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ABSTRACT 
 
Recently, several simulation tool manufacturers have 
introduced a number of personal productivity tools 
that allow direct interaction between the simulation 
environment and the Texas Instruments family of 
Digital Signal Processors.   Based on direct interaction 
with Code Composer Studio as well as the JTAG-
based RTDX interface developed by Texas 
Instruments, these tools significantly enhance signal 
processing algorithm development by submitting DSP-
resident software to realistic simulations of actual 
signal conditions. Since RTDX is common to the TI 
C5000, C6000 and OMAP DSP families, a single tool 
can be used to develop software on all of these popular 
TI devices. 
 

1. INTRODUCTION 
 
 Recognized PC simulation software manufacturers, 
including Mathworks, National Instruments and Elanix 
Inc. have developed an interface between their tools and 
Texas Instruments Digital Signal Processors using TI’s 
JTAG-based RTDX interface.  Since RTDX is common 
to the TI C5000, C6000 and OMAP DSP families, a 
single tool can be used to develop software on all of these 
popular TI devices.  This paper presents an example of the 
use of these tools in the development and verification of 
DSP algorithms for a Software Defined Radio. 
 The SDR discussed in this paper is part of an existing 
SDR communications radio capable of AM and FM voice 
and data communication.  The algorithms execute on a 
Texas Instruments TMS320C5510 DSP.  An RTDX 
interface between Elanix System View and the target DSP 
was used to both validate and improve the performance of 
the existing algorithms.  The examples illustrated in this 

presentation are an FM voice receiver and its’ IF AGC 
algorithm. 
 

2. AN FM SOFTWARE DEFINED RECEIVER 
 The FM voice receiver diagram is shown below. 

 

Figure 1- FM Receiver Block Diagram 
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 The receiver IF input is a 30 KHz IF signal digitized 
at 120 Ksps.  The digitized signal first passes through a 
software AGC algorithm that computes the received 
signal strength and generates a gain correction word.  The 
correction word derives an analog voltage that is applied 
to a variable gain IF amplifier (not shown).  
 Sampling the 30 KHz input signal at 120 Ksps results 
in four samples per cycle of the input waveform.  This 
allows the signal to be separated into In-phase and 
Quadrature (I & Q) components by treating the even 
number samples as real (I) and the odd numbered samples 
(with appropriate sign change) as imaginary (Q).  Because 
the samples are separated in this way, the IQ conversion 
block yields two data streams each sampled at 60 Ksps.  
This effectively decimates the sample rate by two. 
 The complex data streams are then filtered by a Half-
band decimation filter that further reduces the output 
sample rate to 30 Ksps.  The 30 Ksps streams then pass 
through an IF FIR filter that establishes the IF bandwidth 
at 14 KHz.  
 Next the data streams are passed through an FIR 
4/5ths rate matching filter that reduces the sample rate 
from 30 Ksps to 24 Ksps.  The 24 Ksps IQ streams are 
applied to a quadrature FM discriminator, producing a 
single data stream consisting of the demodulated voice 
sampled at 24 Ksps.  The demodulated FM output is 
further filtered by a 3 KHz FIR decimating baseband filter 
that decimates the 24 Ksps sampled audio to the final 8 
Ksps sample rate.  The 8 Ksps sampled audio is passed 
through a final host-adjustable gain stage before being 
passed to a host processor for additional audio processing. 
 The bandwidths of both the IF filter and baseband 
filter are reprogrammable for other waveforms. 
 

3. SYSTEM VIEW SIMULATION 
 
The System View simulation of the FM receiver is shown 
in Figure 3.  System View provides a rich library of user 
configurable source, sink and functional blocks.   The 
blocks can be easily interconnected into the desired block 
diagram by dropping the desired block on the GUI 
development screen and wiring them together.  Double-
clicking the block opens up a user screen that allows the 
user to configure the block as required.  Sample rates, 
block sizes and iteration controls are accessed via GUI 
pop-up menus on the System View tool-bar.  The input 
and output results can be displayed in real-time on the 
GUI as shown in Figure 3, or each result can be 
graphically analyzed in detail as shown in Figure 4. 
 Referring to Figure 3, the simulation begins by 
generating a 1 KHz sine wave input signal using a 

