

A FEC CODEC-PROCESSOR (ASIP) FOR SOFTWARE DEFINED RADIO
- SoC – HW/SW – Co-design Experience and Analysis -

A. Blaickner (Carinthia Tech Institute-CTI, Villach / Austria, a.blaickner@cti.ac.at)

W. Scherr (Infineon Technologies, Villach / Austria, Wolfgang.Scherr@infineon.com

ABSTRACT

For multiple standard data communication purposes
run-time re-configurability of the used air- and line
interfaces is a preferred feature. Additionally to run-
time re-programmable channel- and baseband-
processing cores, a universal multimode forward error
correction channel codec ASIP (application specific
instruction processor) is a useful IP-core for application
in software radio and storage applications. In this work,
the concept and a prototype of a multimode codec proc-
essor ASIP was designed and verified. The required
degree of flexibility and efficiency is attained by a
pipelined Harvard like multi- processing architecture
approach with dedicated hardware acceleration for the
individual coding- and decoding tasks. The design is
based on MatLab, C++, SystemC and HDL. Results on
the design and the verification are presented.

1. INTRODUCTION

Multi-mode operation with increasing flexibility and
performance figures are required in future digital com-
munication systems and cellular networks. Additional
constraints such as small area and power efficiency
result in multiple tradeoffs for the mapping task of
complex functions to a target software- / hardware-
platform. A sufficient solution are so called ASIPs
(Application Specific Instruction Processors) based on
a pipelined architecture with multiple RAMs / ROMs
and dedicated acceleration hardware which increases
the processing speed of dedicated functional tasks. In
this work the concept for a generic multi-mode forward
error correction channel processor was designed and
verified. The processor is based on multiple Harvard-
architecture like control processor nodes (multi-
processor-architecture) supported by dedicated arithme-
tic co-accelerators (ALUs) as e.g. Galois-field (GF) -
adders and GF- multipliers, metric-computation, add-
compare-select units (ACS) or survivor path selection
(SPS). The individual processor nodes are pipelined or
cross-connected over data path and control channels, so
that a wide setup of run-time re-programmable Reed-
Solomon and convolutional codec operations are avail-
able. Figure 1.1 shows the individual processing nodes
with the attached dedicated hardware accelerators
(ALUs). For example, the implementation of the Berle-
kamp- Massey – Algorithm (BMA) requires one proc-
essing node (PNs). The proposed solution provides
sufficient flexibility for various codec operation setups,
including code rates r or GF(xn)-operations. For an

example, see the Galois-Field processor architecture in
detail in Figure 3.2.

ASIP
PROCESSING
ELEMENT(PE)

ASIP
PROCESSING
ELEMENT(PE)

HOST - CPU
DSP / uC / RAM

DMA / IO

Data - Link - Interface / Dual - Port - RAM

ASIP
PROCESSING
ELEMENT(PE)

IP
FSE
SEQ

ALUs
MACs

CH
A

N
NE

L
C

HA
N

N
EL

System Control Bus System Control Bus

C
TL

Sy
st

em
 C

on
tr

ol

uC

RAM

DMA

DSP

I/O

IP
FSE
SEQ

ALUs
MACs

CH
A

N
NE

L
C

HA
N

N
EL

C
TL

IP
FSE
SEQ

ALUs
MACs

CH
A

N
NE

L
C

HA
N

N
EL

C
TL

Multiprocessing SoC - Architecture with ASIP accelerators
Figure 1.1: System acceleration by ASIPs

An overview of the design methods used is given in
Figure 1.2.

Algorithmic Level

Comm. Processes (+ Transport Delays)

Programmers
View

Programmers
View + Timing

Cycle Accurate
(and bit true)

Register Transfer Level

Gate Level (Verilog, VHDL)

SystemC
MatLab

Algorithmic Level

Comm. Processes (+ Transport Delays)

Programmers
View

Programmers
View + Timing

Cycle Accurate
(and bit true)

Register Transfer Level

Gate Level (Verilog, VHDL)

SystemC
MatLab

Figure 1.2: Design: MatLab – SystemC – HDL

The algorithmic, bit-true and cycle-true analysis are
partially done either in MatLab or C++/ SystemC, the
mapping to the implementation RTL- level either by a
compiler / synthesizer or by VHDL-RTL-coding.

