline filling and flushing. The
total number of operations indicated by the pseudo-code are
then tabulated and parameterized (e.g., in terms of block size,
radix, or constraint length) to give a raw estimate of the total
operations required to support the waveform component.
Operations related to loop control and other specialized
subprocesses are noted and separated for reasons that will
be made clear in Section 4.1.2.
 As an example of this process, Table 1 shows the
tabularized operations for a FFT waveform component
parameterized in terms of block size, N, and radix r and
assuming precalculated twiddle factors. Note that in addition

to the traditional computational operations associated with
the FFT, all memory accesses required to support the
computation are also included in the operations estimate.
Also for reasons that will be made clear in Section 4.1.2, the
operation estimate is subtotaled for butterfly operations, bit
reversal shuffling, and loop control.

Table 1 Tabularized FFT Operations

Arithmetic (Butterfly) Operations
Additions = (N/2) logr N complex additions 4 N logr N
Multiplications = (N/2) logr N complex
multiplications

2 N logr N

Linear Memory Access (1 complex twiddle read,
2 complex data read, 2 complex data write)

10 N logr N

Bit Reversal Shuffling
Linear Access (indices, read, write) 3 N
Control (Add, compare) 2 N+1

FFT Control
Stage Loop

Loop Control (Add, compare) 2 logr N
Other ALU operations 5 logr N

Butterfly Control Loop
Loop Control (Add, compare) 2 (N-1)
Other ALU operations 3 (N-1)

Inner Butterfly Loop (executes N logr N
times)

Loop Control (Add, compare) 2 (N-1) logr N
Other ALU operations 3 (N-1) logr N
Total Estimated Operations (19 N +2) logr N + 10N -4

 Total estimated operations based on this pseudo-code
process for several common waveform components are listed
in Table 2.

4.1.2 Cycle Estimation
For a processor that can implement only a single operation at
a time, the cycle estimate for a waveform component would
simply be the operations estimate. However, most
processors include extra circuitry for supporting
simultaneous complex operations that would result in a cycle
estimate different from the operation estimate. To estimate
the cycles a processor uses to implement a particular
waveform component, we subtract the operations performed
in specialized circuitry indicated by the processor’s
architecture from the operation estimate. The following
briefly describes the effect a number of several commonly
encountered circuits have on the raw operation estimate.

Bit Reversal Addressing - The (I)FFT operation is a common
and cycle intensive waveform component (particularly for
OFDM waveforms). Bit reversal addressing eliminates
operations associated with bit reversal shuffling.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Table 2 Estimated Operations for Common Waveform Components

Module Parameters Operations(Arithmetic, Logic, Multiplications, Memory)
(Real) Filtering N = filter length 6N + 3

FFT
N = block length
r = radix

21N logr(N) + 10N -4

Correlation N = block length 6N + 3

CRC
N = block length
r = polynomial order

5(N+r) + 1

Convolutional Encoder
K = constraint length
1 / r = code rate
N = block length

[3(1+Kr) +2K+5](N+K)+K+1

Viterbi Decoder
K = constraint length
1 / r = code rate
N = block length

3+3(2K-1) + (N-4K)(4+2K+1) + [10+2K(17+3r)](N+K)

Interleaver N = block length 5N+3

Interpolation/Decimation (CIC)
N = CIC stages
R=I/D factor

3(N+Nr)+1+r

Transcendental (LUT) N = iterations 1
Transcendental (CORDIC) N =stages 12N + 1
Transcendental (Series) N =block length 5N + 1
Equalizer (LMS complex) N =block length 30N + 16

Butterfly circuits - A dedicated butterfly circuit typically
permits the dedicated arithmetic operations for each butterfly
operation to be replaced with the number of cycles used in a
call to the butterfly circuit. Frequently this will eliminate the
operations associated with computing the butterfly, but not
the associated memory accesses.

Circular addressing - Circular addressing effects a modulo
operation for addressing and in the limit of high order filters
eliminates a comparison operation for each iteration of a
filtering loop.

Error correction - Error correction, particularly Viterbi and
Turbo decoding, are frequently the most significant
bottleneck to implementing many waveforms. As such,
several processors provide dedicated hardware in the form
of a Viterbi decoder coprocessor or dedicated single-cycle
Add-Compare-Select (ACS) circuitry. A single cycle ACS
circuit replaces the operations associated with ACS
operations with one cycle per ACS call. Co-processors
completely eliminate the original error correction operations,
but add cycles for interfacing with the co-processor.

