

USING RTDX - BASED SIMULATION TOOLS FOR DESIGN AND CO-

VERIFICATION OF SOFTWARE DEFINED RADIO SIGNAL PROCESSING
AND CONTROL ALGORITHMS

Robert G. Davenport
Director of Advanced Technology

MC2 Technology Group, LLC
5329 Curtis Rd.
Hemlock, NY
585 367-9124

bob_mc2@att.net

ABSTRACT

Recently, several simulation tool manufacturers have
introduced a number of personal productivity tools
that allow direct interaction between the simulation
environment and the Texas Instruments family of
Digital Signal Processors. Based on direct interaction
with Code Composer Studio as well as the JTAG-
based RTDX interface developed by Texas
Instruments, these tools significantly enhance signal
processing algorithm development by submitting DSP-
resident software to realistic simulations of actual
signal conditions. Since RTDX is common to the TI
C5000, C6000 and OMAP DSP families, a single tool
can be used to develop software on all of these popular
TI devices.

1. INTRODUCTION

 Recognized PC simulation software manufacturers,
including Mathworks, National Instruments and Elanix
Inc. have developed an interface between their tools and
Texas Instruments Digital Signal Processors using TI’s
JTAG-based RTDX interface. Since RTDX is common
to the TI C5000, C6000 and OMAP DSP families, a
single tool can be used to develop software on all of these
popular TI devices. This paper presents an example of the
use of these tools in the development and verification of
DSP algorithms for a Software Defined Radio.
 The SDR discussed in this paper is part of an existing
SDR communications radio capable of AM and FM voice
and data communication. The algorithms execute on a
Texas Instruments TMS320C5510 DSP. An RTDX
interface between Elanix System View and the target DSP
was used to both validate and improve the performance of
the existing algorithms. The examples illustrated in this

presentation are an FM voice receiver and its’ IF AGC
algorithm.

2. AN FM SOFTWARE DEFINED RECEIVER
 The FM voice receiver diagram is shown below.

Figure 1- FM Receiver Block Diagram

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

 The receiver IF input is a 30 KHz IF signal digitized
at 120 Ksps. The digitized signal first passes through a
software AGC algorithm that computes the received
signal strength and generates a gain correction word. The
correction word derives an analog voltage that is applied
to a variable gain IF amplifier (not shown).
 Sampling the 30 KHz input signal at 120 Ksps results
in four samples per cycle of the input waveform. This
allows the signal to be separated into In-phase and
Quadrature (I & Q) components by treating the even
number samples as real (I) and the odd numbered samples
(with appropriate sign change) as imaginary (Q). Because
the samples are separated in this way, the IQ conversion
block yields two data streams each sampled at 60 Ksps.
This effectively decimates the sample rate by two.
 The complex data streams are then filtered by a Half-
band decimation filter that further reduces the output
sample rate to 30 Ksps. The 30 Ksps streams then pass
through an IF FIR filter that establishes the IF bandwidth
at 14 KHz.
 Next the data streams are passed through an FIR
4/5ths rate matching filter that reduces the sample rate
from 30 Ksps to 24 Ksps. The 24 Ksps IQ streams are
applied to a quadrature FM discriminator, producing a
single data stream consisting of the demodulated voice
sampled at 24 Ksps. The demodulated FM output is
further filtered by a 3 KHz FIR decimating baseband filter
that decimates the 24 Ksps sampled audio to the final 8
Ksps sample rate. The 8 Ksps sampled audio is passed
through a final host-adjustable gain stage before being
passed to a host processor for additional audio processing.
 The bandwidths of both the IF filter and baseband
filter are reprogrammable for other waveforms.

3. SYSTEM VIEW SIMULATION

The System View simulation of the FM receiver is shown
in Figure 3. System View provides a rich library of user
configurable source, sink and functional blocks. The
blocks can be easily interconnected into the desired block
diagram by dropping the desired block on the GUI
development screen and wiring them together. Double-
clicking the block opens up a user screen that allows the
user to configure the block as required. Sample rates,
block sizes and iteration controls are accessed via GUI
pop-up menus on the System View tool-bar. The input
and output results can be displayed in real-time on the
GUI as shown in Figure 3, or each result can be
graphically analyzed in detail as shown in Figure 4.
 Referring to Figure 3, the simulation begins by
generating a 1 KHz sine wave input signal using a

