
APPLICATION PROGRAM INTERFACE FOR DIGITAL POLAR
TRANSMITTERS

John D. Bard, Ph.D.

Space Coast Communication Systems, Inc.
Melbourne, FL, USA, jbard@spacecoastcomm.com

Walid K. M. Ahmed, Ph.D.

M/A-COM, Tyco Electronics
Morristown, NJ, USA, ahmed@tycoelectronics.com

Abstract
An Application Program Interface (API) for a radio
transmitter is defined that accommodates various analog and
digital configurations. In addition to up-conversion -
perhaps using one or more digital or analog stages –
controls affecting gain, bandwidth, and timing should be
visible that support all modulation types and access
protocols. Furthermore, whereas traditional radio
transmitter topology maps one conversant with one
transmitter, software radio can accommodate several
conversations over several carriers on a single transmitter.
Each carrier can have individually configured bandwidths,
power levels and modulation types. With the addition of
low power and small form factor requirements,
conventional IQ modulators and surface acoustic wave
(SAW) filters begin to run into efficiency and linearity
problems that erode their performance in multimode
applications.
 A new digital polar design that facilitates SDR
transmitters has been developed by M/A-COM, Tyco
Electronics. M/A-COM’s new transmitter technology
features a complete, digital base-band to RF/PA transmit
chain that comprises a novel Digital Power Amplifier
(DPA) and Transmit IC. The wideband DPA uniquely
provides RF power amplification, phase/amplitude
combining and amplitude modulation in a single device.
This device is complemented with a Digital Modulator to
realize a compelling Digital Transmitter (DTx) architecture.
The fully digital nature of the DTx allows it to efficiently
adapt, through programmability, to various modulation
standards, e.g., GSM/EDGE, cdma2000, over a wide range
of frequencies with minimum complexity. The
unprecedented multi-mode/multi-band nature of the DTx
qualifies it as a strong candidate for future software defined
radios, particularly for handsets.
 As opposed to current implementations, which utilize
an analog interface, DTx requires a digital interface to the
baseband. As described, this interface accommodates multi-

carrier operation. In addition to digital data, a control
interface is also described. Control parameters include
clock rates, modulation mode of operation (optional), carrier
frequency, and filter coefficients. Additionally there should
be some way of synchronizing data flow with control
information. Finally, it is to be emphasized that the digital
nature of M/A-COM’s transmitter technology is indeed an
enabler for software defined radio and all the advantages it
promises.
 In this paper, we introduce M/A-COM’s software radio
transmitter topology and propose an API set that supports a
wide variety of transmitter configurations including
unconventional implementations that offer reduced part
count, smaller footprint and lower power consumption.

1. INTRODUCTION – THE REQUIREMENT

The definition of an Application Program Interface (API) is
provided in [1]; “The interface between the application
software and the application platform, across which all
services are provided. The application programming
interface is primarily in support of application portability”.
Additionally, the Systems Interface Working Group of the
Software Defined Radio (SDR) Forum “feels it is necessary
to provide input on the importance and development of
APIs for SDR to the general community.” [2]. For those
working with the Department of Defense, API’s are non-
negotiable: “Developers are required to submit APIs for
approval and Configuration Management by the JTRS JPO”
[3]. So given this undeniable necessity for SDR API’s,
where’s the beef?

2. SDR API HISTORY

The perceived need for API’s, its criticality to the success of
SDR and the requirement for published, non-proprietary
interfaces can be traced back to meeting number two of the
SDR Forum [4]. This recognition resulted in the
development of the MMITS API Definition (MAD) process
[5] – at least we recall our state of mind at the time. The

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

latest work is now occurring in the Object Management
Group (OMG) with the SDR Forum being one of the
technical contributors. We’ll examine an API that was
developed before the SCA and the SDR Forum Technical
Report v 2.1, and understand its applicability towards a
lower-level ubiquitous API that has so far eluded us.

