
GENERATION OF SCA DOMAIN PROFILE DESCRIPTORS
FROM UML 2.0 MODELS

John Hogg (Zeligsoft, Gatineau, QC, Canada; hogg@zeligsoft.com)
Francis Bordeleau (Zeligsoft, Gatineau, QC, Canada; francis@zeligsoft.com)

ABSTRACT

This paper describes how SCA descriptors can be
automatically generated from sets of UML diagrams. It
explains the mappings from UML models and their
graphical representation to XML. The relationship of this
work to other aspects of SCA component implementation is
explained, and also the relationship to other MDA
approaches and aspects. Finally, initial results in this area
using a commercial tool are briefly described.
The main finding of this paper is that SCA Domain Profile
descriptor defects can be reduced, descriptor creation time
can be greatly reduced and the need for scarce technical
resources can be minimized by modeling graphically and
applying MDA techniques.

1. INTRODUCTION

Software-defined radio (SDR) uses component-based
architectures to deliver flexible radios that maximize
reusability and minimize effort and time-to-market for
families of products. This paper describes how the Unified
Modeling Language (UML) and the Model Driven
Architecture (MDA) approach, two of the main technologies
developed by the Object Management Group (OMG), can be
used to improve the development of SDR products.

UML constitutes the de facto standard in the industry
for software development. UML 2.0 9, which was adopted
in June 2003 and which is now in its finalization stage, was
specifically intended to support the MDA approach 9. The
essence of MDA is working at the model level at all stages
of system development. The part of MDA that has received
most attention is the (usually automated) transformation of
models to application implementations, possibly in several
steps. Other applications of MDA can also be extremely
valuable 9.

The Software Communication Architecture (SCA)
specification 9, 9, which constitutes the de facto standard for
SDR system development in the defence industry, defines
the core components and interfaces that are required to built
SCA-compliant applications and platforms. It also defines
the set of XML descriptor files, called the Domain Profile,
which must be provided by application and platform
developers to make their products SCA-compliant. The

descriptor files contain information concerning the set of
components that compose applications and platforms, the
configuration of the components, the location of component
implementation files (containing the executable code), the
interconnection between the components, and the
deployment requirements of the components. The set of
Domain Profile descriptor files are required to enable the
automated deployment and configuration of applications on
SCA-compliant platform. Unfortunately, the required
Domain Profile descriptors are hard to read, tedious to write
and fertile ground for mechanical errors.

The SCA specification is defined using the Unified
Modeling Language (UML). It makes heavy use of the
port/connector concepts that are part of the 2.0 standard.
Furthermore, the information contained in descriptors can be
captured graphically in UML 2.0 component models. For
these reasons, SCA component (resources and devices),
application and platform development can greatly benefit
from the type of automated transformation defined by the
MDA approach.

1.1. MDA

In the context of this paper, “MDA” or model-driven
architecture primarily involves graphically modelling an
SCA component system, validating the correctness of the
model then generating a complete set of SCA-compliant
profiles (XML descriptor file sets) from the model. The
generated descriptor sets are no longer the primary IP; the
reusable architectural IP is captured in the model. The XML
files are in fact throwaway artifacts that can be regenerated
at any time. They are analogous to object code in
component implementations—the precious, version-
controlled artifacts are the source files.

2. BENEFITS

There are several anticipated benefits to applying an
MDA approach to SCA component development. Among
them are comprehensibility, speed, quality, reduced need for
scarce resources and early architectural validation.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

1.2. Comprehensibility

Humans learn and understand in many different ways, but
very few of them find raw XML easier to comprehend than
graphical diagrams. For confirmation, consider how
developers use whiteboards: boxes and lines figure
prominently when systems are explained. This is especially
true with respect to a standard like the SCA where two
boxes and a line may represent multiple hexadecimal unique
IDs.