The design tool chain used for modeling simulation,
synthesis and verification is based upon MatLab, Simu-
link, C++/SystemC (high level bit-true / cycle-true de-
scription), simulation of the DUT (behavioral / RTL),
see Figure 1.3 is carried out with MatLab, ModelSim
and GTKwave.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

DUT - RTL
HDL/SystemC

MATLAB / Simulink / C++ / SystemC

HDL/SystemC - Testbench

A
pp

lic
at

io
n

In
te

rf
ac

e
- A

PI

System Model - Overview

A
pp

lic
at

io
n

In
te

rf
ac

e
- A

PI

Figure 1.3: System Design Model

The analysis results and logic resources excluding the
RAM space counted in gate equivalents (GE), which
are required for the individual sections of the processor
are depicted in Figure 3.5 and Figure 3.6.

2. THEORETICAL FRAMEWORK

The proposed error correction ASIPs cover the area of
block-coding (Reed Solomon) and convolutional ML-
decoding (Viterbi) and are foreseen in run-time recon-
figurable SoC-, software radio or any data transmis-
sion/storage- application.

Reed Solomon Decoder Algorithm

Calculate Syndrom of r(x) --> R(x)
.1 0 ... 1

0 ... 2 1
() (),i j

j
i n
j t

S x R n r α−− = −
 = −

= =

Calculate Error Locator Polynomial by
Berlekamp-Massey-Algorithm - BMA

Calculate Roots of C(x) and Error
Locations L(x) by Chien Search

: (). () ().(-1)nKey Eq C x F x T x x− =

Calculate Error Value Polynom.-Forney

, () 0, 0 1, 2 1n i i m
jL if C i n nα α−= = ≤ ≤ − = −

1

(). , , () .
. '() i

e j

j n i i j
i x

T xT S C j e f x n
x C x α

−

− +
= =

= < =∑

Correct Received Vector r(x) at the
Locations L(x) using f(x)

() () ()a x r x f x= −

A. Blaickner

Figure 2.1: RS-Decoder – Algorithm

The algebraic decoding of Reed- Solomon codes can be
hardware efficiently performed in five algorithmic steps
as shown in Figure 2.1.

First of all, the so called Syndrome S(x) is calcu-
lated out of the received data vector r(x) by the DFT,
which transforms r(x) into R(x). The Syndrome values
S(x) can now be directly derived from the remaining
2E=n-k polynomial coefficients. In the next step one of
the efficient algorithms – the Berlekamp-Massey-
Algorithm (BMA) - is used for solving the so called
Key- Equation which returns the error locator polyno-
mial C(x). The BMA is an iterative method, with the
principle shown in Figure 2.4. It searches for the short-
est polynomial with coefficients Ci or otherwise the
shortest feedback shift-register constellation using Ci,
that is able to produce all frequency domain error vector
components F0,F1,…,F2E-1 out of S0,S1,…,Se-1, with
E (maximum correctable errors) and e (received errors).
Next from C(x) the error location is derived by a brute
force algorithm called Chien- Search, that inserts all
possible values of xi into the polynomial, computing the
polynomial roots and their inverse values. Finally the
error values fj are calculated either by a recursive ap-
proach or by using the Forney Algorithm at the already
derived error locations. In the last step the received data
vector r(x) is corrected by adding fj at the locations Lj.
The derived solution for the computational most inten-
sive part, the BMA-algorithm is discussed further in
detail in chapter 3.

The performance of forward error correction sys-
tems can be remarkably enhanced using concatenated
coding techniques, with block/cyclic- and convolutional
codes combined. The concept of a convolutional de-
coder based on the Viterbi- algorithm was designed for
ASIP implementation providing run-time re-
configurability options. An overview of the principles
and basic operations required for convolutional decod-
ing are shown in Figure 2.2 and Figure 2.3.

The convolutional encoding is based on generator
polynomial operations represented by simple XOR and
SHIFT register operations. The encoder calculates per
k input bits n output bits at a code rate r=k/n using
K bits (constraint length) from the shift register. The
state transitions of the encoder are deterministic and
show the behavior of a finite state engine, which is
dependent on the current state and the new data inputs.

