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ABSTRACT 
 
In this work, a mode identification system for superimposed 
signals in the same band is presented. More precisely, a 
signal processing technique, namely the Wigner-Ville 
distribution, combined with non parametric (k-Nearest 
Neighbors and Parzen) and Neural Network classifiers is 
proposed for identifying the transmission modes in an 
indoor wireless environment. A reconfigurable terminal 
based on Software Defined Radio technology is considered 
aiming at the identification of the presence of two co-
existent communication modes such as Bluetooth, based on 
Frequency Hopping - Code Division Multiple Access, and 
IEEE WLAN 802.11b, based on Direct Sequence - Code 
Division Multiple Access. Results in terms of error 
classification probability, expressed as relative error 
frequency, will be provided with a comparison among the 
classifiers.  
 

1. INTRODUCTION 
 

The Software Defined Radio (SDR) paradigm [1] defines 
the enabling technology that allows one to realize the so 
called reconfigurable terminals (RT) by software-defining 
their communication layers [2]. By definition SDR devices 
should support multi-mode, multi-band and multi-standard 
communications in future generation wireless system [3] 
with an high level of adaptability, flexibility and 
reconfigurability. 
This work deals with the physical layer of a SDR based RT. 
To support multi-mode communications, SDR brings a 
revolution in the receiver’s design with respect to the 
conventional radio devices based on heterodyne schemes 
[1], [4]. In fact, SDR based receiver should have a very 
reduced analogical part based on a unique Radio Frequency 
(RF) stage which is composed by the Antenna, Low Noise 
Amplifiers (LNA) and Filters [1], [4] with the A/D 
conversion process closer to the antenna. All the signals 
captured by RF part, are first sampled at high frequency and 
then converted in a digital format [4]. After, the entire 
processing (usually done in an analogical way in 
conventional terminals) is performed by means of digital 
signal processing techniques. In the design of RT, the 
problems lies at hardware, software and signal processing 

(SP) level [1]. In fact, SDR based receiver, as described 
above, is not yet feasible with the current technology. For 
example, it’s not possible to design a wideband antenna to 
receive multi band modes and A/D converters with 
sufficient quantization and sampling frequency as required 
in SR applications [1]. Therefore, the current solution aims 
to use a radio frequency (RF) conversion stage that brings 
the received signal at Intermediate Frequency (IF) [1]. In 
case of multi band communication, antenna arrays or 
different RF stages can be also employed [15]. 
However, to design SDR based receiver with the 
characteristics describe above, one of the most important 
open issue, that this paper deals with, is the mode 
identification [5], [9] and [19]. More precisely, SDR 
receiver should be able to monitor the radio channel in a 
certain frequency range (as wide as possible) and recognize 
all possible communication modes, employing digital signal 
processing techniques. The solution of demodulating in 
parallel a large set of transmission modes is infeasible at the 
receiver and it introduces an high level of complexity in the 
hardware receiver structure. A more suitable solution, 
explored in this paper, is to try to identify at a lower 
abstraction level, multiple transmission modes directly from 
the sampled version of the signal before decoding and 
extracting the modulated information contained in the signal 
itself. Once the available mode/s is/are identified,  SDR 
receiver should set up all necessary procedures at base-band 
processing to support it/them.  
In general, a mode identification procedure can involve 
several aspects [2]: modulation recognition, air interface 
type classification, etc. Moreover, communications modes 
can be superimposed in the same band or separated. In the 
first case the identification process is more difficult because 
they interfered each other. In this work, the attention is 
devoted to analyze this case employing signal processing 
techniques.  
The identification of two co-existent Spread Spectrum 
access methods is analysed; in particular, IEEE WLAN 
802.11b DS-CDMA [7] and Bluetooh (BT) FH-CDMA [6]  
are considered. These two standards operate in the same 
bandwidth (Industrial Scientific Medical, ISM Band).  The 
choice of these modes is due to the possibility to design an 
unique RF conversion stage, and the growing interest in the 
market around them for wireless connectivity especially, for 
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the communication in the coexistent environment [3], [16]. 
In the state of the art, Energy detection [8], is a common 
method with low processing load to recognize the presence 
or absence of a signal. Unfortunately, when signals are 
temporally overlapped on the same bandwidth, the energy 
detection may not be not sufficiently discriminant. 
Consequently, the information are not sufficient to perform 
further steps for mode identification. A recent work [6] 
presents the use of a radial basis function neural network 
with a Power Spectral Density estimation to identify the 
communication standards. No superposition of signals is 
considered and different RF stages are employed. The 
European project TRUST (European research project 
transparent Ubiquitous terminal) presents a system for mode 
identification for GSM and UMTS standard [2]. 
In this work, a pattern recognition approach based on Time 
Frequency (TF) signal analysis, non parametric an Neural 
Networks classifiers is proposed to solve the problem of 
mode identification in the case of two superimposed 
standards, namely WLAN IEEE 802.11b and BT. As TF 
tool, the Wigner-Ville Distribution (WVD) [10] has been 
chosen: it allows one to extract important features to 
classify the air interface present in the case under 
inspection. As classifiers non non parametric and neural 
networks techniques are here employed because they are 
able to classify without any a-priori statistical information 
about the probability density function (PDF) of features. In 
the case of study such kind of information (PDF) is not 
available due to the user mobility as it will be explained in 
the sub-section 2.3, so the use of k-Nearest Neighbors (k-
NN), Parzen Windows,  Feed Forward Back Propagated 
Neural Network (ffbpnn) and Support Vector Machine 
(SVM) are considered. The present paper is so organized: in 
section 2 the proposed identification method is explained, in 
section 3 numerical results will be presented and discussed, 
conclusions will be drawn in section 4. 
 