Sinusoid Source block.  The output of the sine wave 
source is connected to a graphical display sink that 
displays the output on the GUI in real-time.  The sine 
wave also drives an FM Modulator block that is 
configured for a center frequency of 30 KHz and a peak 
frequency deviation of 4 KHz.   The system sample clock 
is set to 
120 KHz, 
so that the 
FM output 
signal 
consists of 
the four 
samples per 
cycle 
required to 
perform IQ 
conversion 
in the DSP. 
 The 
output of 
the FM 
modulator 
block is 
summed 
with a Gaussian Noise source block that is used to 
simulate the receiving system noise figure.  Note that at 
the blocks described thus far execute in double-precision 
floating point, allowing a high degree of accuracy for 
analog simulation.  (The System View Communication 
Library provides several additional channel model blocks 
that can be used to simulate a variety of RF environmental 
conditions). 
 The FM signal with additive noise is converted to a 
16 bit binary word by the DSP Converter block, 
simulating the digitization of the received signal.  In this 
simulation, the outputs of the FM modulator and the noise 
token are set to equal the desired magnitude of the binary 
input word. 
 The digital signal is then input to a token that 
provides an RTDX interface between System View and 
the TMS320C5510 processor.  The interface requires the  

Figure 2 – RTDA Token Pop-up Window 

development of a C wrapper interface, examples of which 
are provided with System View.  Once the wrapper is 
developed, it is connected to the System View simulation 
by double clicking on the RTDA (Real-Time Data 
Architect) token.  This brings up the pop-up window 
shown in Figure 2 above.  The pop-up window is used to 
identify the path to the TMS320C5510 executable output  
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Figure 3 – System View FM Radio Block Diagram 
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file to be accessed by System View.  The pop-up is also 
used to set the number of input and output channels as  
well as the buffer sizes and data precision.  In this 
particular simulation, there is one RTDX input channel 
and two RTDX output channels.  The input channel is set 
to transfer a block size of 120 samples, corresponding to 
one millisecond of input data.  The output channels 
selected for display are the output of the FM demodulator 
and the audio output received after the final stage of 
filtering and decimation.  Referring again to the receiver 
block diagram in Figure 1, the output of the demodulator 
is sampled at a 24 Ksps rate, while the output of the 
decimating audio filter is 8 Ksps.  Therefore the two 
RTDX output channel buffers are set to 24 and 8 words 
respectively, since those are the number of output samples 
that will be produced when 120 input samples are 
processed by the receiver algorithm.  The total number of 
samples to be processed during a run of the simulation is 
set by the System View clock control.  The simulation can 
be set to run for a specific number of samples, or a single 
block of samples can be run in successive loops.  In this 
particular system, the sample size was set to 120 samples, 
and the program allowed to run for sixteen successive 
loops.  (This is a particularly useful technique, because 
System View allows various token parameters to be 
varied during each successive loop.  For example, it may 
be of interest to increment the deviation of the Gaussian 
noise token for each iteration of the simulation). 
 Once the RTDA token has been properly configured, 
the simulation can be run.  When System View starts, the 
TI development environment, Code Composer Studio, is 
started and the executable program loaded.  The 
simulation then executes on the DSP until the total 
number of samples have been processed.  During this 
time, the input and output values are displayed on the GUI 
as shown in Figure 3.  Note the burst of noise on the FM 
Demod Output shown in Figure 3.  When the existing 
program was initially simulated, this was found to be the 
result of un-initialized memory.  The error was corrected 
but reproduced for this article in order to demonstrate the 
program debugging capability of graphically representing 
the results of the algorithm.  In order to debug a problem 
such as this, it is only necessary to preload the DSP 
project and output file in Code Composer Studio before 
running the simulation.  It is then possible to set break-
points in the program source code and interactively debug 
the program (step through, display breakpoints and 
memory, etc.) while running the simulation.  Note also 
that the beginnings of the output waveforms are delayed 
relative to the input signal.  This is because the first 120 
samples must be loaded into the algorithm and processed 
before valid output results are available. 

 When the simulation is complete, it is also possible to 
graphically analyze the output results in greater detail 
using the graphical analysis tools available with System 
View.  For example, the 1 KHz demodulated output has 
been expanded in Figure 4 below, and the sample points   
 

Figure 4 – Expanded display of 8 Ksps Decimated 
Audio 

 
high-lighted with circles to indicate the existence of 
exactly eight samples per cycle of the 1 KHz demodulated 
output sine wave. 
 