Convolutional Encoder with Trellis Diagram A. Blaickner

z-1

z-1

+ +

b0b1

Input Data

Encoded
Data

State

00

01

10

11 0

0

0

0

m0 1 2 3 4

1

0

1

1

1

2

0

2

2

1

3

0

Survivor Path

Figure 2.2: Example Encoder with the corre-

sponding Trellis Diagram

After transmission and demodulation the decoder re-
ceives the encoded symbols including bit-errors. The
Viterbi-decoder traces all possible paths through the
state-sequence (trellis) and performs a maximum-
likelihood search and decisions. The main computa-

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

tional units at the decoder are the Branch Metric Calcu-
lation Unit (BMU), the Add Compare Select Unit
(ACS) and the Survivor Path Selection Unit (SPS),
which can be seen in Figure 2.3. The BMU calculates a
code distance metric λm between the received symbol
and all reference symbols expected. This is done for all
state transitions in parallel and provided as inputs to the
ACS unit. The ACS unit accumulates the branch met-
rics λm and stores the resulting path metric γm, which is
the actual sum of all branch metrics λm traced along the
individual paths, see Figure 2.2. In radix–2 decoders the
ACS is feed by two branch-metrics (r=1/n, with k=0)
and the ACS does a decision for the most likely path,
which is the minimum path metric γm+1 = min (γm + λm)
received and called best state decoding. Since the mag-
nitudes for the path metrics are unbounded,

Viterbi Decoder Algorithm

Branch Metric Compuation
1

max, , 2
, 1

0

0,1,..., ;
() ,

, 0,..., 2 1;

sdB
indexi j i j

m m k k K
k

m m
r s

i j
λ

−

−
=

=
= −  = −
∑

Add - Compare - Select

Survivor Path Selection
Trace-Back / Register -Exchange

1, , 0 1 2 1
1 min() , [, , ... ,]

Kj i j i j T
m m m m m m md d d dγ γ λ

− −
+ = + =

A. Blaickner

Figure 2.3: Viterbi decoder – Branch Metric Unit
(BMU), Add-Compare-Select Unit (ACS), Survi-

vor Path Selection (SPS)

one of the following normalization schemes need to be
applied [9]:

• Periodic reset of the system to a ground state
• Use a redefined difference metrics ACS – algorithm
• Subtract the minimum metric from the survivors
• Saturation computation and block shift
• Modulo arithmetic scheme

The selected modulo arithmetic scheme avoids any kind
of re-scaling, any data exchange between multiple
ACS- units and shows advantages concerning hardware
savings and speed-up of the inside metric update loop.
As the path selection depends only on metric differ-
ences, it can be shown, that metric differences are boun-
ded

0 1 1
max max . (2)K

m m ldγ γ λ −− ≤ ∆ ≤ Eq (1)

with ∆max is the maximum dynamic range of the path
metrics required, 2(K-1) is the number of states and λmax

is the maximum branch metric [10]. The required path
metric precision is given then by

()max max1widthB ld λ= + ∆ +   Eq (2)

due to the branch metric addition at the radix-2 ACS
input, the term λmax accounts for the potential dynamic
range increase for the compare stage. Modifying the
algorithm for positive metrics only, the precision re-
quired is Bwidth ,

()max maxwidthB ld λ= ∆ +   Eq (3)

with the decisions calculation as follows.

() ()0 1 0 1

1/0
0m m m m mmsb msb

d γ γ γ γ = − ≥ ⊕ ⊕ 
 Eq (4)

For e.g. unsigned arithmetic, Bsd=3 bit soft decisions,
λmax=2*7, K=7 and ∆max = 84, which results in a nu-
merical bus width of Bwidth = log2(98) or of Bwidth = 7 bit
required at minimum.

After the decision bits have been computed in each
ACS cycle, the decisions are stored into the decision
RAM also called the Survivor Memory. Additionally
the new calculated and selected path metric γm+1 needs
to be stored and is provided for the next ACS recursion
(m+1).

BMA - Algorithm

Input S(x)=S0+S1x+S2x
2+...