2. PROPOSED METHOD 
 

The following scenario is considered: an indoor WLAN 
cell, including BT piconets [6], [7] where a user with his RT 
can move around identifying one of the available 
transmission modes. The mobile device should be able to 
detect the presence of two standards: DS-CDMA and FH-
CDMA. The proposed classification scheme is depicted in 
the following figure. 

  
 

 

 

Figure 1.  The proposed mode identification scheme 

 

2.1 Time-Frequency Distribution 
The received signal after RF stage and A/D conversion 

is processed by a TF block. The TF block provides a 
representation which allows one to use a compact and 
robust signal visualization in two dimensions: time and 
frequency. For this reason, TF methods potentially provide 
higher discriminating power useful for signal identification. 
As TF distribution, the Wigner-Ville transform has been 
chosen. This transform is the most used. It has low 
computational complexity, a good feature for real-time 
usage. The Wigner-Ville distribution is expressed by the 
following expression: 
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the integral ranges from -∞ to ∞ and y(t) in our case is the 
sampled version of the received signal. It is band-limited 
and contains the two superimposed modes (WLAN and 
BT). 

 
2.2 Features Extraction 
From Wigner-Ville transform, it is possible to extract TF 
features of the received signal observed on a time window 
T. Two features are considered [10]:  

• Feature 1: standard deviation of the instantaneous 
frequency. 

• Feature 2: maximum time duration of signal. 
To obtain the first feature from a given TF distribution 

),( ωtP  the first conditional moment is computed as:  
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where )(tP  is the time distribution and the integral ranges 
from -∞ to ∞. In our case ),( ωtP  is the Wigner distribution of 
the received signal. t>< ω  is the average of frequency  at a 
particular time t and it is considered as the instantaneous 
frequency [10] . If the signal is considered as a generic band 
pass signal given by [10]  : 
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where A(t) is the signal amplitude and ϕ(t) is the signal 
phase. Its instantaneous frequency iω  is [10]: 
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The standard deviation of iω :  
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where iω  is the mean value of iω computed on the time 
window T, given by:  
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From Figure 2 one can see that it is reasonable to obtain a 
low value of )( istd ω when the first conditional moment is 
quite constant as in the case of DS (WLAN) whereas 

)( istd ω  assumes high values in the case of  FH (BT).  
The second feature is obtained on the basis of the following 
considerations. In case of DS, frequency components are 
continuous in time for a duration that depends on the length 
of the time observation window T used to compute the 
distribution. Instead, for FH signal, a discontinuity in time 
can be observed due to the presence of different frequency 
hops. Therefore, it is possible to obtain an empirical 
discriminating feature based on the time duration of the 
signal. To obtain such data the following operations are 
performed:  
1. From the chosen transform a binary TF matrix ),( ftPbin  
is obtained, by a threshold. The values of this matrix 
represent presence (element equals to 1) or absence 
(element equals to 0)  of signal at a given time t and at a 
given frequency f. 
2. The threshold has been chosen in an empirical way. After 
a trial and test procedure, its value has been chosen as the 
mean value of the TF matrix;  
3. Once ),( ftPbin has been obtained, the elements of each 
row, i.e. for each frequency, are summed up to obtain the 
length in time of the signals component at a certain 
frequency.  
With these operations the duration of the components for 
each frequency, )(ωT , is obtained. The feature to presente 
to the k-NN or Parzen has been chosen as the maximum 
value TM in such set, namely: 
 

{ })(max ωTTM =   (7) 
 
where  
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where the summation is done over the entire length of the 
window where the distribution is computed.  