MAC units - MAC units permit multiplication and
accumulation with a single instruction and thus can be
treated as eliminating the accumulation operations.

SIMD (Single Instruction Multiple Data) - A processor with
SIMD capability can treat longer data words as a number of

smaller data words. For example, one 32-bit word could be
processed as two independent 16-bit words. Generally,
SIMD has the effect of dividing block lengths (typically
variable N in Table 2) by the SIMD factor (nominal word
size/effective word size).

VLIW architecture - Some DSPs can execute multiple
instructions at the same time on differing functional units.
Somewhat loosely, we are referring to all architectures
capable of supporting different instructions for different
functional units as VLIW. A first cut approximation for a
cycle estimate is to divide all operations by the number of
simultaneous operations that can be supported. More
accurate estimates can be made by noting the exact
functional elements available and subtracting the operations
that can be performed in parallel.

Zero-overhead loop control - Zero-overhead looping
offloads loop control (conditional branching and counter
decrementing) to a dedicated circuit. Frequently, this
eliminates most of the cycles consumed in loop control
operations. One cycle remains for each loop to load a special
register.

It should be noted that many of these specialized circuits are
simultaneously present and that the order that these
modifiers are applied can impact the accuracy of the
estimate.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

4.2 Estimating Power Consumption

For the methodology, we need to associate a dynamic power
consumption estimate with each component; static power
consumption is addressed in a later step. For our purposes
we assign the chip’s high activity power consumption
estimate from a vendor spreadsheet [5] to each component
as while the component is processing, most of the resources
will be in use.

5. ESTIMATING FPGA RESOURCE UTILIZATION

As was the case for estimating DSPs resource utilization, we
need to associate utilized processing resources and dynamic
power consumption with each waveform component.

5.1 Estimating FPGA Processing Resources

For FPGAs, we studied communications oriented products
from Xilinx (Virtex) and Altera (Stratix) – Virtex II, Virtex II
Pro, Virtex IV, and Stratix II. Both vendors provide extensive
and well documented libraries of code (see [6] and [7]) that
can be used to estimate resource utilization for many of the
most common waveform components in terms of utilized
processing fabric components, memory units, and embedded
functional units (multipliers for Virtex products and DSP
blocks, which support complex multiplication, for Stratix
products).
 However, some waveform components for our study
were only available for one or the other architecture. This
necessitated the development of a technique for converting
resource estimates from one architecture to another. To
convert Virtex multipliers to Stratix DSP blocks, we evaluated
the ceiling of the number of Virtex multipliers divided by
four.1 We then treated memory one Virtex block SelectRAM
(1K x 18 bits) blocks as 32 Stratix M512 RAM blocks, 8 M4K
RAM blocks, and 1/32 of a M-RAM block (4Kx144 bits).
 Conversions between different processing fabric
elements can also be readily approximated. Virtex library
implementations are specified in terms of Slices and
Configurable Logic Blocks (CLBs) which contain four slices.
Stratix implementations are specified in terms of Adaptive
Logic Modules (ALMs), Logic Array Blocks (LABs) of 8
ALMs, and effective Logic Elements (LEs) which represent
2.5 ALMs. A conversion between the two architectures can
be approximated by noting the rough equivalence of the
basic computational elements – Slices and ALMs – which
are shown in Figure 2 and Figure 3, respectively. A
tabulation of these conversions is provided in Table 2.

1 This approximation is a little facile as Stratix DSP blocks operate
in a number of different modes, none of which directly support the
use of three multipliers.

Figure 2 Slice from Figure 15 in [8]

Figure 3 Adaptive Logic Module (ALM) from Figure 2.5 in

[9].

Table 3 FPGA Resource Conversion Matrix

 CLB Slice LAB ALM LE
CLB 1 4 0.5 4 10
Slice 0.25 1 0.125 1 2
LAB 2 8 1 8 20
ALM 0.25 1 0.125 1 2.5
LE 0.1 0.4 0.05 0.4 1

4.2 Estimating FPGA Power Consumption
Both Xilinx and Altera provide tools for estimating power
consumption based on resource utilization (see [10] and [11])
for each of their products. By using these tools dynamic
power consumption estimates for each of the waveform
components can be readily calculated. Examples of dynamic
power consumption and processing resource estimates for
selected 802.11a waveform components are listed in Table 4.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Table 4 Parameterized Estimations of Resource Requirements for Selected Algorithms

802.11a Component Virtex Slices
Virtex

Multipliers
RAM
Blocks

Virtex2
Power (mW)

