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ABSTRACT 
 
Selecting the best choice of processing resources is a 
problem faced in the course of developing any software 
radio or multi-waveform platform. This problem can be 
viewed as one of identifying the optimal design, typically 
with reference to some function of cost, power, and area, 
from the set of feasible processing solutions. Fortunately, 
optimization theory provides the designer with numerous 
tools and algorithms that can be used to quickly search even 
the largest solution space. However, before applying these 
optimization algorithms, the feasible solution space must be 
identified - an onerous process in light of the large number 
of µPs, DSPs, and FPGAs available for use and the even 
larger number of ways that these resources can be combined 
together. This paper presents a methodology for estimating 
the elements of a multiple-processor multiple-waveform 
feasible solution space.  
 
 

1. INTRODUCTION 
 
Selecting the processing elements is arguably the most 
critical step in the design of a software radio. In the same 
manner that PC applications are limited by the choice of the 
PC’s processor, a software radio’s waveforms are limited by 
the choice of processing resources. Ideally, a designer 
would like to choose the processing elements in a way the 
supports all anticipated waveforms with minimal cost, power, 
and area. For PC applications this generally is only a matter 
of choosing a processor with the lowest clock rate that 
allows implementation of all desired applications.  
 For software radio applications, microprocessors (µPs) 
rarely provide sufficient performance to support physical 
layer waveforms. Instead DSPs and FPGAs must be used. 
Because DSPs and FPGAs exhibit significant architectural 
variation between processors , a simple examination of a 
chip’s clock rate is insufficient to estimate performance. In 
the interest of using a single number for comparing 
processors, BDTI has developed a metric based on 
performance measures of suites of algorithms that can be 

implemented on DSPs [1] and FPGAs [2]. While this is an 
excellent tool for making general comparisons between 
processors, it is not generally predictive of whether a 
particular processor can support a particular waveform 
because of the variety of specialized circuitry included with 
DSPs and FPGAs, e.g., Viterbi co-processors  [3], and two-
cycle butterfly units [4]. 
 Further, many radios make use of multiple and 
heterogeneous processors, e.g., a DSP with a FPGA, and 
split waveforms across the chips. So finding the best 
processor solution implies also solving for both the best 
waveform partition, significantly complicating this 
optimization problem. Repeating this process for several 
waveforms can be quite the daunting problem.  
 Formalizing this optimization problem, suppose a 
software radio must support a set of waveforms, Ω , while 
simultaneously satisfying constraints on power 
consumption, P, area, A, and cost, C. The problem is to 
identify the combination of µPs, DSPs, and FPGAs and 
waveform partitioning that satisfies these constraints while 
maximizing some design function. The combinations of µPs, 
DSPs, and FPGAs and the associated waveform partitions 
that simultaneously satisfy all of these conditions form the 
feasible processor solution space, ( ), , ,F P A CΩ . On this 
set, any of a number of optimization routines can then be 
used to find the best choice of processors and waveform 
partitions. This paper focuses on the first aspect of this 
problem – identifying ( ), , ,F P A CΩ – and presents  a 
methodology that can be applied to solve for ( ), , ,F P A CΩ . 
 The remainder of this paper is organized as follows. 
Section 2 presents a high level view of the proposed 
methodology. Section 3 presents details of how waveforms 
are broken into processing components. Sections 4 and 5 
provide details on how this methodology handles DSPs and 
FPGAs, respectively. Section 6 describes how the details 
from the preceding sections are incorporated into an 
identification of ( ), , ,F P A CΩ . 
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Figure 1 Componentization of a GSM Transceiver 

 
2. METHODOLOGY OVERVIEW 

 
Given the set of waveforms, Ω , to support, this paper 
proposes the following methodology to estimate the feasible 
processor solution space ( ), , ,F P A CΩ . 
1. Identify an initial pool of candidate processors, F’, 

containing µPs, DSPs, and FPGAs.  
2. Survey the required waveforms,  Ω , to identify the 

required waveform components and component 
execution times. 

3. Estimate resource utilization for each component as 
implemented on each processor in F’.  

4. Using the results of step 3, form the set of processor 
solutions from examining all possible processor and 
waveform partition combinations.  