Figure 1: Framework Inheritance Model

3. THE GLOMO API

The Global Mobile Information System was a DARPA
program circa late 90’ that focused on developing new
wireless ad hoc networking technologies. Part of the effort
resulted in a Smart Antenna API and a Radio Device API
[6]. Additional API specifications existed for a Framework
super-class and an extension for TDMA transceivers. The
reason we are looking back at the GLOMO API is that it
pre-dates the SCA wherein radio devices and services were
completely abstracted away. We will examine the features
of the GLOMO API and then compare it against the feature
set of the latest Platform Independent API’s from the OMG
and SDR Forum. Finally, we will suggest a further
stratification of the GLOMO API’s and then apply them to
M/A-COM’s Digital Transmitter technology.
 Similar in concept to the SCA, the GLOMO API
defines a Core (Framework) API from which device API’s
inherit. Figure 2 shows a subset of the GLOMO API’s
relevant to the radio transceiver. The little inheritance
triangles are dashed as an indication that the implementation
was actually done in “C”, but that a formal inheritance
mechanism should be used for languages that support
inheritance. The Radio Device API includes a structure that
can be replicated for each channel. Thus for a multi-
channel capability the API provides for the notion of an
array of Radio Device objects. The GLOMO API supports
a strong separation of the Link and Media Access Control
(MAC) layers – this is also consistent with the SCA.
Essentially the Radio Device is unaware and furthermore

doesn’t care about the specific network protocols in which it
is passing back and forth over-the-air.

A good Radio API will allow for the fact that certain
events within the radio are asynchronous and not under
direct control of the network protocols. The networking
function needs to be made aware of these events but they
will occur without the provocation of the controlling
function. A poorer choice of API would involve a polling
mechanism wherein the controller would query a particular
event or set of events. The GLOMO API calls these
asynchronous events “signals”. Figure 2 shows the
collaboration between the (Link/MAC/Network) controller
and the Radio Device.

CORE API

Packet API Smart
Antenna API

Radio API Link API

Controller
Radio
Device

Data & Cmds

Get/Set Variables

Responses

Signals

Figure 2: GLOMO Collaboration Diagram.

 Essentially there are two types of commands. One is
the “Get/Set Variables” which refer to persistent states or
parameters associated with the channel. The Controller also
gets a chance to advance or retard the state of the radio.
Between Controller-issued commands and asynchronous
signals from the Radio, the Controller has precise
knowledge of the state of the over-the-air segment of the
link. This is consistent with the SCA’s requirement for an
API to support non real-time control as well as real-time
control and data [7]. This brings up a feature of the Packet
API that was identified but not implemented - the ability to
attach device specific commands to the data packet. The
command set would be different in talking to a serial port
device as opposed talking to a radio device. This is where
some of the difficulty in its implementation would lie. You
don’t want to have the carry around the baggage of every
different type of device in the system in every packet. It
does, however represent a critical functionality for the
software radio – the ability to synchronize the command and
data streams.
 Finally, before delving into the detail of the GLOMO
Radio Device API and comparing it to the latest work of the
OMG one should consider the relationship between the
abstraction of the Radio Device Object and its
implementation. In GLOMO there was a separate Radio
Physical Interface API. That essentially described a lower
level driver style API complete with interrupt lines and

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

timing diagrams. Thus Figure 1 can be re-drawn to include
the Radio Physical API.

Figure 3 – GLOMO API Diagram

 This is exactly the kind of implementation detail talked
about in the last sentence of paragraph 2.1 of the JTRS JPO
API Standardization Process [3]
 In accordance with the portability and technology
insertion objectives of JTRS ORD, abstract API’s shall be
fully defined in a platform independent language such as the
Unified Modeling Language (UML). In order to
accommodate the various Cluster implementations, concrete
API’s shall be defined in their platform specific or native
language definitions.

4. COMPARISON OF THE GLOMO API AND
THE OMG API

The comparison we’re about to attempt is quite awkward
due to the huge difference in the level of abstraction
between GLOMO and the OMG’s Software Radio Platform
Independent Model [8]. Given the limited page count of
this medium, our comparison will not be an exhaustive one.
The OMG’s view of the software radio is that it is a set of
services upon which applications and management
functions execute. The software radio services themselves
are offered as facilities: Common, Data Link, IO, Physical
and Radio Control. First, we examine the Common Layer
facilities that are available to all data streams to see if it
supports two elements critical to software radios (especially
legacy JTRS applications) - that is flow control and the
ability to pass control data along with the data. Flow
control – supports watermarking, under-run/over-run and
ACK/NAK. (GLOMO API supports only over-run).
Control information is bundled with data in packets called

