

A PROGRAMMABLE BASEBAND PLATFORM FOR SOFTWARE-DEFINED

RADIO

Hans-Martin Bluethgen, Cyprian Grassmann, Wolfgang Raab, Ulrich Ramacher,
Josef Hausner, Infineon Technologies AG, 81609 Munich, Germany,

Hans-Martin.Bluethgen@infineon.com

ABSTRACT

Future wireless terminals will have to be multi-band, multi-
standard and able to execute multiple standards concur-
rently. In this paper we describe a flexible and programma-
ble baseband platform for a large variety of mobile and
WLAN standards. For the SDR platform architecture our
primary design goal was to find the most flexible and easy-
to-program solution within a specified power budget. The
result is an architecture consisting of a cluster of four single-
instruction multiple-data (SIMD) DSP cores each containing
four processing elements and operating at 300 MHz. The
cluster of SIMD cores is accompanied by dedicated proces-
sors for filtering operations, and channel encoding and de-
coding. The programming environment of this platform con-
sists of an application programming interface (API), com-
piler and debugger, and a virtual prototype of the hardware.
Profiling results for the digital signal processing software
performing the PHY layer of IEEE 802.11b on the virtual
prototype underline the feasibility of our approach.

Figure 1: Trend of flexibility

Figure 1

In the recent past, the design criteria were chosen with
regard to what could be realized economically with 0.5 –
0.13µm CMOS technologies. This lead to architectures with
minimal area and power consumption. Macros absorbed the
compute-intensive signal-processing parts of the physical
layer whereas layer-1 control processing was executed on a
DSP (). With the advent of new standards and the
shift to ubiquitous communication, continuation of this style
of design would have meant to increase the number of mac-
ros to an intolerable height. Instead, the idea emerged of
emulating the macros by a small number of reconfigurable
data path units with adjacent small control units. This way,
the firmware increased significantly, the programs could be
written by the designers of the chip, only, and the customer
had to be involved into the partitioning of the system into
hardware and software. Furthermore, the size as well as the
number of these data paths would grow with the number of
standards and applications, which, in turn, would increase
control-overhead and area, let alone the complexity of the
programming model.

1. INTRODUCTION

In contrast to today’s dual-band single-standard cell phones,
future wireless terminals will have to be multi-band, multi-
standard and able to do handover between multiple stan-
dards and execute them concurrently. The UMTS Forum
estimates that there will be 20.5 million WiFi users by the
year 2005, 5.3 million of which will also be 3G users.
Hence, public WiFi presents a positive market opportunity
for mobile operators. The seriousness of this technology is
evident by the activities undertaken by AT&T wireless and
T-Mobile US in this space, two of the largest mobile carriers
in the US.

As with the further evolution of 2G through 4G com-
munication systems the plethora of standards will be com-
bined into powerful super-standards like WCDMATDD and
HSDPA – these super-standards varying with world regions
– the system architect’s task is undergoing a big change. In
this paper, we concentrate on the baseband part of cell
phones, although the RF and application processing sections
share with the baseband part the unique opportunity for in-
novating the architecture as well as the customer interface.

This innovative architecture style had been first picked
up by start-up companies (Quicksilver, Morpho Technolo-
gies, Morphics, Mercury, Picochip, to name a few). A suc-
cess story for reconfigurable computing and communication

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

is still lacking, however, [1]. Not only are area and power
consumption inferior to alternative architectures – there is
no approach at hand for programming reconfigurable archi-
tectures in the wake of ever-increasing demands for flexibil-
ity.

 Thus, to develop an architecture for UMTS FDD at 384
kb/s, CDMA2000 1x DV, GSM/GPRS/EDGE class 12,
IEEE 802.11b, IEEE 802.11g (at reduced data rate, e.g. 24
Mb/s), Bluetooth, DAB and GPS, as requested by a terminal
manufacturer, it was imperative to pursue new ways.

2. PLATFORM ARCHITECTURE

Let us remember the challenge: simplicity of programming
model and flexibility (capability of executing applications
not considered at time of specification) added two more pa-
rameters, besides area and power that spanned the architec-
ture design space and made the search for an optimal solu-
tion considerably more difficult. Giving highest weight to
area and power would mean to search for a solution based
upon reconfigurable architectures. To avoid the pitfalls of
those, we assumed that customer and chip designer could
agree on a reasonable upper limit for area and power, say,
40 mm2 and 200 mW for execution of UMTS or 802.11b,
alternatively. Then, we would be free to design an architec-
ture, which is built for highest flexibility and simplest pro-
gramming model.