Sinusoid Source block. The output of the sine wave
source is connected to a graphical display sink that
displays the output on the GUI in real-time. The sine
wave also drives an FM Modulator block that is
configured for a center frequency of 30 KHz and a peak
frequency deviation of 4 KHz. The system sample clock
is set to
120 KHz,
so that the
FM output
signal
consists of
the four
samples per
cycle
required to
perform IQ
conversion
in the DSP.
 The
output of
the FM
modulator
block is
summed
with a Gaussian Noise source block that is used to
simulate the receiving system noise figure. Note that at
the blocks described thus far execute in double-precision
floating point, allowing a high degree of accuracy for
analog simulation. (The System View Communication
Library provides several additional channel model blocks
that can be used to simulate a variety of RF environmental
conditions).
 The FM signal with additive noise is converted to a
16 bit binary word by the DSP Converter block,
simulating the digitization of the received signal. In this
simulation, the outputs of the FM modulator and the noise
token are set to equal the desired magnitude of the binary
input word.
 The digital signal is then input to a token that
provides an RTDX interface between System View and
the TMS320C5510 processor. The interface requires the

Figure 2 – RTDA Token Pop-up Window

development of a C wrapper interface, examples of which
are provided with System View. Once the wrapper is
developed, it is connected to the System View simulation
by double clicking on the RTDA (Real-Time Data
Architect) token. This brings up the pop-up window
shown in Figure 2 above. The pop-up window is used to
identify the path to the TMS320C5510 executable output

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Figure 3 – System View FM Radio Block Diagram

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

file to be accessed by System View. The pop-up is also
used to set the number of input and output channels as
well as the buffer sizes and data precision. In this
particular simulation, there is one RTDX input channel
and two RTDX output channels. The input channel is set
to transfer a block size of 120 samples, corresponding to
one millisecond of input data. The output channels
selected for display are the output of the FM demodulator
and the audio output received after the final stage of
filtering and decimation. Referring again to the receiver
block diagram in Figure 1, the output of the demodulator
is sampled at a 24 Ksps rate, while the output of the
decimating audio filter is 8 Ksps. Therefore the two
RTDX output channel buffers are set to 24 and 8 words
respectively, since those are the number of output samples
that will be produced when 120 input samples are
processed by the receiver algorithm. The total number of
samples to be processed during a run of the simulation is
set by the System View clock control. The simulation can
be set to run for a specific number of samples, or a single
block of samples can be run in successive loops. In this
particular system, the sample size was set to 120 samples,
and the program allowed to run for sixteen successive
loops. (This is a particularly useful technique, because
System View allows various token parameters to be
varied during each successive loop. For example, it may
be of interest to increment the deviation of the Gaussian
noise token for each iteration of the simulation).
 Once the RTDA token has been properly configured,
the simulation can be run. When System View starts, the
TI development environment, Code Composer Studio, is
started and the executable program loaded. The
simulation then executes on the DSP until the total
number of samples have been processed. During this
time, the input and output values are displayed on the GUI
as shown in Figure 3. Note the burst of noise on the FM
Demod Output shown in Figure 3. When the existing
program was initially simulated, this was found to be the
result of un-initialized memory. The error was corrected
but reproduced for this article in order to demonstrate the
program debugging capability of graphically representing
the results of the algorithm. In order to debug a problem
such as this, it is only necessary to preload the DSP
project and output file in Code Composer Studio before
running the simulation. It is then possible to set break-
points in the program source code and interactively debug
the program (step through, display breakpoints and
memory, etc.) while running the simulation. Note also
that the beginnings of the output waveforms are delayed
relative to the input signal. This is because the first 120
samples must be loaded into the algorithm and processed
before valid output results are available.

 When the simulation is complete, it is also possible to
graphically analyze the output results in greater detail
using the graphical analysis tools available with System
View. For example, the 1 KHz demodulated output has
been expanded in Figure 4 below, and the sample points

Figure 4 – Expanded display of 8 Ksps Decimated
Audio

high-lighted with circles to indicate the existence of
exactly eight samples per cycle of the 1 KHz demodulated
output sine wave.