1.3. Scare Resources

SCA is a comparatively new standard. This makes SCA
experts hard to find. It is also a powerful but complex
standard, which makes SCA experts hard to train. When the
authors of this paper asked SDR project leaders to identify
their single greatest problem in developing a software radio,
“finding resources” topped the list.

Resources are obviously needed to create descriptor
files initially. Additionally, descriptor files must be
maintained as an application evolves. Since domain profiles
have many cross-references between files, a local change
may have unanticipated consequences elsewhere.
Anecdotally, suboptimal architectures have been retained
because the risk of modifying them was considered to be too
great.

Expertise is also needed simply to review descriptors in
environments where every human-generated artifact must be
reviewed. This is time-consuming, error-prone work and the
XML notation puts a lot of syntax in the way of the semantic
content that should be the focus of an intelligent, expensive
human. For these reasons, any technique that reduces the
need for SCA expertise will help SDR projects.

1.4. Development Speed

“A picture is worth a thousand words” and this is especially
true in MDA. A few graphical elements created with mouse
clicks and drags can represent many lines of XML
descriptor files.

The immediate result is that graphical SCA profiles can
be created much more quickly than manually written ones.
Review time is also decreased since reviewers can more
readily understand the meaning of the graphical model—and
whether it means what it is supposed to. Maintenance time
also goes down since changes are easier to understand and
can be automatically propagated across sets of files.

This increased speed allows more system iterations to
be delivered, improving quality.

1.5. Quality

Increased development speed is not the only contributor to
increased quality in an MDA approach to SCA
configuration.

The details of generated XML are “correct by
construction”. Syntactic errors do not occur. At a higher
level, designs are validated for SCA compliance.

Correct details and SCA compliance do not guarantee a
correct architecture; it will always be possible to create a
fundamentally wrong-minded model. However, an
architecture displayed as a graphical model is much easier to
visualize. It is also much easier to explain to colleagues,
peer reviewers and managers, so errors can be discovered
and resolved quickly. At the same time, the assured low-
level correctness allows the architect to concentrate on the
large and important issues in the design: are the right
elements connected to each other, and using the appropriate
protocols? The errors made at this level are the really
expensive ones, and this is where graphical models provide
the greatest value.

Increased development speed increases quality, and
increased quality increases development speed through
reduced rework time. The feedback loop is positive.

1.6. Architectural Guidance

A third advantage of modelling and validating SCA
architectures is the architectural guidance this provides:
design conformance with the SCA can be checked from
early in the software and system lifecycle. This is related to
but distinct from low-level quality validation; it is “doing the
right thing” as opposed to “doing the thing right”.

This value comes from applying MDA early in the
lifecycle, not at the end after implementation is complete. It
is in the domain of architects, not implementers. MDA
should be employed throughout the software lifecycle to
reap full benefits.

3. SCA AND COMPONENT-BASED
DEVELOPMENT

An SCA application is composed of components that
communicate through ports and interfaces connected by
connectors. The ports and interfaces are described in a set
of XML descriptor files that accompany each set of
implementations of a component, and an application has its
own descriptor file that specifies how the components are
connected together through their ports.

In the application delivery cycle, the building blocks are
the components of the system. These may be reused from a
library or created specifically for an application. At the
profile level, they are sets of interfaces and components.
The architect (or team of architects) assembles components

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

into applications by wiring together their ports and
interfaces.

The architect will not necessarily provide all details of a
component; that’s the job of the implementer (or component
developer or software engineer, depending on the preferred
title for the role). The architect and implementer may in fact
be the same person, but the roles are different because the
tasks are different. The architect is concerned with external
views and how components are connected, without reference
to their internals. The component developer’s responsibility
is to deliver that external contract by delivering an
executable with the specified behaviour—and a descriptor
set that includes full information about the component,
including low-level details that the architect elides.

4. SOFTWARE PROFILES

How does MDA actually apply in an SCA environment?
How are SCA constructs represented graphically? Most of
the notation will be familiar to SCA experts because it
appears in the (non-normative) SCA Developer’s Guide 9.

