

SDR SECURITY THREATS IN AN OPEN SOURCE WORLD

Bill Hart (Green Hills Software, Santa Barbara, CA)

ABSTRACT

The software development community is rapidly accepting
the use of open source software in business and mission
critical applications. At the same time, software attacks are
taking an increasing toll on business and society. Such
assaults have recently been detected in embedded software,
foretelling a trend toward malicious attacks on every day
digital devices.

Are software-defined radios vulnerable to such attacks?
What would motivate the perpetrators? What are the
potential costs if attacks are successful? Are security
methods in place that would reduce the risk of such attacks?

Open source software is by definition the product of many
contributors. It is possible for one or more contributors to
insert malicious code into compilers, operating systems and
other software building blocks. Once inside a software-
defined radio, a Trojan horse could exert direct control over
hardware encryption devices and other security
components, allowing an attacker to monitor
communications or conduct other forms of sabotage.

An attack against a consumer radio could expose its user to
invasion of privacy or direct economic loss. A successful
attack against a telecommunications network could cause
economic damage or system outage amongst a population of
users. On a more sinister note, malicious code in a military
radio could provide an enemy with real-time intelligence for
tactical or strategic battlefield advantage.

Software security methods are spelled out under the
Common Criteria standards. To an extent, open source
operating systems have already been scrutinized under
Common Criteria methods. How well have they fared?
Can they be expected to improve in the foreseeable future?

These questions will be addressed in the context of the
growing acceptance of open source software. Security
assessments must take into account the threat environment,
the vulnerability of the target, and potential loss due to a
successful attack, and acceptable levels of risk. The
software-defined radio community has a compelling need to

understand software security and the benchmark by which it
is measured.

1. INTRODUCTION

It could be argued that information warfare is as old as
warfare itself. Throughout the ages the interception or
alteration of communications has been used for military,
political, economic, and sometimes social gain. Today vast
resources are dedicated to both securing ones own
communications and undermining the communications
security of ones adversaries. As software-defined radios
emerge as a new communications technology, we must
understand their underlying security vulnerabilities and
harden these systems accordingly.

A software-defined radio is fundamentally a computer
system. The Software Communications Architecture has at
its core a Posix-conformant operating system, often an
Embedded or Real-time Operating System. It is critical
that a designer understand the central role of the operating
system in implementing system security.

Open source operating systems have recently begun to
appear in embedded systems. Most prominent are
embedded versions of the Linux operating system. Linux
can be attractive to developers for a number of reasons. It is
available for download at little or no up front cost, there is a
large community of developers continually fixing or
enhancing the technology, the available source code
provides transparency, and metrics indicate it approaches
the quality of many commercial software offerings.

However it can be shown that embedded Linux operating
systems fall short in the area of security. This is a critical
shortcoming in many SDR applications. System designers
should understand and weigh these shortcomings before
allowing embedded Linux to control a radio.

2. COMMUNICATIONS AND ESPIONAGE

It is impossible to identify the first time in history one
adversary spied upon another. The ancient Greeks tell of
spying amongst Gods and men, there are over 100 biblical
references to spying, and Sun Tzu references spying in “The
Art of War”, written in 500 BC. It can be said is that the
gathering of intelligence is a very aged practice. One of the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

primary methods of spying is to intercept or corrupt the
communications of ones adversary.

The stability of nations, economies and societies depend on
secure communications. The amount of effort dedicated to
penetrating that security for military, political, economic or
social gain cannot be overstated.

Today every major nation dedicates substantial resources to
the interception of communications. Equally important,
they dedicate resources toward securing their own
communications. The United States National Security
Agency employs more than 30,000 people who are
dedicated to these two endeavors.

In the non-government arena, communications might be
compromised for either economic gain or social purposes.
Economically, corporations transmit sensitive information
over a variety of channels and depend on security to protect
financial transactions, competitive strategies or key
intellectual property. Finally, individual citizens depend on
secure communications to assure privacy and safety.

During World War II the battles of both the Atlantic and
Pacific turned on the interception and decoding of military
communications by the Allies. Identity theft strikes 9.9
million people a year at a cost of more than $5 billion[1].
To ignore communications security is to invite military,
political or financial disaster.

Whatever the intended application, software-defined radio
architects must design security into their systems. They
must expect that adversaries are going to go to great lengths
to penetrate their systems. To assume anything less is
fallacy.

“History has taught us: never to underestimate the amount
of money, time, and effort someone will expend to thwart a
security system. It is always better to assume the worst.
Assume your adversaries are better than they are. Assume
science and technology will soon be able to do things they
cannot yet. Give yourself a margin for error. Give yourself
more security than you need today. When the unexpected
happens, you’ll be glad you did.” [2]

3. OPERATING SYSTEMS AND SECURITY

An operating system controls the core of an SCA-compliant
software-defined radio. The operating system controls all
of the system’s hardware functions. It also serves as the
foundational platform for system security. If the operating
system does not perform as it should, or if it is intentionally
compromised, then the system’s security architecture can be
penetrated.