 

 

(a)

 

 

(b) 
 

Figure 2.  Example of the conditional moment of the first order in case of 
BT (FH-CDMA) (a) and IEEE 802.11b (DS-CDMA) (right). 

 
2.3  The Classifier  

A multiple hypotheses test has been performed. In 
particular four classes have been studied: 

• class H0: presence of a Additive White Gaussian 
Noise (AWGN). This class will be indicated as 
‘Noise’. 

• class H1: presence of WLAN signal with AWGN 
and Multipath Fading. It will be indicated as 
‘WLAN’. 

• class H2: presence of BT signal with AWGN and 
Multipath Fading. It will be indicated as ‘BT’. 

• class H3: presence of both signals with AWGN and 
Multipath. It will be indicated as ‘WLAN + BT’. 

The extracted features to discriminate the four cases depend 
on the user distance from the signal source; as consequence, 
the four classes move in the feature plane with respect to the 
user movement. The first effect is that different classifiers 
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for each user position would be necessary [11]. This is too 
complex and unfeasible. Therefore, non-parametric and 
neural classification tools will be used [11]. With the first a 
theoretical model of experimental distribution is not 
necessary because the classification is carried out without 
any a-priori statistical information of samples. Between the 
various non parametric classifiers the k-Nearest Neighbors 
(k-NN) and Parzen approach have been chosen and their 
performances have been evaluated. Both perform an 
estimation of PDF in a particular region whose dimension 
can be variable (k-NN) or fixed (Parzen) [11]. The former 
computes the estimation considering a fixed (k) number of 
training samples through the entire features space, then the 
estimation window becomes larger in low density areas and 
smaller in high density areas. Instead the Parzen algorithm 
fixes the dimension of the estimation window so the 
samples number changes with respect to density, that is the 
dual procedure of k-NN.  
For the k-NN the best value of k has to be experimentally 
chosen, while the window size for Parzen approah is 
obtained after a minimization of the Integrated Mean Square 
Error (IMSE) [11] : 
  

[ ]{ }∫ −= dXXpXpEIMSE 2)()(ˆ  (9) 

 
where )(ˆ Xp is the estimated PDF of samples X, while 

)(Xp  is the real PDF. Imposing 0=∂∂ rIMSE , the optimal 
dimension r* of kernel (through which the PDF is 
estimated) is: 
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where n is the dimension of features space, A is a parameter 
of the kernel function, N is the number of training samples, 
Γ the gamma function and  
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The eq. (11) will be used in simulations to compute the 
optimal window dimension. 
The chosen neural networks are feed forward back-
propagation neural networks  (f.f.b.p.n.n.) and Support 
Vector Machines (SVMs). A f.f.b.p.n.n has been trained by 
the back-propagation supervised [21] method. In particular, 
the learning algorithm is the “Batch Gradient Descent with 
Momentum”, so the synaptic weights and biases are updated 
at the end of the entire training set [20]. Moreover, with the 
Momentum version not only the local gradient is considered 

but also the previous values of the cost function: acting as a 
low-pass filter, the Momentum allows the network to ignore 
some local minima.  
The second classifier, the SVM, has a Radial Basis Function 
(RBF) as kernel, due to the characteristics of the features 
space, which is composed of non-separable classes [22]. 
The equation for the kernel is given by the following 
formula: 
 

0),||||exp(),( 2 >−⋅−= γγ jiji xxxxK      (12) 
 
As in the case of this paper, the classical problem of linear 
Support Vector Machines is modified by inserting positive 
slack variables ξi, i=1,…,l [22] to introduce a further cost 
when necessary. So the constraint that has to be satisfied by 
the training data becomes: 
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Then the problem of finding the hyperplane is:  
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where l is the training-set dimension, xi is the training 
vector, yi }1,1{−∈ are the training labels, w is the vector 
normal to the hyperplane, )(xφ is the mapping function and 
C is a parameter added to the ξi.  
To obtain the best classifier the parameters have to be 
optimized. The grid-search approach has been chosen to 
find the values of C and γ  (RBF exponent, (12)).Both 

classifiers present as input a vector v whose components are 
the features (6) and (7): 
 

],[]),([ 21 vvTstdv Mi == ω       (15) 
  
The output is a two-bit variable with one of the four 
possible values: presence of WLAN (DS-CDMA), presence 
of Bluetooth (FH-CDMA), presence of both, presence of 
noise only. 
 