Protocol Data Units or PDU’s. A PDU is the smallest size
packet that has meaning in any waveform layer. Each
packet contains a ControlHeaderType, a Platform Specific
Model – CORBA IDL is offered for the control header:

CORE API

Packet API Smart
Antenna API

Radio API Link API

Radio
Physical API

implements

struct ControlHeaderType {

AddressType sourceAddress;
AddressType destinationAddress;
long priority;
SduSizeType sduSize;
long sequenceNumber; };

This control header is combined with a data octet sequence
to form a PDU. There is no field (or fields) in the control
header to support the passing of device specific commands.
How does one synchronize the certain commanded events
within a facility to a particular packet of data? Page 255 of
the Software Radio Components PIM/PSM offers the
following statement “Real-time control and signals are
communicated via the packet interface.” Yet such control
and signaling, that is, beyond the ControlHeaderType, is not
defined.
 Finally, we delve down into the modem and RF
facilities to compare with the GLOMO Radio API. The
modem facility includes the necessary functionality to
implement the over-the-air protocol, AM, PSK, QAM,
CPM, etc. Additionally the modem offers interfaces such as
inter-leaver, forward error correction, PN sequence
generation, etc. The interaction between these elemental
blocks is configurable at instantiation.
 A key feature of the GLOMO API is the ability of the
Radio Device to asynchronously signal the controlling
entity that an event has occurred. Of course in the OMG
specification a complete event service is identified [9].
Briefly the event service is used as follows. For simplicity,
two actors are considered, 1) the modem or event supplier
and 2) a man-machine interface - event consumer - to
display the event. The event itself is inconsequential but
say for instance is the detection of a carrier sync pattern by
the modem. Administratively, something (in our example
the modem object itself) creates an event channel. The
modem retrieves a reference to the supplier-side channel
and the consumer-side channel. The modem then obtains a
“push” proxy to the consumer and connects to that proxy.
When the event occurs a simple call to push on the
consumer proxy will send the signal to the MMI.
Incidentally that signal itself can contain a payload of type
“any” which unfortunately has a large overhead associated
with it. So love it – or use something else – the PIM/PSM
does make provision for the modem facility (or any other
facility) to signal asynchronous events.
 The purpose of the RF/IF facility is to adapt the symbol
stream to the transmission channel by adjusting the
frequency response, power, and centre frequency of the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

signal. This has no corollary in GLOMO because the
modem and RF functionality was combined. The RF/IF
facilities offer interfaces for devices such as: amplifier,
switch, frequency converter, hopping frequency converter,
antenna and digital converter. Interestingly enough, each
component in the RF/IF chain has an inherited interface
called Frequency Response. There are two configurable
attributes on Frequency Response and that is the tuned (or
center) frequency and the gain/phase response relative to
center frequency. In the elemental case a single point can
specify a cutoff frequency. For example, a 100 kHz first
order low pass response is configured as tunedFrequency =
0 Hertz, FrequencyResponsePoint[1] = {frequency =
100,000 Hertz, amplitude = -3 dB, and phase = -45
Degrees}. More complicated responses can be constructed
as an array of FrequencyResponsePoints relative to a
tunedFrequency.

5. CLOSER TO THE IMPLEMENTATION

It is clear that the functionality and architecture of the
GLOMO API maps nicely underneath the CORBA-based
Software Radio PSM. The combination of the Modem and
RF/IF facilities offer the ability to extend the configurability
offered by GLOMO. No matter how the modem and RF/IF
functionality is packaged, underneath the covers there is
most likely “C” code running on a DSP coupled with other
functionalities executing in FPGA’s and/or ASIC’s. This,
of course, is modeled as Platform Specific.
 Though we descend into the more concrete aspects of
the radio implementation this is no reason to abandon a
layered design methodology. Immediate benefits exist for
reduced development cost in the form of higher re-use, a
design that’s easier to understand and debug [10]. The ease
of debug comes with the ability to be able to better isolate a
defect to a particular layer whilst the layers above and
below operate correctly. Figure 3 from [11] suggests such a
layered approach to the embedded portion of the software
radio.