Virtex4
Power (mW)

Stratix II
Power (mW)

FFT 1331 9 8 1051 417 245
Coarse Timing Recovery 462 12 0 494 169 85
Fine Timing Recovery 1100 2 0 739 313 202
Channel Estimation 776 10 2 673 250 145
Channel Equalization 40 4 1 93 25 8
Viterbi Decoder 1084 0 2 701 304 202
DDC 805 0 2 528 228 150

6. FORMING THE FEASIBLE SOLUTION SPACE

For our problem, a solution is a choice of processors and a
partitioning for each waveform in Ω . The feasible solution
space is the set of all possible solutions that satisfy the
design constraints. After completing the earlier steps
indicated in this process, the feasible processor space can
be formed by taking the following steps:
1. Identify the set of all combinations of processors that

satisfy maximum area and cost constraints, F(A, C).
2. Using the componentizations of the waveforms in Ω ,

identify all possible partitions of these waveforms
across all elements of C, F(Ω , A, C).

3. Based on the identified timing constraints and the
estimated processing resources, eliminate the
elements of F(Ω , A, C) that cannot support the
implied resource allocation (insufficient cycles for
DSPs or insufficient memory, multipliers, or fabric
elements for FPGAs) to form F’(Ω , A, C).

4. Calculate power estimations for each element in F’(Ω ,
A, C) by combining the dynamic power consumption
estimates for each waveform component with the
static power consumption of the processors. For
FPGAs, this is accomplished by summing these
numbers. For DSPs, this is accomplished by
multiplying the high activity power dynamic power
estimate by the fraction of cycles used in the solution
and adding this number to the static power
consumption of the DSP. Finally, eliminate those
solutions that violate power constraints to yield the
feasible solution space, (), , ,F P A CΩ .

7. CONCLUSIONS

This paper has presented a systematic approach for
identifying the set of processors and partitions that can be
expected to support a specified set of waveforms. This
approach does not require the designer to be able to write
assembly or VHDL code for each processor under
consideration. Rather, the designer only needs to know
the architecture and typical data sheet parameters for each
chip. This simplification permits the designer to consider a
wider range of processors and presumably find a better

solution. Because of the sheer number of operations
needed to support this methodology, particularly those
steps listed in Section 6, computer aided tools are a
necessity to form (), , ,F P A CΩ . However, as a
subsequent optimization search over (), , ,F P A CΩ is
expected to occur, the electronic formulation of this

(), , ,F P A CΩ greatly simplifies the search process by
eliminating a painful data entry step.
 It should be noted that there are a number of
limitations to these estimations. For example, resources
consumed in inter-component (routing, buffering) and
inter-processor data transfer have been ignored. For DSPs,
we have implicitly treated the power consumption of
memory, computation, and control operations
equivalently. Further, this paper does not address some
design tradeoffs involving placement and utilization of
memory (cache versus external) and different structures
for the algorithms (e.g., transcendental versus CORDIC).
However, these issues can be readily integrated into the
proposed framework.

8. REFERENCES

[1] K. Williston, and J. Bier, “Evaluating the Latest DSPs for

Communications Infrastructure Applications”
[2] M. Tsai, J. Bier, J. Eyre, “Evaluating FPGAs for

Communication Infrastructure Applications”, SDR Forum
Technical Conference 2002. San Diego, CA.

[3] SPRS226D, “TMS320C6414T, TMS320C6415T,
TMS320C6416T Fixed-Point Digital Signal Processors
Data sheet” (Rev. D) . Nov. 2003, Revised Oct 2004.

[4] CEVA-X 1620 Datasheet, Jan 2005.
[5] VC5510 Power Estimation Spreadsheet.

http://focus.ti.com/docs/apps/catalog/resources/appnoteabst
ract.jhtml?abstractName=spra972

[6] Xilinx Reference Implementations. Availabe online:
http://www.xilinx.com/ipcenter/

[7] Altera Reference Implementations. Availabe online:
http://www.altera.com/products/ip/ipm-index.html

[8] DS031 (v3.3), “Virtex-II Platform FPGAs: Complete Data
Sheet,” June 24, 2004.

[9] Stratix II Device Handbook, Volume 1, Jan 2005.
[10] Virtex2 Pro Power Estimation Spreadsheet,

http://www.xilinx.com/cgiin/power_tool/power_Virtex2p
[11] Stratix2 Power Estimation Spreadsheet,

http://www.altera.com/support/devices/estimator/pow-
powerplay.html

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