For this goal, the ideal solution would be a single DSP
with sufficiently high clock. Instead, because of the limits of
a 90-nm technology, the entry point into design space explo-
ration is set by the smallest possible number of general-
purpose DSPs working at highest possible clock frequency
and Vdd so that the power budget is not exceeded. Then, the

programming model is as simple as possible and flexibility
at highest possible level. If the area would turn out to be too
large, extensions to the general-purpose DSP instruction set
have to be added, meaning in the worst that an accelerator is
invoked. This way, flexibility and simplicity of program-
ming model are compromised at the least, and the area and
power budget is kept. With these iteration rules, we arrived
at the solution depicted in F and described in detail
below. In consequence, the next-generation baseband system
turned into a software-defined radio system that executes
programs and is programmed by the customer by means of
high-level APIs with adjacent libraries. This revolutionary
innovation will drive the evolution of the baseband systems
of the next generation [2].

igure 2

With the entry point into the architecture design space

chosen as explained above, our estimations on power con-
sumption resulted in an architecture consisting of a cluster of
four single-instruction multiple-data (SIMD) DSP cores.
This kind of DSP core is particularly suited for the computa-
tionally complex algorithms in communication systems
[3][4].

The cluster of SIMD cores is accompanied by dedicated

programmable processors for channel encoding and decod-
ing as well as filtering operations. These dedicated proces-
sors account for almost half of the total processing power of
the entire SDR platform. In addition, there is an ARM proc-
essor for the execution of the protocol stacks.

Figure 2: Baseband processing platform

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

2.1. SIMD core

The SIMD core () is based upon previous work [6]
and has been simplified as well as extended for the applica-
tion in communication systems. Each SIMD core contains
four processing elements (PEs) and operates with a clock
frequency of 300 MHz. It supports special instructions like
saturating operations and finite-field arithmetic, and long-
instruction word (LIW) features for performing arithmetic
operations and memory accesses in parallel. The pipeline of
the PEs’ execution units is four stages long, which is used to
relax the timing requirements for the memories, reduce the
memories’ supply voltage and thereby the power consump-
tion. However, a long pipeline leads to stalls in case of data
dependencies between instructions from the same task. That
is why here each of the pipeline stages contains an instruc-
tion of one of four separate tasks. Four SIMD cores each
running four tasks results in a task-level parallelism of 16.

Figure 3

Figure 3: SIMD core block diagram

2.2. Accelerators

Table 1 and show, respectively, parameters of chan-
nel coding algorithms and FIR filters used in different stan-
dards. The channel coding and filter processors must support
all these parameters. In addition, both dedicated processors
must be able to run at least two standards concurrently. In-
stead of implementing a separate macro for each of the sup-
ported modes the processors are based on fine-grain instruc-
tions, e.g. for arithmetic operations (add/sub) or bit manipu-
lation. This retains the maximum level of flexibility for the
entire platform. and show block diagrams
of the channel coding and filter accelerators, respectively.

Table 2

Table 2: FIR filter parameters for selected standards

Figure 4

Figure 4: Channel coding accelerator

Figure 5

The accelerators’ flexibility can be exploited in two
ways. Firstly, it is possible to modify the functionality within
a single standard. Secondly, to assign more computational

resources to one standard and use algorithms that are more
sophisticated. Examples are the use of more iterations in
Turbo decoding or a larger number of taps for FIR filtering.

Table 1: Channel coding parameters for selected standards

 Turbo Decoder Viterbi Decoder

 UMTS CDMA
2000 UMTS CDMA

2000 802.11a

max. data
rate

384
kbps

307
kbps

64
kbps

38.4
kbps

24
Mbps

Code rate 1/3 1/3, 1/5 1/2, 1/3 1/2..1/6 1/2
number of
trellis
states

8 8 256 256 64

decoder
type SISO SISO

hard
decision
or SOVA

hard
decision
or SOVA

hard
deci-
sion

parallel
butterflies 8 8 8 8 8

recursion
direction fwd, bck fwd, bck fwd fwd fwd

forward
window
size

~30 ~30 – – flexible

backward
window
size

~30 ~30 ~45
(SOVA)