The operating system executes its machine instructions in
supervisor mode because it must have access to all CPU,
memory and I/O resources across the entire system. This
means that any errant code, whether it was placed in the
operating system inadvertently or through malicious intent,
has access to sensitive data or critical peripherals such as
storage and cryptographic devices. For this reason all code
in the operating system must be held to a standard of trust
and security that is at least as high as the most critical
application or device in the system.

It is worth noting that many traditional embedded and real-
time operating systems do not attempt to separate operating
system code and application code. Instead, application code
also executes in supervisor mode and therefore also has full
access to system resources. This further challenges system
security, as all code in the system, including application
code, must be held to the highest security standards.

More modern operating systems partition the operating
system and application code into separate virtual memory
partitions. Applications operate in the processor’s “user
mode” and do not have access to system resources except
for those granted by the operating system. The burden of
security is on the operating system itself. This allows
developers to use the access protocols of the operating
system to develop a more verifiable security architecture.

4. DESIGNING TO THE COMMON CRITERIA

In order to verify that the operating system can be trusted it
must be both designed and verified to meet a set of security
criteria. This is the foundational logic behind the Common
Criteria, an international standard that allows designers and
consumers of systems to specify security features and then
measure confidence in their implementation.

The specification of security features includes a Protection
Profile that identifies the operational environment, security
threats, and accepted risks for a given class of system. It
sets forth requirements for the system to counter the security
threats. An operating system designer uses the Protection
Profile as a functional guide to designing a system’s
security architecture.

Once an operating system is designed and implemented it
must be verified. The Common Criteria assigns Evaluation
Assurance Levels (EAL) which designate levels of
confidence that the architecture measures up to its security
claims. These are ranked from EAL1 to EAL7, with the
higher numbers indicating greater confidence. The process
by which higher rankings are achieved involves the
inspection of requirements, design, test and results
documents. It also involves the formal auditing of the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

software code, evaluation of the configuration management
process, and methods by which requirements are through
the development and test process. Finally, at the highest
EAL levels, mathematical methods and proof may be
required to make certain there are no hidden flaws or
backdoors left open to exploitation.

According to the Common Criteria, “EAL4 is the highest
level at which it is likely to be economically feasible to
retrofit to an existing product line.”[3]

EAL4 is generally achieved by verifying best commercial
practices including the use of development environment
controls and automated configuration management. It also
requires a review of interface and low level design
documentation and a moderate amount independent testing.

EAL4 operating systems are appropriate for users who
“require a moderate to high level of independently assured
security in conventional commodity [operating systems] and
are prepared to incur additional security-specific
engineering costs.”[3]

Products that have been verified at EAL4 include such
commodity operating systems as Windows XP. Linux has
so far only achieved an EAL2 rating. However some
commercial suppliers have announced plans to try to drive
Linux toward EAL4 in the next couple of years.

Commodity operating systems such as Linux or Windows
generally employ a “perimeter” defense. Privileged access
is granted by way of passwords or permissions. But once
past these barriers the attacker has full reign over the entire
system. This is the military equivalent of posting guards on
the fence, but with no further defenses for sensitive
installations inside the perimeter.

4. VERIFICATION: SIZE MATTERS

It is far more economical and feasible to verify a small
operating system than a large one. Today’s approach to
designing a secure operating system involves reducing the
size of the operating system to a minimal kernel and moving
everything else (device drivers, communications stacks, file
systems) into user mode virtual address spaces. With less
code in supervisor mode the scope of the verification
process is greatly reduced. It is much more feasible to
verify these operating systems to EAL 6 or EAL7, thus
providing greater assurance of security.

This requires that the operating system be of a modular
instead of a monolithic design. With monolithic operating
systems it is difficult to separate the individual functions
because there are too many interdependencies. In a

monolithic operating system such as Windows or Linux, a
large amount of code executes in supervisor mode, driving
it beyond the practical reach of detailed verification. With
millions of possible logical branches and interactions, all
possibilities cannot be tested.

Certain embedded operating systems are designed as
modular – or microkernel – operating systems. The core
functions of the operating system are easily isolated from
the peripheral functions such as device, file and
communication management.

Microkernel operating systems can be verified to EAL6 or
above. With a properly designed microkernel operating
system, “perimeter” security penetrations are restricted to
user partitions and deeper access to the system is blocked.
Most important, this can be verified to the highest levels.

Many communications systems require operating systems
with higher than EAL4 ratings, including defense and other
highly critical systems. Mission-critical SDR’s must be
regarded as prime targets for espionage. An SDR’s
operating system security must be verified, otherwise all
parts of the radio are open to penetration. Microkernel
operating systems can be verified to the highest levels of
trust, such as EAL6 or EAL7.