5. Form the feasible processor solution space, 
( ), , ,F P A CΩ , by removing from F all combinations of 

processors that violate constraints P, A, C and/or have 
insufficient resources to support Ω . 

The following sections detail how each of these steps can 
be accomplished. 

 
3. COMPONENT IDENTIFICATION 

 
In this step, the waveforms in Ω  are broken into their 
constituent processing elements (components) and the 
timing requirements for these processing elements are 
identified. While there exist many different ways to partition 
a waveform that yield different components  (e.g., modulation 
and filtering may be treated as two sequential, but separate, 
components or combined into a single component), one 
logical breakdown is by clock domains and processing 

blocks. Considering an arbitrary waveform, it is expected that 
some portions of the processing will occur at the sample 
rate, some at the symbol rate, some at the frame rate, and 
perhaps some other portions at waveform/implementation 
specific rates. Within many of these clock domains, 
waveform processes  operate on blocks of data, e.g., 
interleaving and error correction, rather than on continuous 
streams of data, thus introducing other logical boundaries 
for componentization. In addition to this componentization, 
multirate components that span clock domains are also 
encountered and further componentization beyond clock 
boundaries and block interfaces is  also possible.  
 With this in mind, a waveform’s processes are first 
separated by clock domain and then subdivided by 
processing blocks. Each of these subdivisions would then 
be deemed a waveform component. Further subdivisions 
may be useful, but the choice of subdivisions and utility of 
these subdivisions will be a function of the waveforms in 
Ω . This approach also permits an immediate rough 
identification of timing requirements for each component.  
 For instance, consider the componentization of a GSM 
physical layer transceiver waveform shown in Figure 1. In 
this componentization there are six distinct clock domains, 
each determined by a specific component in the domain. The 
vocoder processes blocks of data at a rate of 20ms/block. 
Supporting GSM modulation requires a minimal symbol 
processing rate of 30 µs/symbol. The modulation and 
demodulation/synchronization processes are frequently 
oversampled, specifying two additional clock domains. The 
sampling rates of the ADC and DAC specify two other clock 
domains (assuming that the ADC and DAC do not have the 
same sampling rate and are not equal to the modulation 
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rates). Within these clock domains, further componentization 
is primarily determined by logical block processing 
boundaries, the exception being the componentization 
indicated for the demodulation operation which has 
arbitrarily been divided into components for phase recovery, 
symbol timing recovery, and symbol demodulation. Each 
component must then operate at least as fast as the rate 
indicated for that clock domain.  
 

  4. ESTIMATING COMPONENT RESOURCE 
UTILIZATION ON PROCESSORS 

 
The optimization problem necessitates estimates of the 
processing resources, power, and area needed to implement 
each waveform component. Of the three parameters, 
estimating processing resources is the least straight-forward 
and demands the most attention. 
 
4.1 Estimating DSP Processing Resources 
 
Motivated by the fact that even though different processors 
include different circuits that impact cycle counts in different 
ways, all processors must perform the same operations to 
implement the same component, the proposed methodology 
uses  the following steps to estimate DSP processing 
resources:  
1.  Predict the number and type of operations required to 

support the component. 
2.   Form a cycle estimate by subtracting from the operations 

prediction the cycle modifiers identified from a review of 
the chip’s architecture. 

This approach has the advantage of being able to quickly 
generate cycle estimates for a component for a large number 
of different processors armed only with the knowledge of the 
architecture of each processor. Further this approach 
naturally lends itself to computer implementations, valuable 
in light of the size of ( ), , ,F P A CΩ . 
 
4.1.1 Operations Prediction 
To predict the operations required the waveform component 
is first described in pseudo-code with an eye on capturing all 
relevant operations, including memory accesses, loop 
control operations, and pipeline filling and flushing. The 
total number of operations indicated by the pseudo-code are 
then tabulated and parameterized (e.g., in terms of block size, 
radix, or constraint length) to give a raw estimate of the total 
operations required to support the waveform component. 
Operations related to loop control and other specialized 
subprocesses are noted and separated for reasons that will 
be made clear in Section 4.1.2. 
 As an example of this process, Table 1 shows the 
tabularized operations for a FFT waveform component 
parameterized in terms of block size, N, and radix r and 
assuming precalculated twiddle factors. Note that in addition 

to the traditional computational operations associated with 
the FFT, all memory accesses required to support the 
computation are also included in the operations estimate. 
Also for reasons that will be made clear in Section 4.1.2, the 
operation estimate is  subtotaled for butterfly operations, bit 
reversal shuffling, and loop control.  