Error locator polynomial C(0)(x)=1
Auxiliary polynomial B(0)(x)=0
Shift register length l= 0
Loop counter j= 0
Auxiliary counter k= 0

A. Blaickner

2l > j

(j+1) (j) k (j)
jC (x)=C (x)-∆ x B (x)

l ?

j i j-i
i=1

j + C . 0∆ =S S =∑

Yes

No

Yes

No

(j+1) (j)C (x)=C (x)

(j+1) (j)B (x)=B (x)

YesNo

l = j + 1 - l , k = 0

(j+1) -1 (j)
jB (x)=∆ C (x)

j = j + 1 , k = k + 1 , (j ?= 2E) Result: C(x),E

Figure 2.4: BMA-Algorithm

In order to recover the corrected data sequence two
main methods, e.g. survivor path storage with trace-
back or register exchange are available. Due to their
hardware simplicity the first one was selected. After
several traces (m = 10…mmax), the minimum path met-
ric is identified and the trace back process is started.
The trace-back unit makes use of the stored ACS-
decisions (decision-RAM), a look-up table, which con-
tains a corresponding state transition table (m m-1)
with the expected output data values. The previous state
m with all actual decision dm are held in two registers,
which are utilized as address pointers either to select the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

appropriate decision bit and to the state transition table.
The final data value is directly output from the table
look-up and stored into a data RAM.

3. FORWARD ERROR CORRECTION – ASIP

This section presents a more detailed excerpt of the
implemented ASIP and PEs.

The basic algorithmic steps required for convo-
lutional decoding based on the Viterbi- Algorithm have
been already discussed in chapter 2. The concept and
the model of the designed re-programmable multimode
Viterbi decoder is depicted in Figure 3.1. The channel
symbols are accessed from the input data storage and
feed the Branch Metric Unit (BMU). Within the BMU,
the required branch metrics (2n, n-encoder output bits)
are calculated out of the received channel symbol and
the pre-stored references. To make use of more than
one parallel processing ACS-units, the BMU also in-
cludes a switch matrix concept controlled over a lookup
table, which allows the flexible distribution of all the
branch metrics to each of the ACS- units. A similar
approach is used for the ACS- processing and the data
addressing required. The selectable degree of parallel-
ism circumvents the ACS – bottleneck (required ACS-
recursions for one trellis step m m+1) and increases
the overall decoding speed.

The operations in the ACS are described in chap-
ter 2. To ensure that the next ACS recursion is provided
with the appropriate branch metrics, the ACS outputs
are stored over an exchange network in the expected
order. As described for decoding the final data sequence
the Survivor Path Selection unit (SPS) makes use of the
trace-back method with a selectable trace-back depth.
The following model and run-time parameters can be
selected:

• Maximum encoded output bits n
• Maximum constraint length Kmax
• Bus-widths of soft-decisions
• Bus-width of system data paths
• Number of parallel ACS units
• Trace-back depth

The overall system is controllable by the usage of finite
state engines and a host-interface / controller to setup
the appropriate table contents and system modes.

Viterbi Decoder ASIP
PROCESSING ELEMENT(PE)

Viterbi Decoder Architecture - ASIP A. Blaickner

I/O
BUF
1...n

ACS
Units
1...n

BMU
Unit
Mux

&
LUT

Host - Interface
Instruction - Sequencer

FSM & LUT

Switch
Matrix

and
Data

Register
File

C
TL

C
TL

CTL

SYM

DATA

DA

DATAMETRICS

DATA

DATA

DECB DECB

SPS
Unit

BITS

C
TL

I/F

Figure 3.1: Viterbi Decoder architecture

da
t

in

RAMPTR1a

IDX

d
o
u
t

rmode1
clk

GFPROC

AdrA

RdA

DatA

GFRAM1 DatB

WrB

AdrB

clk
rd1

RAMPTR1b
clk

ad
r

in
wr
in

RAMPTR2a
mode2a

clk

AdrA

RdA

DatA

GFRAM2 DatB

WrB

AdrB

clk

rd2

RAMPTR2b
clk

mode2b

RAMPTR3a
mode3

clk

AdrA

RdA

DatA

GFRAM3 DatB

WrB

AdrB

clk

RAMPTR3b
clk

m
o

de
in

GFMAC

wr3

wr2

0 1

MUX1

v rd3

rd
o
u
t

m
o
de
o

os
e
l

ad
r
o

ixxx

mxxx

flags

flags

a
b

c
dat

load

x

dat

Figure 3.2: Galois field processing architecture

Next for the RS-decoder all the required Galois-Field-
processing for e.g. the Berlekamp – Massey – Algo-
rithm (BMA), the key – algorithm, is processed on one
of the proposed processor unit as shown in Figure 2.4.
The proposed solution provides sufficient flexibility for
various kinds of codec operations and code rate setups.
An example overview of the Galois-field processing
element and its architecture is shown in detail in Figure
3.2 and Figure 3.3.