4. IF AGC ALGORITHM

 The second algorithm described in this article is a
simulation of the IF AGC algorithm that is used with the
FM Receiver. The System View block diagram of the
AGC is shown in Figure 5.
 This particular AGC algorithm is used to control the
gain of an external analog IF amplifier, which requires a
logarithmic RSSI (Received Signal Strength Indication)
voltage as an input. Therefore, the algorithm computes
the average power of the received signal in dB and
provides the output result as a control word that can be
converted to a logarithmic voltage by a digital to analog
converter.
 This is simulated in System View by passing an input
signal (in this case a 30 KHz sine wave sampled at 120
Ksps) through a System View multiplier block (Analog
Gain Element) multiplies the input by the AGC control
voltage in order to compensate for increases in gain. The
gain compensated input signal is in double-precision
floating point, so it is converted to a 16 bit integer format
before being transferred to the DSP algorithm via the
RTDX channel. Unlike the FM receiver algorithm, which
processed 120 samples in each input data block, the AGC
algorithm updates at a much

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Figure 5 – IF AGC Simulation Block Diagram

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

 faster rate of eight samples per iteration. Therefore the
RTDA token’s input block size is set to eight, while the
output block size is set to one, since only one RSSI output
value is obtained for each block of eight input samples.
 The logarithmic output value is represented as a
fixed-point 16 bit word which is converted back to a
double precision floating point word the by the int16 to
float conversion block shown in the block diagram. In
order to simulate the action of the analog variable gain
amplifier, the converted logarithmic output value is scaled
by an amplifier token (block 14 in Figure 5), offset by a
DC gain target (block 42) and inverted by a unity gain
inverting buffer amplifier (block 38). The anti-log of the
scaled inverted signal is computed by raising 10 the input
exponent x, by means of block 39 in Figure 5. The
converted voltage produced by block 39 is applied to the
input of the Analog Gain Element multiplier block, thus
closing the AGC feedback loop.
 The intent of this particular simulation however, was
to measure and “tweak” the attack and decay times of the
AGC. In order to accomplish this, the 30 KHz sine wave
was input at a relative high level and “keyed’ on for 10
msec once during the simulation in order to observe the
attack and decay times. The keying is accomplished by
setting a pulse generator block (block 49) to a pulse width
of 10 msec, with a repetition interval greater than or equal
to the period of the simulation. The output of block 49
multiplies the output of the sine wave generator block
which keys the signal during the 10 msec pulse width
since the output voltage of the pulse is set to one volt
when high and 0 volts when low.
 The effects of the algorithm’s attack and decay time
settings are clearly seen in the AGC Control output
voltage as well as the AGC Out signal display, which
plots the input to the AGC Algorithm following the gain
element block.

5. CONCLUSION

We have presented a method for both developing and
validating Software Defined Radio algorithms that are
implemented on the Texas Instruments family of Digital
Signal Processors. This has been a relatively simple
example to illustrate the technique. Ultimately, both the
SDR transmitter and receiver algorithms can be simulated
this way. Both algorithms are connected together with
channel models blocks that allow simulation of the RF
environment. This permits analysis of the system
performance, especially the effect of error correction
algorithms, such as convolutional and Reed Solomon
encoding.
 Since TI’s Code Composer Studio supplies the
interface between the simulator environment and the DSP,
it is possible to use the debugging capability of Code

Composer to develop and evaluate the SDR algorithm.
With the advent of Code Composer Studio release 2.0, it
is also possible to simulate the algorithm on a variety of
DSP simulators that are provided with Code Composer as
well as the actual target DSP. Finally, the RTDX channel
transfers data to and from the JTAG emulator interface
during the idle time of the DSP CPU. Therefore, it is also
possible to accurately measure the execution time of the
algorithm, since the transfer of data via the RTDX
channel does not add significant overhead to the DSP
algorithm being considered.
 The advantage of a drag and drop block diagram
approach offered by System View or (more recently)
Matlab’s Simulink, provides the ability to quickly vary
inputs to the algorithm as well as model external
components of the SDR system such as RF and analog
components as well as the RF environment of the channel
itself.
 Finally, both System View and Matlab offer the
capability of developing bit-true DSP algorithms from the
block diagrams developed in their respective simulation
environments. Once completed, these algorithms can be
converted to optimized C code that can be compiled and
executed on Texas Instruments DSPs. Thus it is possible
to significantly reduce the SDR algorithm development
time while automatically providing a benchmark
simulation by which the performance of the DSP
algorithm can be compared.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