Table 1 Tabularized FFT Operations 

Arithmetic (Butterfly) Operations  
Additions = (N/2) logr N complex additions 4 N logr N 
Multiplications = (N/2) logr N complex 
multiplications 

2 N logr N  

Linear Memory Access (1 complex twiddle read, 
2 complex data read, 2 complex data write) 

10 N logr N 

Bit Reversal Shuffling   
Linear Access (indices,  read, write) 3 N 
Control (Add, compare) 2 N+1 

FFT Control  
Stage Loop   

Loop Control (Add, compare) 2 logr N 
Other ALU operations 5 logr N  

Butterfly Control Loop   
Loop Control (Add, compare) 2 (N-1) 
Other ALU operations 3 (N-1)  

Inner Butterfly Loop (executes N logr N 
times) 

 

Loop Control (Add, compare) 2 (N-1) logr N 
Other ALU operations 3 (N-1) logr N  
Total Estimated Operations (19 N +2) logr N + 10N -4 

 
 Total estimated operations based on this pseudo-code 
process for several common waveform components are listed 
in Table 2.  
 
4.1.2 Cycle Estimation 
For a processor that can implement only a single operation at 
a time, the cycle estimate for a waveform component would 
simply be the operations estimate. However, most 
processors include extra circuitry for supporting 
simultaneous complex operations that would result in a cycle 
estimate different from the operation estimate. To estimate 
the cycles a processor uses to implement a particular 
waveform component, we subtract the operations performed 
in specialized circuitry indicated by the processor’s 
architecture from the operation estimate. The following 
briefly describes the effect a number of several commonly 
encountered circuits have on the raw operation estimate. 
 
Bit Reversal Addressing - The (I)FFT operation is a common 
and cycle intensive waveform component (particularly for 
OFDM waveforms). Bit reversal addressing eliminates 
operations associated with bit reversal shuffling. 
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Table 2 Estimated Operations for Common Waveform Components 

Module Parameters Operations(Arithmetic, Logic, Multiplications, Memory) 
(Real) Filtering N = filter length 6N + 3 

FFT 
N = block length  
r = radix 

21N logr(N) + 10N -4 

Correlation N = block length 6N + 3 

CRC 
N = block length  
r = polynomial order 

5(N+r ) + 1 

Convolutional Encoder 
K = constraint length 
1 / r = code rate 
N = block length 

[3(1+Kr) +2K+5](N+K)+K+1 

Viterbi Decoder 
K = constraint length 
1 / r = code rate 
N = block length 

3+3(2K-1) + (N-4K)(4+2K+1) + [10+2K(17+3r)](N+K) 

Interleaver N = block length 5N+3 

Interpolation/Decimation (CIC) 
N = CIC stages  
R=I/D factor 

3(N+Nr)+1+r 

Transcendental (LUT) N = iterations 1 
Transcendental (CORDIC) N =stages 12N + 1 
Transcendental (Series) N =block length 5N + 1 
Equalizer (LMS complex) N =block length 30N + 16 

 
Butterfly circuits - A dedicated butterfly circuit typically 
permits the dedicated arithmetic operations for each butterfly 
operation to be replaced with the number of cycles used in a 
call to the butterfly circuit. Frequently this will eliminate the 
operations associated with computing the butterfly, but not 
the associated memory accesses. 
 
Circular addressing - Circular addressing effects a modulo 
operation for addressing and in the limit of high order filters 
eliminates a comparison operation for each iteration of a 
filtering loop.  
 
Error correction - Error correction, particularly Viterbi and 
Turbo decoding, are frequently the most significant 
bottleneck to implementing many waveforms. As such, 
several processors provide dedicated hardware in the form 
of a Viterbi decoder coprocessor or dedicated single-cycle 
Add-Compare-Select (ACS) circuitry. A single cycle ACS 
circuit replaces the operations associated with ACS 
operations with one cycle per ACS call. Co-processors 
completely eliminate the original error correction operations, 
but add cycles for interfacing with the co-processor.  
 