a b c

0 1 2 3

MUX2
0 1 2 3

MUX3

cn
s
t

sel2 sel3

0 1 2 3

MUXOP1

+

X

0 1

0 1 2 3

MUX4

0 1 2 3

MUXOP2

+ +

-̂1

REG2

REG1

x

0 1

MUX1

clr2

en2

clr2

en2

clk

clk

(-)

acc1

acc2

op1

sel4

op2

sel1

=0
null

GFMAC

Figure 3.3: System acceleration with GF-MAC

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

The key features of the proposed GF processing unit are
listed below:

• Optimized for fast data throughput
• Flexible by small programming ROMs
• Enables GF(n) and GF(2n) operations with fields in

the range GF(23) up to GF(28) by usage of flexible
arithmetical functional units (AFUs)

• Supports GF - polynomials up to x255
• Support of cascading and pipelined processing

from an input channel (RAM) to an output channel
• Additional storage for intermediate data
• Provides conditional branches and polynomial in-

dex handling

The major blocks of the processing architecture are the
processing-, the control- and the storage unit. The core
processing unit and storage unit will be described in
more detail. Firstly, we need to take a look at the field
of operation for this unit. This is in this case handling
Galois polynomials, which have the following form:

...3
4

2
3

1
2

0
1 +⋅+⋅+⋅+⋅ xxxx αααα Eq (5)

For processing, especially the coefficients a1,a2,a3, are of
importance. So some memory to store these values in a
useful way is required, including the positional index
information. Furthermore these values are out of Ga-
lois- fields GF(n) or GF(2n), where different arithmeti-
cal rules apply for calculations. When looking at typical
polynomial calculations, some major operations can be
identified:
• Sum of coefficients of one polynomial ∑ nα

• Add/Multiply coefficients 3 +⋅⋅+ xnn βα

• Add/Multiply constants 3 +⋅⋅Κ+ xnα
These operations are required for a specific range or
with different indices that may be also shifted from one
to the other polynomial. Last but not least, those poly-
nomials may be multiplied with any other polynomial
and summed up again. Several combinations are possi-
ble and flexible data handling is needed. For these rea-
sons, an index- calculation unit (IDX) was introduced.
This unit can be used to increment or decrement indi-
ces, use them as loop counter, do some checking for
greater or smaller value compared to each other and of
course add or subtract different indices for shift opera-
tions within two polynomials.

A separate Galois-field calculation unit is provided,
that accumulates, sums or subtracts input values. As
two polynomial values may be summed up, a MAC unit
is mandatory. To have the possibility to store an inter-
mediate value, a second accumulator is added in the
design. This allows also multiplying a constant and
adding another constant to a coefficient in one single
processing step. A detailed schematic of the MAC unit
is depicted in Figure 3.3: , see also Ref. [5].

An example excerpt of the long instruction word as-
sembly code for processing the Berlekamp-Massey-
Algorithm within the RS- decoder (BMA) is shown in
Figure 3.4:

+ r r
+ r m m r
+ i i mmm m m mm o o m
+ i i s s iiiim m mmccs s s so d d o
+ao o e e llllo o eelle e e ed e e d wwrrr
+lp p l l ddddp p nnrrl l l le 2 2 e rrddd
+t2 1 2 1 43212 1 21214 3 2 13 b a 1 32321
:000 000: nop (not really needed, just to test state)
:00010000001110000001100000001111111100000 001: k=l=j=0 acc1=acc2=0 ramptr1/2a/2b/3=0
:00000000000000010000011000000000000001000 002: ram2(0)=0
:00000000000000011000011000000000000010000 003: ram3(0)=1
:00011001000000000000000000000000001100000 004: ramptr1=m % calc discrepancy first
:00011000110000000000000000000000000000000 005: n=l % n is just loop counter
:00010000000000000000000000001100000000000 006: ramptr3=0
:00000000000000000110000000010000000000001 007: acc1=acc2=ram1(ramptr1) ramptr3++
:10011001100000001000000000000110000000000 008: JMP(n==0) 0x0c % finished with summing up
:00001111110000000000000000000100001000000 009: n=n-1 ramptr1-- ramptr3++

Figure 3.4: BMA-decoder assembly code

Finally operational results of the implemented pro-
cessing elements are depicted in Figure 3.5: .