1.7. Components

The basic building block of an application is the component
(device or resource). The Guide doesn’t present a graphical
notation for defining the interface of a component, but that is
natural and intuitive: a component is a rectangle where the
standard “lollipop” symbol from UML 2.0 is used to
represent an interface, and a square on the border of the
rectangle represents a port. The conjugation of a port is
shown by its colouring: white for a Provides port and black
for a Uses port.

1.8. Assemblies: Structures

The key to representing SCA assemblies is to use UML 2.0
structure modelling, also known as role modelling. This is a
new concept to most UML users, but it is vital to validating
and generating XML software profiles.

Structures are architectures: they show the elements of
an application and who speaks to whom. An SCA
application assembly diagram is a structure diagram showing
component roles connected through their ports and
interfaces by connectors.

Role or structure modelling is not class modelling. A
class model describes properties common to all instances of
a class; for instance, an Antenna component has a
connection to a Receiver component. This sounds adequate
as long as every component is a singleton: i.e., as long as
there is only one component of that class in the system. If
the system has two Antennas and two Receivers, the class
diagram cannot describe which communicates with which.

Role modelling is not object modelling. At first glance
they look very much like object models, or models of fully
reified instances. Object models are very useful for
understanding a system during the analysis phase, but they
lack reusability. If an architecture may have multiple
instances of an element, the element itself cannot be
represented by a single instance.

The SCA itself appears to ignore this issue: the name
for a resource component element is
“componentinstantiation”. Because the SCA doesn’t
support hierarchical modelling directly today it may appear
that components can be adequately represented using
instance modelling. This is not the case. Leaving aside the
potential representation of hierarchical structures (discussed
below under “Future Work”), instances don’t adequately
represent devices.

1.9. Devices

An SCA software profile is a highly portable entity: it can
potentially be deployed on a range of platforms, or in a
number of ways on a single platform. This means that a
software profile cannot include any information about a
specific hardware device which may or may not be present
in the target platform. The actual device is not known at
configuration time when an XML file is written or a
graphical model is created; it is only defined dynamically at
deployment time.

Nonetheless, it is necessary to specify that software
components have connections to devices. Devices must
therefore appear in graphical models as roles, not objects. A
device in a software assembly has no defined class; it is
known only by the connections it has with components and
the interfaces it provides to them. At deployment time this
role is played by an actual logical device.

These roles are the essence of structure modelling.
They not only allow portability, they also support highly
dynamic architectures. When an element in an assembly is
seen as a role instead of an instance, it can be dynamically
replaced with any object that can play the role (i.e., has a
matching set of interfaces and semantics.) This applies not
only to devices, but also to dynamic components created by
a ResourceFactory component.

1.10. Non-Normative Graphical Representation

The SCA contains the structural concepts of UML 2.0
(structures, ports and connectors) but the only notation
specified in the standard itself is the XML representation.

The graphical representation of 9 is non-normative.
There are probably two reasons for this. First, the SCA
preceded the release of UML 2.0, and the interpretation of
ports and connectors is more closely related to the OMG’s
CORBA Component Model (CCM) 9. Second, the tools

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

available at the time the SCA was released couldn’t depict
structures. The Whorfian hypothesis may apply here.

5. PLATFORM PROFILES

Platform-independent SCA software profiles are deployed
on environments specified by platform profiles: descriptors
of the logical hardware. Models of platform profiles are
comparatively simple in the SCA today.

 An SCA node is composed of devices, services and
managers. Informally, it can be thought of as representing a
box in a complex system. It can be graphically represented
using the node representation of UML deployment
diagrams. Each node is composed of devices and services,
and these are represented in separate areas of the node
showing the underlying Core Framework elements
(Managers and Services) and the devices that make up the
node.