Figure 3 Abstraction Layers Underneath a PSM.

Given a selected chip set upon which to fabricate our
software radio, it is better at this point to begin with the
vendor data sheets and design ever-increasing levels of
abstraction leading out to the Software Radio Platform
Specific model.

6. THE DIGITAL TRANSMITTER

A new digital polar design that facilitates SDR transmitters
has been developed by M/A-COM, Tyco Electronics. M/A-
COM’s new transmitter technology features a complete,
digital base-band to RF/PA transmit chain that comprises a
novel Digital Power Amplifier (DPA) and Transmit IC. The
wideband DPA uniquely provides RF power amplification,
phase/amplitude combining and amplitude modulation in a
single device. This device is complemented with a Digital
Modulator to realize a compelling Digital Transmitter
(DTx) architecture. The fully digital nature of the DTx
allows it to efficiently adapt, through programmability, to
various modulation standards, e.g., GSM/EDGE,
cdma2000, over a wide range of frequencies with minimum
complexity. The unprecedented multi-mode/multi-band
nature of the DTx qualifies it as a strong candidate for
future software defined radios, particularly for handsets.

7. DIGITAL TRANSMITTER ARCHITECTURE

Figure 4 depicts a high level abstraction of the Digital
Transmitter architecture, which consists of two modules,
namely, the Digital Modulator (DM) module and the Digital
Power Amplifier (DPA) module.

Digital Modulator

Cartesian
to

Polar
Conversion
Baseband
Processing

I

Q

Digital
PA

Phase
ModulatorPhase

Amplitude

Figure 4: The DTx Digital Polar Modulator Block Diagram

The DM module converts the native digital baseband I/Q
signals from the Cartesian domain to the polar domain. This
digital interface eliminates the need for baseband D/A
converters and reconstruction filters. This block also
performs the signal processing to meet spectral mask
requirements and compensate for AM/AM and AM/PM
distortions. The phase information is passed through a phase
modulator, yielding an on-channel, phase-modulated carrier.
The phase-modulated carrier is fed into the Digital Power
Amplifier (DPA), along with the amplitude modulation
information. The two signals are combined to generate a
fully- modulated carrier, with the required output power

µ Electronic
vendor data
register

 lo - level

Memory - mappe
abstractio

Low Level
Target

High Level
OS

Radi
Servic
Abstractio

Low
App
S

High Level
Language

µ Electronic
vendor data
register

 lo - level

-
abstractio

Low Level
Target

High Level
OS

Radio
Servic
Abstractio

Low
Appl
SW

High Level
Language

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

signal level. The combining of the magnitude and phase
signals takes place at the final output stage of the DPA,
allowing the earlier stages of the DPA to operate in
compression. . This digital transmitter approach can also be
re-configured for multi-band/multi-mode operation: The
DTx is tunable through an off-channel synthesizer to
support different bands. There is no band-specific hardware,
and therefore the DTx can be configured for different
frequency bands and modulation schemes by simply re-
configuring clock frequencies and filtering coefficients to
support the desired standards. Finally, power control; an
important issue in the design of CDMA transmitters, is
accomplished with multiple VGA stages operating in the
transmit chain. Because the DTx is a direct conversion,
polar-based approach, it follows that all the gain control
must take place at RF frequencies.

8. CHARACTERISTICS OF THE DPA

When used in conjunction with the Digital Transmitter, the
Digital Power Amplifier offers several advantages:
• The DPA is capable of wideband amplitude

modulation. Amplitude bandwidths associated with all
the major modulation schemes are readily
accommodated (envelope bandwidths of 10MHz and
beyond).

• Performing amplitude modulation at the last stage of
the DPA gives reduced current drain over the transmit
power control range. The final stage of the DPA is
biased into Class-B or Class-C operation. Additionally,
the driver stages are operated non-linearly for
efficiency, consuming very low quiescent current
(<30mA).