4. IF AGC ALGORITHM 
 

 The second algorithm described in this article is a 
simulation of the IF AGC algorithm that is used with the 
FM Receiver.  The System View block diagram of the 
AGC is shown in Figure 5.   
 This particular AGC algorithm is used to control the 
gain of an external analog IF amplifier, which requires a 
logarithmic RSSI (Received Signal Strength Indication) 
voltage as an input.  Therefore, the algorithm computes 
the average power of the received signal in dB and 
provides the output result as a control word that can be 
converted to a logarithmic voltage by a digital to analog 
converter. 
 This is simulated in System View by passing an input 
signal (in this case a 30 KHz sine wave sampled at 120 
Ksps) through a System View multiplier block (Analog 
Gain Element) multiplies the input by the AGC control 
voltage in order to compensate for increases in gain.  The 
gain compensated input signal is in double-precision 
floating point, so it is converted to a 16 bit integer format 
before being transferred to the DSP algorithm via the 
RTDX channel.  Unlike the FM receiver algorithm, which 
processed 120 samples in each input data block, the AGC 
algorithm updates at a much 
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Figure 5 – IF AGC Simulation Block Diagram 
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 faster rate of eight samples per iteration.  Therefore the 
RTDA token’s input block size is set to eight, while the 
output block size is set to one, since only one RSSI output 
value is obtained for each block of eight input samples. 
 The logarithmic output value is represented as a 
fixed-point 16 bit word which is converted back to a 
double precision floating point word the by the int16 to 
float conversion block shown in the block diagram.  In 
order to simulate the action of the analog variable gain 
amplifier, the converted logarithmic output value is scaled 
by an amplifier token (block 14 in Figure 5), offset by a 
DC gain target (block 42) and inverted by a unity gain 
inverting buffer amplifier (block 38).  The anti-log of the 
scaled inverted signal is computed by raising 10 the input 
exponent x, by means of block 39 in Figure 5.  The 
converted voltage produced by block 39 is applied to the 
input of the Analog Gain Element multiplier block, thus 
closing the AGC feedback loop. 
 The intent of this particular simulation however, was 
to measure and “tweak” the attack and decay times of the 
AGC.  In order to accomplish this, the 30 KHz sine wave 
was input at a relative high level and “keyed’ on for 10 
msec once during the simulation in order to observe the 
attack and decay times.  The keying is accomplished by 
setting a pulse generator block (block 49) to a pulse width 
of 10 msec, with a repetition interval greater than or equal 
to the period of the simulation.  The output of block 49 
multiplies the output of the sine wave generator block 
which keys the signal during the 10 msec pulse width 
since the output voltage of the pulse is set to one volt 
when high and 0 volts when low. 
 The effects of the algorithm’s attack and decay time 
settings are clearly seen in the AGC Control output 
voltage as well as the AGC Out signal display, which 
plots the input to the AGC Algorithm following the gain 
element block. 
  

5. CONCLUSION 
 
We have presented a method for both developing and 
validating Software Defined Radio algorithms that are 
implemented on the Texas Instruments family of Digital 
Signal Processors.  This has been a relatively simple 
example to illustrate the technique.  Ultimately, both the 
SDR transmitter and receiver algorithms can be simulated 
this way.  Both algorithms are connected together with 
channel models blocks that allow simulation of the RF 
environment. This permits analysis of the system 
performance, especially the effect of error correction 
algorithms, such as convolutional and Reed Solomon 
encoding. 
 Since TI’s Code Composer Studio supplies the 
interface between the simulator environment and the DSP, 
it is possible to use the debugging capability of Code 

Composer to develop and evaluate the SDR algorithm.  
With the advent of Code Composer Studio release 2.0, it 
is also possible to simulate the algorithm on a variety of 
DSP simulators that are provided with Code Composer as 
well as the actual target DSP.  Finally, the RTDX channel 
transfers data to and from the JTAG emulator interface 
during the idle time of the DSP CPU.  Therefore, it is also 
possible to accurately measure the execution time of the 
algorithm, since the transfer of data via the RTDX 
channel does not add significant overhead to the DSP 
algorithm being considered. 
 The advantage of a drag and drop block diagram 
approach offered by System View or (more recently) 
Matlab’s Simulink, provides the ability to quickly vary 
inputs to the algorithm as well as model external 
components of the SDR system such as RF and analog 
components as well as the RF environment of the channel 
itself. 
 Finally, both System View and Matlab offer the 
capability of developing bit-true DSP algorithms from the 
block diagrams developed in their respective simulation 
environments.  Once completed, these algorithms can be 
converted to optimized C code that can be compiled and 
executed on Texas Instruments DSPs.  Thus it is possible 
to significantly reduce the SDR algorithm development 
time while automatically providing a benchmark 
simulation by which the performance of the DSP 
algorithm can be compared. 
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