A platform as such does not appear as an element in the
SCA, but it is a set of nodes. It is convenient (but not
essential) to present the collected nodes in a platform as a
UML deployment diagram.

The mapping from the resource components of the
software profile and the devices of the hardware profile is
done at deployment time, well after the configuration
modelling described in this paper. That task is currently
entirely within the core framework, although there are
opportunities to assist this task using model-level
specifications outside the current SCA. Today, the most
significant specifications in this area are hostcollocation
constraints.

6. EXPERIENCE

The theoretical advantages of using an MDA tool to model
and generate SCA descriptors are appealing. However,

the true value can only be determined by applying an
industrial tool in an industrial setting.

Results have been accumulating from multiple SCA
development projects across various companies delivering
SCA applications, including some with hundreds of ports
and connections. They are clear, consistent and very
positive. While the impact of improved quality is still being
quantified, compelling feedback is available in two areas:
productivity and architectural guidance.

1.11. Productivity

Initial demand for descriptor creation automation is usually
driven by the simple return on investment of reduced
developer effort. Productivity is fairly easy to quantify:
simply track the resource requirements to write a
representative software profile by hand in XML, then model

the profile (or one of equivalent complexity) and generate
the XML.

The numbers from user (as opposed to tool vendor)
evaluations have been reassuringly consistent, with
automated productivity in the range of an order of
magnitude higher than manual productivity. In the larger
applications, manual creation and maintenance of
descriptors would be a truly daunting task; the sheer
potential for mechanical error might be even more
significant than the person-years saved.

1.12. Architectural Guidance

One striking lesson from user experience was the payback in
using an MDA tool at the beginning of the development
cycle to validate basic architectures. Quantifying this kind
of return on investment is difficult, but anecdotal results
suggest that it can be even greater than the productivity ROI.

Users have discovered that early tool-based
architectural verification can prevent the need for rework.
The result is decreased development effort and increased
schedule predictability.

1.13. Simplifying the Task

Any approach to software development can look good from
the proverbial 50,000’ level. When real descriptors must be
delivered, the details can be messy and difficult.

In practice, the most confusing commonly used pattern
in the SCA lexicon seems to be
deviceusedbythiscomponentref. An SCA software profile
specifies the software components of an application and
their connections, but it is (mostly) independent of the
hardware platform or platforms on which it will be
deployed. The connection between the two involves an
allocation property on a device, a “uses dependency”
between a component and a property (independent of where
that property is located) and multiple cross-references to
entities as either human-readable strings or hexadecimal
unique identifiers. Simply determining the range of values
used can be difficult.

This is the kind of place where model-based
architecture can greatly simplify the developer’s task.
Simply presenting the user with a menu of valid choices
eases the task. Auto-filling the most likely values (where
they can be determined) can further decrease the required
domain knowledge.

7. FUTURE WORK

Is the application of MDA to SCA development a
completely solved problem? Most definitely not. Several
areas invite further work.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

1.14. Further Simplification of Modelling

As tool experience on real-world problems grows, further
opportunities to guide users through model complexities
arise. For example, even with the simplifications described
previously, deviceusedbythiscomponentref still a complex
pattern. Empirically, allocation properties and dependencies
are sometimes created simply to support it with no deeper
model significance. Given this, a fully automated creation
of all elements (properties, dependencies and references)
could ease the profile creation task.

1.15. Hierarchical Structures

The SCA today supports only a single level of composition:
Components are combined together into Software
Assemblies, but Assemblies are not reusable. Hierarchical
decomposition is perhaps the most fundamental tool that
humans use to solve any large problem, and SCA
applications will only grow over time. Without MDA-based
approaches, the SCA will hit scalability limits, and soon.
This is recognized in similar efforts such as the OMG’s
Deployment and Configuration specification 9, which does
support hierarchical composition.