• The DPA facilitates efficient power control at all levels
of RF power. A dynamic range of 55dB is realized
under CDMA modulation. This is possible because the
gain is applied to a constant-envelope waveform that
contains only phase information. The phase is
insensitive to distortion and, consequently, the DPA
stages are biased to operate non-linearly for efficiency
over the power control range. Additional power control
dynamic range can be obtained through the phase path
stages, to satisfy the CDMA requirement of ~ 80dB of
power control dynamic range.

9. DIGITAL BASEBAND-TO-RF INTERFACE
CONSIDERATIONS

I/Q Data Interface Considerations

Since the DTx operates in a fully-digital mode, it is most
efficient when it is supplied with digital I/Q data in addition
to the control signals associated with the operation of the
DTx. Various scenarios could be thought of, for example,
the DTx can be supplied with only the symbol-level I/Q

representation. Then, pulse-shaping can be done within the
DTx, provided that the associated filter coefficients,
sampling rates, … etc. are supplied on the control signals.
The digital interface can be serial or parallel. Providing the
symbol-level I/Q data is probably the most suitable form for
SDR, since symbol-level signals require the lowest possible
sampling-rate. In addition, deciding on parameters such as
the I/Q symbol bit-width becomes performance-
independent, since the symbol-level bit-width is directly and
exactly defined by the modulation scheme rather than by the
implementation quality of the pulse-shaping filters, which
are implementation-dependent.

Control Signals Interface Considerations

The control signal interface would carry information such as
pulse-shaping filter coefficients, clock-rates, sampling rates,
power amplifier AM/AM/PM correction tables, power-
control-related information, … etc. The control signals
interface can be parallel or serial.

Considerations for Multi-Carrier Operation

In order to accommodate multi-carrier operation, one can
think of several architectures that can make use of the DTx
digital nature. The “brute-force” architecture is to build one
digital modulator (DM) module and multiple DPAs for the
multiple carriers that need to be transmitted. The DM
module can then be configured/programmed to support the
multi-carrier operation and will be equipped with multiple
output interfaces to provide the multiple amplitude signals
and their corresponding phase-modulated RF carriers to the
DPAs. Clearly, an RF mechanism is needed in order to
couple/superimpose all the modulated carriers onto one
antenna (or array of antennas).

Finally we offer a somewhat generic interface that has the
feature of allowing a control message to be passed along
with a data packet. The following IDL code fragment offers
such an interface:

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

module MACOM_Physical_DTx {

 struct DTxControlPhys {

 /* Control Structure */
 CF::OctetSequence DTx_control;
 };

 interface TransmitPacketPhys {

 /* This operation is used to push
 Client data to the Server with a
 Control element and a Payload
 element. */

 oneway void pushPacket (
 in DTxControlPhys control,
 in CF::OctetSequence payload
);

 };
};

REFERENCES
[1] NSA Cross Organization CAPI Team, “Security Service API:

Cryptographic API Recommendation” Object Management
Group, 95-06-06, 12 June 1995.

[2] Systems Interface Working Group, “API Position Paper”, ,
SDR Forum SDRF-03-A-0005-V0.00, July 19,2003.

[3] S. A. MacLaird, Col., USAF, “Application Program Interface
(API) Policy”, Department of the Army JTRS Policy 002,
June 24,2003.

[4] B. Fette, “Speakeasy Phase II”, SDR (MMITS) Forum, June
11,12, 1996.

[5] P. Cook, “The MMITS API Definition Process”, SDR
(MMITS) Forum, March 17, 1998.

[6] D. Beyer, et. al, “Radio Device API”, Roof Top
Communications, July 11 1998,
http://www.ir.bbn.com/projects/udaan/udann-index.html

[7] API Supplement, v1.0, Figure 3-2, JTRS Joint Program
Office, November 17, 2001.

[8] M. Bicer, G. Bickle, et al, PIM and PSM for Software Radio
Components – Final Adopted Specification, Object
Management Group, dtc/04-05-04.

[9] Object Management Group, Event Service Specification
version 1.1, formal/2001-03-01.

[10] S. Finseth, “Abstracting Device-Driver Development”,
Embedded Systems Programming, May 2004, pp. 32-36.

[11] J. Bard, “Device-Centric SDR Solutions and the Software
Communications Architecture”, Government Micro-Circuit
Applications and Critical Technology Conference (GOMAC),
Monterey, CA, 15-18 March.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