~45
(SOVA) –

stopping
criterion yes yes no no no

 filter
length

data word
length

coeff.
word

length

sample
rate

WCDMA 19..25 8..10 8..10 7.68 MHz
WLAN
802.11 15..21 10..12 10..12 20 MHz /

22 MHz

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Figure 5: FIR filter accelerator

3. SOFTWARE ENVIRONMENT

It is important to note that the hardware platform architec-
ture resembles a computer architecture. To keep the simplic-
ity of the programming model of this SDR approach, a suit-
able software development environment is required that en-
ables the programmer to exploit the potential of the hard-
ware easily, however, without knowing its details. The de-
velopment environment consists of an application-
programming interface (API), compiler and debugger, a
real-time operating system, and a cycle-accurate SystemC
simulation of the SDR platform, each component bearing a
research problem of its own.

3.1. Customer interface

The API provides access to functions from an SDR library
and their parameters, peripherals, and operating system
functions. The SDR library contains simple functions like
convolution, complex functions like a RAKE receiver, and
complete virtual radio engines like WCDMA.

As the SDR architect must know these functions, the
API interface is the borderline for the intellectual property
owned by the ODM and OEM, respectively.

3.2. SIMD compiler

The SIMD compiler is a crucial component of the SDR plat-
form programming environment. It extracts data parallelism
out of a C program and maps it onto a parallel processor. To
support the extraction of data parallelism, the input to the
compiler is C code with data-parallel C extensions (DPCE).
The compiler splits the code into a sequential part for the
SIMD core controller and generates machine code for the
array of processing elements. Simplicity of the programming

model requires the compiler to generate machine code that is
efficient enough even for performance-critical functions so
that no assembler code must be written. The mapping must
be done such that the throughput for each of the four proc-
essing elements is maximized and the communication band-
width between the processing elements is minimal. This
simple optimization goal turns into a formidable research
problem with the increase of architectural variables: various
word widths, cache size of each PE, depth of PE pipeline,
number of registers, PE-PE communication bandwidth, and
more.

3.3. Scheduling

The SIMD compiler extracts data parallelism out of a single
piece of program and maps the program onto one SIMD
core. What is left is the task distribution and scheduling onto
the platform of parallel SIMD cores and dedicated proces-
sors. Simplicity of the programming model again mandates
this process to be automated or at least tool-supported. Nev-
ertheless, it is essential that the scheduling result is efficient
in terms of minimum synchronization overhead and maxi-
mum utilization of computing resources.

There is an inherent partitioning of a communication
system into tasks coming from the algorithms (scrambling,
modulation, FIR filter, etc.), which have to be performed.
The computational complexity of these tasks shows a huge
variance. Usually tasks close to the A/D and D/A converters
performing the chip or sample rate processing demand much
more computing power than tasks for the bit processing.
However, for the mapping onto a parallel platform the sys-
tem has to be partitioned into a set of balanced tasks with
similar run time. This implies that computationally complex
tasks must be split into separate tasks if throughput require-
ments cannot be met. The split of tasks has to take into ac-
count their data dependencies. Less complex tasks can be
joined into a single combined task making it possible for the
compiler to optimize beyond task boundaries.

The automation of this process of mapping and schedul-
ing is a difficult research problem [1]. Our approach is to
start with a manual partitioning and scheduling of the repre-
sentative standards that will be part of the SDR demonstra-
tor. From this, a methodology and heuristics shall be derived
for the construction of a scheduling tool.

3.4. Real-time operating system

The application software requires a real-time operating sys-
tem (RTOS) running on the layer-1 controller core and on
each SIMD core. The RTOS contains all the necessary func-
tions for task creation and synchronization, interrupt han-
dling, access to peripherals, and input/output. The task
scheduling of a parallel program can be done prior to execu-
tion as was described before. Nevertheless, it would be more

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

flexible if the task schedule were determined during run time
so that the system can react automatically to varying load
conditions. For this, efficient scheduling algorithms will be
elaborated and integrated into the operating system.

For future architecture space exploration, we would like
to use different processors. In order to reduce the design
time for the virtual prototype, we develop a methodology to
generate the necessary operating system and device drivers
automatically.