MAC units - MAC units permit multiplication and 
accumulation with a single instruction and thus can be 
treated as eliminating the accumulation operations. 
 
SIMD (Single Instruction Multiple Data) - A processor with 
SIMD capability can treat longer data words as a number of 

smaller data words. For example, one 32-bit word could be 
processed as two independent 16-bit words. Generally, 
SIMD has the effect of dividing block lengths (typically 
variable N in Table 2) by the SIMD factor (nominal word 
size/effective word size).  
 
VLIW architecture - Some DSPs can execute multiple 
instructions at the same time on differing functional units. 
Somewhat loosely, we are referring to all architectures 
capable of supporting different instructions for different 
functional units as VLIW. A first cut approximation for a 
cycle estimate is to divide all operations by the number of 
simultaneous operations that can be supported. More 
accurate estimates can be made by noting the exact 
functional elements available and subtracting the operations 
that can be performed in parallel.  
 
Zero-overhead loop control - Zero-overhead looping 
offloads loop control (conditional branching and counter 
decrementing) to a dedicated circuit. Frequently, this 
eliminates most of the cycles consumed in loop control 
operations. One cycle remains for each loop to load a special 
register. 
 
It should be noted that many of these specialized circuits are 
simultaneously present and that the order that these 
modifiers are applied can impact the accuracy of the 
estimate. 
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4.2 Estimating Power Consumption 
 
For the methodology, we need to associate a dynamic power 
consumption estimate with each component; static power 
consumption is addressed in a later step. For our purposes 
we assign the chip’s high activity power consumption 
estimate from a vendor spreadsheet [5] to each component 
as while the component is processing, most of the resources 
will be in use.  
 

5. ESTIMATING FPGA RESOURCE UTILIZATION 
 
As was the case for estimating DSPs resource utilization, we 
need to associate utilized processing resources and dynamic 
power consumption with each waveform component.  
 
5.1 Estimating FPGA Processing Resources 
 
For FPGAs, we studied communications oriented products 
from Xilinx (Virtex) and Altera (Stratix) – Virtex II, Virtex II 
Pro, Virtex IV, and Stratix II. Both vendors provide extensive 
and well documented libraries of code (see [6] and [7]) that 
can be used to estimate resource utilization for many of the 
most common waveform components in terms of utilized 
processing fabric components, memory units, and embedded 
functional units (multipliers for Virtex products and DSP 
blocks, which support complex multiplication, for Stratix 
products).  
 However, some waveform components for our study 
were only available for one or the other architecture. This 
necessitated the development of a technique for converting 
resource estimates from one architecture to another. To 
convert Virtex multipliers to Stratix DSP blocks, we evaluated 
the ceiling of the number of Virtex multipliers divided by 
four.1 We then treated memory one Virtex block SelectRAM 
(1K x 18 bits) blocks as 32 Stratix M512 RAM blocks, 8 M4K 
RAM blocks, and 1/32 of a M-RAM block (4Kx144 bits).    
 Conversions between different processing fabric 
elements can also be readily approximated. Virtex library 
implementations are specified in terms of Slices and 
Configurable Logic Blocks (CLBs) which contain four slices. 
Stratix implementations are specified in terms of Adaptive 
Logic Modules (ALMs), Logic Array Blocks (LABs) of 8 
ALMs, and effective Logic Elements (LEs) which represent 
2.5 ALMs. A conversion between the two architectures can 
be approximated by noting the rough equivalence of the 
basic computational elements – Slices and ALMs – which 
are shown in Figure 2 and Figure 3, respectively. A 
tabulation of these conversions is provided in Table 2. 

                                                 
1 This approximation is a little facile as Stratix DSP blocks operate 
in a number of different modes, none of which directly support the 
use of three multipliers. 

 

 
Figure 2 Slice from Figure 15 in [8] 

 
Figure 3 Adaptive Logic Module (ALM) from Figure 2.5 in 

[9]. 