3. SIMULATIONS AND RESULTS 
Results in terms of Relative Error Frequency are here 
presented. For the trials, a power class three for Bluetooth 
and a 25 mW power level for WLAN is considered. The 
number of transmitted bits is equal to 310 . The simulation 
model of the physical level of the two standards has been set 
up in MATLAB/Simulink environment, following all the 
specifications given by and. Moreover, a scenario with a 
single user has been considered: an IEEE 802.11b access 
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point and a Bluetooth piconet are presented. An indoor 
environment (a 15m×15m room) with sources placed in the 
room corners is considered as described in [12], [14]. The 
simulation foresees a user, provided with an SDR mobile 
handset, who arbitrarily moves in the room and has to 
classify the standards available. The channel model is a 
downlink indoor channel at 2.4 GHz with multipath fading 
and AWGN noise (more details can be found in [19]). 
During the simulations, Signal to Noise Ratio (SNR) is 
considered variable with respect to the distance as the 
received signal power changes due to the path loss. Once 
the signals are passed through the channel, they are 
converted to intermediate frequency, and then the A/D 
conversion is performed to a sample rate of 120 MSample/s 
to satisfy the Nyquist limit. The intermediate frequency has 
been chosen to be equal to 30 MHz. Then the received 
signal is computed by the TF block. The WVD distribution 
uses blocks with N = 512 samples obtained  by a time 
window T long enough to contain 10 frequency hops. The 
time hopping is 625 µs [6]. The extraction module stores 10 
TF matrices and calculates the features as defined in the 
previous section. The values are passed to the classifiers 
whose implementation requires the following steps: 
training, testing and evaluation.  
The numerical characteristics, explained above, are exactly 
the same of the system proposed in [19]. The differences are 
the chosen classifiers, k-NN, Parzen and Neural Networks. 
As consequence, different identification results, which are 
compared together, have been evaluated: in the following 
figures, the Relative classification Error Frequency is shown 
for each class using the two non parametric classifiers and 
the TF distribution and they are plotted together the results 
provided by Support Vector Machine and the feed forward 
back propagated neural network.  
The only noise class is always correctly classified. The 
number of neighbors training samples for k-NN has been 
chosen to be 159. The Figure 4 and Figure 5 show the 
classification of WLAN and Bluetooth class by using the 
four classifiers here presented. It is worth mentioning the 
improvement obtained for Bluetooth class with the k-NN 
where the relative error frequency is lower than 10-3 for the 
whole range covered by standard (10 m). This is due to high 
performances of the k-NN than neural networks with classes 
with elevated spread as Bluetooth, [23]. For WLAN class, 
the error rate with non parametric classifiers is worse than 
with the neural networks and SVM due to lower ability of k-
NN and Parzen to identify overlapping classes. The Figure 6 
shows the error frequency for WLAN+Bluetooth case with 
respect to distance from Bluetooth; the particular behaviour 
of the system is due to the fact that when terminal is near a 
source, the transmitted power is too high to discriminate the 
two modes present. In these cases, the non parametric 
approach allows one to obtain the same performances with 
respect to the neural classifiers. 

Some considerations can be done for k-NN and Parzen 
approach: both don’t assume any prior knowledge, 
fundamental feature in applications like that considered in 
this paper. Regarding the k-NN, using k equal to 159 as 
fixed, the classifier presents an high bias, this means that 
also using a very large number of training samples (ideally 
∞ ) the performances cannot reach the optimal 
classification rate and the classifier loses local information. 
But the advantage, as reported in [17], is that the variance 
can decrease and the decision boundaries are smoothed so 
the global classification outcomes do approximate those of 
posterior probability. The same considerations can be done 
for the Parzen approach: by increasing the window width 
we have an higher training error, but most likely better 
generalization performances. Another drawback can be 
identified for these two classifiers: the computational 
complexity: either Parzen and k-NN suffer of course of 
dimensionality [18] and moreover with large k or window 
width the computational cost in the testing phase is high.  
 

 
 

Figure 4 Error rate for WLAN classification 
 

 
 

Figure 5 Error rate for Bluetooth classification 
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Figure 6 Error rate for WLAN+Bluetooth classification 
 

4. CONCLUSION 
In this work a method for mode identification has been 
proposed and discussed. Two co-existent communication 
modes have been considered: IEEE 802.11b based an DS-
CDMA and BT based on FH-CDMA. The proposed 
technique combines the use of TF analysis and non 
parametric, k-NN, Parzen and Neural Networks classifiers 
as possible solutions. Numerical results for indoor 
environment have been presented with a comparison of the 
classifiers and a couples of features. They show that the 
four configurations, except that WLAN case, present the 
same performances. The results are promising for all cases 
and the on-going research is devoted to explore the use of 
other kinds of  TF distribution, classifiers and features to 
improve the identification ability of the proposed system. 
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