3.5. System design and virtual prototyping

The iterative methodology of architecture space exploration,
which was described above, requires examining and profil-
ing for multiple points in the architecture space. In order to
do this in short time and with precise results, it is necessary
to use a virtual prototype of the entire system rather than
using coarse-grain models or even designing real hardware.
Here, the virtual prototype is based on a cycle-accurate Sys-
temC simulation of the hardware platform with the applica-
tion software and the operating system running on it. The
virtual prototype also allows a programmer to write applica-
tions for mobile equipment well ahead of fabrication of the
final baseband chip.

In this context, it is also necessary to perform simula-
tion of the virtual prototype with reasonable speed. The op-
tions under consideration are the distributed simulation on
parallel workstations or the mapping onto a prototyping
hardware based on FPGAs.

4. APPLICATION PROFILING

In order to prove the feasibility of our approach we started
with a detailed profiling of physical layer software running
on the virtual prototype of our hardware platform. The first
communication standard we investigated was WLAN
802.11b. WLAN standards in general show the most de-
manding requirements regarding throughput and latency. In
the 802.11b standard the most critical timing is the short
inter-frame space (SIFS), in particular. illustrates
the SIFS time. Disregarding the time the signal takes
through the RF stages of a terminal the SIFS denotes the
time from the last sample of a frame coming into the base-
band through the ADC until the first sample of an acknowl-
edgement frame is sent to the DAC. The profiling was car-
ried out in two steps. Firstly, the SIFS time was distributed
equally over all functions contained in the signal processing
chain. Secondly, each function was profiled in detail on the
cycle-accurate simulator in order to find out all optimization
potential both in hardware and software.

Figure 6

Figure 6: Illustration of the short inter-frame space (SIFS)

The detailed profiling showed the following results.
1. Using a virtual prototype for the detailed profiling is cru-

cial for hardware optimization because it allows for short
iteration cycles.

2. The overhead for synchronization between tasks running
in different threads is very costly.

3. Mapping of tasks onto the hardware has to be done very
carefully. It should be supported by an automatic tool in
order to find an optimum mapping which fulfils the
throughput and latency requirements.

All in all our profiling results show that there is no blocking
point in principle for this approach. Currently, profiling is
also carried out for the UMTS physical layer which is one of
the most demanding standard in terms of complexity.

5. CONCLUSION

The next few years will see a transition from dual-band sin-
gle-standard to multi-band multi-standard terminals. This
revolutionary innovation will drive the further evolution of
baseband processing. Flexibility and simplicity of the pro-
gramming model turn out to be the decisive design criteria
for the baseband architects. Although baseband processing
will be growing in number of tasks, our research has shown
that the respective performance requirements will be able to
be accommodated in a 90-nm CMOS technology by parallel
programmable SIMD DSPs with few adjacent dedicated
processors. Hence, software-defined radio technology is a
key enabling technology for future cognitive radios. These
will have to be able to utilize otherwise unused spectrum by
transmitting in temporal or spectral gaps and to recognize
and support a variety of single standards. A respective re-
search project including mobile carriers, OEMs and univer-
sities is in preparation.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

6. ACKNOWLEDGEMENT

The authors wish to thank N. Bruels, U. Hachmann,
D. Langen, M. Loew, M. Richter, M. Sauermann, and
A. Schackow for their work and contributions to this project.

7. REFERENCES

[1] U. Ramacher, “Next Generation Embedded Communication
Systems: Reconfigurability, Flexibility and Programmability”,
Intel Corp. Hillsboro/Oregon, On Chip Reconfigurable Com-
puting and Communications Workshop, May 2003.

[2] J. Glossner et al., “A Software-Defined Communications
Baseband Design”, IEEE Communications Magazine, Jan.
2003.

[3] J.-P. Giacalone, “Trends in Programmable DSP Architecture
for new Generation Wireless Modems”, European Solid-State
Circuits Conference, Lisbon, Sep. 2003.

[4] G. Fettweis; M. Bolle; J. Kneip; M. Weiss, “OnDSP: A New
Architecture for Wireless LAN Applications”, Embedded
Processor Forum, San Jose, May 2002.

[5] T. Arnaud, “Multi-Standard Receiver Architecture and Cir-
cuits”, European Solid-State Circuits Conference, Lisbon,
Sep. 2003.

[6] W. Raab, N. Brüls, U. Hachmann, J. Harnisch, U. Ramacher,
C. Sauer, A. Techmer, “A 100-GOPS Programmable Proces-
sor for Vehicle Vision Systems”, IEEE Design & Test of
Computers, vol. 20, no. 1, Jan. 2003.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