Figure 3.5: ASIP - Implementation results

Figure 3.6: Logic resources required calculated in
gate equivalents (GE)

4. DESIGN / IMPLEMENTATION PLATFORM

The design tool chain used for modeling simulation,
synthesis and verification is based upon MatLab, Simu-
link, C++ / SystemC (high level bit-true / cycle-true
description), see Figure 4.1 and the verification is car-
ried out with MatLab, ModelSim and GTKwave.

The final synthesis step to the depicted DSP/FPGA
platforms- as e.g. shown in Figure 4.2 is performed
with Leonardo / FPGA-compiler / Quartus and ISE. The
FPGA-prototyping platform PASS utilized a PC to DSP
(Sharc 211xx) and DSP to FPGA – gateway approach
which allows the real-time verification within the over-
all design-tool chain.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

MatLab - API
Behavioral- / RTL- SystemC

VHDL - Cores

Compile_systemc

Create_clock

BC_time_design

Schedule

SystemC
Compiler

Target
Library

Synthetic
Library

Timing
Area

Constraints

Pipelining
Latency

Constraints
cycle - accurate
HDL - simulation

File (*.VHD)

Synthesize - Compile
FC2, Leonardo,

Quartus, ISE

Route & Place
Quartus / ISE

Device Files
(*.SOF)
(*.POF)

technology specific
HDL simulation

File (*.VHO)

ALTERA
post routing
simulation

library

technology specific
timing information

File (*.SDO)

pre -
synthesis
simulation

post -
synthesis
simulation

Synopsys CoSim

Refinement

ModelSim

Figure 4.1: Design Flow - Tool Chain

Figure 4.2: Prototyping Platform – PASS

5. CONCLUSION

This paper presents the concept and prototyping of run-
time re-configurable error correction coding ASIPs for
typical application in wireless, software defined radios
and data transmission / storage systems in general. The
proposed and selected principles including the design
methods with synthesis results were presented. Future
work will focus on system enhancements and experi-
mental setups with recent available high-level-system
and behavioral architectural description-languages,
providing guided and semi-automated system to archi-
tectural mapping and synthesis.

6. REFERENCES

[1] Peter Sweeney, “Errors Control Coding – An Introduc-
tion”, 1991.

[2] A. Blaickner, H. Sterner, M. Bacher, Liu Shih-Fu, “A

Software Defined Radio Channel-Processor for 3G-
Systems - SoC – Design Experience with SystemC,
MatLab and VHDL”, in Proc. of Software Defined Radio
Technical Conference – SDR ’03, Nov. 2003, Orlando,
USA.

[3] R. Blahut, „Information Theory“, Addison Wesley, 1988.

[4] A. Blaickner, J. Madsen, H. Holten-Lund, M. Bacher "

Design of a Multi-Mode -Channel- Select and Re-
sampling-Processor (ASIP)", in Proc. GSPx 2004, Sept.
2004, Santa Clara, USA.

[5] Thomas Richter, Gerhard P. Fettweis, “Parallel interleav-

ing on parallel DSP architectures”, 2002.

[6] W. Kester, “Mixed-Signal and DSP Design Techniques”,

2003.

[7] S. Lin and D. J. Costello, “Error Control Coding: Funda-

mentals and Applications”, Englewood Cliffs, NJ: Pren-
tice-Hall, 1983.

[8] Ungerboeck and H. K. Thapar, ”VLSI Architectures for

Metric Normalization in the Viterbi Algorithm,” Proc.
ICC 90, Vol. 4, Apr '90.

[9] A.P. Hekstra, ”An Alternative to Metric Rescaling in

Viterbi Decoders”, IEEE Trans. Com., Vol 37, No. 11,
pp. 1220-1222, Nov 1989.

[10] P. H. Siegel, C. B. Shung, T. D. Howell and H. K. Tha-

par, ”Exact Bounds for Viterbi Detector Path Metric Dif-
ferences”, Proc. ICASSP 91, May 1991.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