Table 3 FPGA Resource Conversion Matrix 

  CLB Slice LAB ALM LE 
CLB 1 4 0.5 4 10 
Slice 0.25 1 0.125 1 2 
LAB 2 8 1 8 20 
ALM 0.25 1 0.125 1 2.5 
LE 0.1 0.4 0.05 0.4 1 

 
4.2 Estimating FPGA Power Consumption 
Both Xilinx and Altera provide tools for estimating power 
consumption based on resource utilization (see [10] and [11]) 
for each of their products. By using these tools dynamic 
power consumption estimates for each of the waveform 
components can be readily calculated. Examples of dynamic 
power consumption and processing resource estimates for 
selected 802.11a waveform components are listed in Table 4. 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



Table 4 Parameterized Estimations of Resource Requirements for Selected Algorithms  

802.11a  Component Virtex Slices 
Virtex 

Multipliers 
RAM 
Blocks 

Virtex2  
Power (mW) 

Virtex4  
Power (mW) 

Stratix II 
Power (mW) 

FFT 1331 9 8 1051 417 245 
Coarse Timing Recovery 462 12 0 494 169 85 
Fine Timing Recovery 1100 2 0 739 313 202 
Channel Estimation 776 10 2 673 250 145 
Channel Equalization 40 4 1 93 25 8 
Viterbi Decoder 1084 0 2 701 304 202 
DDC 805 0 2 528 228 150 
 

6. FORMING THE FEASIBLE SOLUTION SPACE 
 
For our problem, a solution is a choice of processors and a 
partitioning for each waveform in Ω . The feasible solution 
space is the set of all possible solutions that satisfy the 
design constraints. After completing the earlier steps 
indicated in this process, the feasible processor space can 
be formed by taking the following steps: 
1. Identify the set of all combinations of processors that 

satisfy maximum area and cost constraints, F(A, C).  
2. Using the componentizations of the waveforms in Ω , 

identify all possible partitions of these waveforms 
across all elements of C, F(Ω , A, C). 

3. Based on the identified timing constraints and the 
estimated processing resources, eliminate the 
elements of F(Ω , A, C) that cannot support the 
implied resource allocation (insufficient cycles for 
DSPs or insufficient memory, multipliers, or fabric 
elements for FPGAs) to form F’(Ω , A, C).  

4. Calculate power estimations for each element in F’(Ω , 
A, C) by combining the dynamic power consumption 
estimates for each waveform component with the 
static power consumption of the processors. For 
FPGAs, this is accomplished by summing these 
numbers. For DSPs, this is accomplished by 
multiplying the high activity power dynamic power 
estimate by the fraction of cycles used in the solution 
and adding this number to the static power 
consumption of the DSP. Finally, eliminate those 
solutions that violate power constraints to yield the 
feasible solution space, ( ), , ,F P A CΩ .   

 
7. CONCLUSIONS 

 
This paper has presented a systematic approach for 
identifying the set of processors and partitions that can be 
expected to support a specified set of waveforms. This 
approach does not require the designer to be able to write 
assembly or VHDL code for each processor under 
consideration. Rather, the designer only needs to know 
the architecture and typical data sheet parameters for each 
chip. This simplification permits the designer to consider a 
wider range of processors and presumably find a better 

solution. Because of the sheer number of operations 
needed to support this methodology, particularly those 
steps listed in Section 6, computer aided tools are a 
necessity to form ( ), , ,F P A CΩ . However, as a 
subsequent optimization search over ( ), , ,F P A CΩ  is 
expected to occur, the electronic formulation of this 

( ), , ,F P A CΩ  greatly simplifies the search process by 
eliminating a painful data entry step.  
 It should be noted that there are a number of 
limitations to these estimations. For example, resources 
consumed in inter-component (routing, buffering) and 
inter-processor data transfer have been ignored. For DSPs, 
we have implicitly treated the power consumption of 
memory, computation, and control operations 
equivalently. Further, this paper does not address some 
design tradeoffs involving placement and utilization of 
memory (cache versus external) and different structures 
for the algorithms (e.g., transcendental versus CORDIC). 
However, these issues can be readily integrated into the 
proposed framework.  
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