5. THE LINUX OPERATING SYSTEM

The Linux operating system was developed by Linus
Torvalds as a free alternative to the Microsoft Windows
operating system. Linux was designed as an “open source”
system. The Linux source code is shared across a Linux
development “community”. Anyone can contribute to the
operating system. Enhancements and improvements are
then shared with every Linux user.

Although Linux was originally developed as an operating
system for desktop systems or file servers, there are now
versions that are being used in embedded systems. This
establishes Linux as an alternative for use in software-
defined radios and other critical communications systems.
The question then arises as to the trustworthiness of Linux
in defense and mission-critical systems.

In discussing Linux security, three areas of concern can be
identified. First, the Linux kernel does not scale down to
any reasonable size. Second, Linux system is developed
using an ad hoc software engineering process, making it
difficult to trace requirements and designs to actual code
and verification tests. Third, the thousands of contributors
to the Linux code base mean that adversaries could identify
weaknesses or insert malicious code into the operating
system code.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

The size of the Linux kernel makes it very difficult and
costly to verify. Although build configurations vary, an
embedded Linux kernel is minimally measured in hundreds
of thousands of lines of code. (In contrast, the NSA
estimates that a certifiable microkernel should have no more
than a few thousands lines of code for successful
verification.)

Companies that extensively validate operating system code
are familiar with the complexities and costs. Green Hills
Software has validated its INTEGRITY Real-time
Operating System to the highest levels of DO-178B flight
safety standards. INTEGRITY is also being certified to
EAL6 or EAL7. Costs of such validations approach $1000
per line of code. And in contrast to Linux, INTEGRITY is
based on the more advantageous microkernel architecture.

Because Linux is the product of thousands of contributions,
very little formal design documentation exists. While
evolutionary development has its merits, the Common
Criteria mandates that verifiable levels of security be
supported by a strong software engineering process and
traceability from design documents to code to test results.
The dynamic nature of Linux development makes this an
overwhelming challenge.

Any code that operates in the processor’s supervisor mode
has access to the entire system. It is critical that a
verification trail exist not only for the Linux kernel, but also
for any non-kernel Linux code that also executes in
supervisor mode. This includes hardware adaptation layers,
device drivers, communications stacks, and file systems.

The final concern involves easy access to the Linux source
code base by adversaries. A considerable amount of Linux
code is contributed or maintained outside of the US. It is
argued by the Linux community that “many eyes” can catch
an attempted insertion of malicious code. However one
must question whether Linux contributors are both qualified
and motivated to spot such insertions amongst the hundreds
of thousands of lines of code. Even if some of the obvious
security flaws could be intercepted, one has to assume that a
well organized attempt to insert a security bug would be
disguised. A determined adversary could hide malicious
code by dividing it amongst several modules so that each
code fragment appears innocent, but in combination they
create a security breach.

A General Accounting Office report recently expressed
warnings about unknown sources of software used in
defense systems. It recommends that information on
software suppliers be collected in order to assess risks
associated with the use of foreign software [4]. While the

international efforts behind Linux are admirable to many,
the concerns express by the GAO must be taken into
account by developers of defense systems.

Defense contractors routinely operate under strict security
rules. Their engineering personnel are generally required to
be US citizens or permanent residents, and are often
required to hold security clearances. If this is the case, why
would anyone allow the most security critical software in
the system to be authored by an anonymous and
international collection of programmers?

Open source software development and deployment may be
outwardly attractive to many developers. But the Common
Criteria requires proof that the operating system is designed,
developed and tested to a set of requirements. When it
comes to verification, the burden of proof is on the open
source community to provide evidence of Linux security in
accordance with the Common Criteria.

6. CONCLUSION

Defense communications systems are likely targets for
security attacks. Software-defined radios must incorporate
secure operating systems in order to defend against such
attacks. The Common Criteria is the accepted method for
assigning confidence levels in operating system security.

Until the open source community achieves sufficient
Common Criteria EAL rankings, the Linux Operating
System is not appropriate for defense critical systems
including military software-defined radios. Software-
defined radios employed in other applications, such as
commercial telecommunications, public safety or for
personal use, may also have critical security requirements.
The open source community must be held to the same
security standards as all other software development
organizations.

[1] Federal Trade Commission, Press Release, September 3,
2003

[2] Bruce Schneier, Why Cryptography is Harder Than It
Looks, published essay, 1996

[3] ISO/IEC 15408, Common Criteria for Information
Technology Security Evaluation, Part 3: Security assurance
requirements, August, 1999, Version 2.1, CCIMB-99-033

[4] United States General Accounting Office, DEFENSE ACQ

UISITIONS Knowledge of Software Suppliers Needed to
Manage Risks, GAO-04-678, 2004

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