The beauty of MDA is that restrictions at one level of
modelling can be abstracted away at a higher level. The
SCA is a reified platform for defining component
architectures. These architectures can be abstracted using
the UML 2.0-based non-normative graphical notation of 9,
and the individual component instances in an assembly can
themselves be reusable structures 9.

Hierarchical composition of components is only
possible if they are modelled as structures. Object models
cannot be composed because the objects are concrete
instances that cannot be reused in multiple places. However,
structure modelling is mature and well-understood, at least
by a core community of modellers.

1.16. Adaptability

The current validation checks and generation mappings from
models to XML are largely fixed, although some
customization is possible. Consortia, companies or projects
may have special needs or standards. Therefore, user-
definable mappings are an appealing concept.

1.17. Further Domains

Taking adaptability one stage further, not all software-
defined radio systems will be based on the SCA standard,
and not all SCA applications are SDR. Furthermore, not all
component-based development is either. The technology
described in this paper will be needed in wider domains.

The simplest form of standards independence is to
generate profiles for different versions of a single standard
from a single, unchanged model. Today, SCA versions 2.2,
2.2.1 and 3.0 require no customization. However, future
versions may need different generators.

The next level of standards independence is generating
descriptor sets for different but related standards—say,
either SCA or the OMG Deployment and Configuration
specification. Again, a single model can be the source for
either target.

Ultimately, it is inevitable that we will see mode support
for modelling, validation and generation of descriptors and
other artifacts for component-based development based on
unrelated standards. This technology is too valuable to only
be used in SCA applications.

8. CONCLUSION

The power of MDA has previously been proven in
implementation of systems not based on components. It is
equally applicable to component-based development of SCA
applications. The anticipated benefits of development
speed, improved quality, reduced resource needs and
improved architectural guidance have been proven in
practice.

The future of MDA in software-defined radio looks
very bright.

9. REFERENCES

[1] OMG Specification: UML 2.0 Superstructure Final Adopted
Specification, http://www.omg.org/cgi-bin/doc?ptc/2003-08-
02, 2003.

[2] J. Miller and J. Mukerji (eds.), MDA Guide,
http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

[3] J. Hogg, “Model-Driven *: Beyond Code Generation”, OMG
MDA Implementers’ Workshop,
http://www.omg.org/news/meetings/workshops/MDA_2004_
Manual/5-1_Hogg.pdf, Orlando, FL, USA, 2004.

[4] Joint Tactical Radio System (JTRS) Joint Program Office,
Software Communications Architecture Specification Version
2.2,
http://jtrs.army.mil/documents/sca_documents/V2.2/SCA_v2_
2.zip, 2001.

[5] Joint Tactical Radio System (JTRS) Joint Program Office,
Software Communications Architecture Specification Version
3.0, http://jtrs.army.mil/documents/sca_documents/V3.0/SCA-
V3.0.zip, 2004.

[6] A. Gonzales and R. Hess, SCA Developer’s Guide,
http://jtrs.army.mil/sections/technicalinformation/developersg
uide/pdfs/pdfs.zip, 2002.

[7] OMG Specification: “UML Profile for CCM: Final Adopted
Specification”, http://www.omg.org/cgi-bin/doc?ptc/2004-03-
04, 2004.

[8] J. Hogg, “Applying UML 2.0 to Model-Driven Architecture”,
OMG MDA Implementers’ Workshop,
http://www.omg.org/news/meetings/workshops/MDA_2003-
2_Manual/5-1_Hogg.pdf, Burlingame, CA, USA, 2003.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

[9] OMG Specification: “Deployment and Configuration Final
Adopted Specification”, http://www.omg.org/cgi-

bin/doc?ptc/2003-07-08, 2003.
[10]J. Hogg, “The Problems and Promise of

UML 2.0 Structures for SCA”, OMG Software-Based
Communications Workshop, http://www.omg.org/news/
meetings/workshops/SBC_2004_Manual/05-2_Hogg.pdf,
Arlington, VA, USA, 2004.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

