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ABSTRACT 

 

Future wireless terminals will have to be multi-band, multi-
standard and able to execute multiple standards concur-
rently. In this paper we describe a flexible and programma-
ble baseband platform for a large variety of mobile and 
WLAN standards. For the SDR platform architecture our 
primary design goal was to find the most flexible and easy-
to-program solution within a specified power budget. The 
result is an architecture consisting of a cluster of four single-
instruction multiple-data (SIMD) DSP cores each containing 
four processing elements and operating at 300 MHz. The 
cluster of SIMD cores is accompanied by dedicated proces-
sors for filtering operations, and channel encoding and de-
coding. The programming environment of this platform con-
sists of an application programming interface (API), com-
piler and debugger, and a virtual prototype of the hardware. 
Profiling results for the digital signal processing software 
performing the PHY layer of IEEE 802.11b on the virtual 
prototype underline the feasibility of our approach. 

Figure 1: Trend of flexibility 

Figure 1

In the recent past, the design criteria were chosen with 
regard to what could be realized economically with 0.5 – 
0.13µm CMOS technologies. This lead to architectures with 
minimal area and power consumption. Macros absorbed the 
compute-intensive signal-processing parts of the physical 
layer whereas layer-1 control processing was executed on a 
DSP ( ). With the advent of new standards and the 
shift to ubiquitous communication, continuation of this style 
of design would have meant to increase the number of mac-
ros to an intolerable height. Instead, the idea emerged of 
emulating the macros by a small number of reconfigurable 
data path units with adjacent small control units. This way, 
the firmware increased significantly, the programs could be 
written by the designers of the chip, only, and the customer 
had to be involved into the partitioning of the system into 
hardware and software. Furthermore, the size as well as the 
number of these data paths would grow with the number of 
standards and applications, which, in turn, would increase 
control-overhead and area, let alone the complexity of the 
programming model.   

1. INTRODUCTION 

In contrast to today’s dual-band single-standard cell phones, 
future wireless terminals will have to be multi-band, multi-
standard and able to do handover between multiple stan-
dards and execute them concurrently. The UMTS Forum 
estimates that there will be 20.5 million WiFi users by the 
year 2005, 5.3 million of which will also be 3G users. 
Hence, public WiFi presents a positive market opportunity 
for mobile operators. The seriousness of this technology is 
evident by the activities undertaken by AT&T wireless and 
T-Mobile US in this space, two of the largest mobile carriers 
in the US. 

As with the further evolution of 2G through 4G com-
munication systems the plethora of standards will be com-
bined into powerful super-standards like WCDMATDD and 
HSDPA – these super-standards varying with world regions 
– the system architect’s task is undergoing a big change. In 
this paper, we concentrate on the baseband part of cell 
phones, although the RF and application processing sections 
share with the baseband part the unique opportunity for in-
novating the architecture as well as the customer interface. 

This innovative architecture style had been first picked 
up by start-up companies (Quicksilver, Morpho Technolo-
gies, Morphics, Mercury, Picochip, to name a few). A suc-
cess story for reconfigurable computing and communication 
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is still lacking, however, [1]. Not only are area and power 
consumption inferior to alternative architectures – there is 
no approach at hand for programming reconfigurable archi-
tectures in the wake of ever-increasing demands for flexibil-
ity.  

 Thus, to develop an architecture for UMTS FDD at 384 
kb/s, CDMA2000 1x DV, GSM/GPRS/EDGE class 12, 
IEEE 802.11b, IEEE 802.11g (at reduced data rate, e.g. 24 
Mb/s), Bluetooth, DAB and GPS, as requested by a terminal 
manufacturer, it was imperative to pursue new ways. 

 

2. PLATFORM ARCHITECTURE 

Let us remember the challenge: simplicity of programming 
model and flexibility (capability of executing applications 
not considered at time of specification) added two more pa-
rameters, besides area and power that spanned the architec-
ture design space and made the search for an optimal solu-
tion considerably more difficult. Giving highest weight to 
area and power would mean to search for a solution based 
upon reconfigurable architectures. To avoid the pitfalls of 
those, we assumed that customer and chip designer could 
agree on a reasonable upper limit for area and power, say, 
40 mm2 and 200 mW for execution of UMTS or 802.11b, 
alternatively. Then, we would be free to design an architec-
ture, which is built for highest flexibility and simplest pro-
gramming model. 

For this goal, the ideal solution would be a single DSP 
with sufficiently high clock. Instead, because of the limits of 
a 90-nm technology, the entry point into design space explo-
ration is set by the smallest possible number of general-
purpose DSPs working at highest possible clock frequency 
and Vdd so that the power budget is not exceeded. Then, the 

programming model is as simple as possible and flexibility 
at highest possible level. If the area would turn out to be too 
large, extensions to the general-purpose DSP instruction set 
have to be added, meaning in the worst that an accelerator is 
invoked. This way, flexibility and simplicity of program-
ming model are compromised at the least, and the area and 
power budget is kept. With these iteration rules, we arrived 
at the solution depicted in F  and described in detail 
below. In consequence, the next-generation baseband system 
turned into a software-defined radio system that executes 
programs and is programmed by the customer by means of 
high-level APIs with adjacent libraries. This revolutionary 
innovation will drive the evolution of the baseband systems 
of the next generation [2]. 

igure 2

 
With the entry point into the architecture design space 

chosen as explained above, our estimations on power con-
sumption resulted in an architecture consisting of a cluster of 
four single-instruction multiple-data (SIMD) DSP cores. 
This kind of DSP core is particularly suited for the computa-
tionally complex algorithms in communication systems 
[3][4]. 

 
The cluster of SIMD cores is accompanied by dedicated 

programmable processors for channel encoding and decod-
ing as well as filtering operations. These dedicated proces-
sors account for almost half of the total processing power of 
the entire SDR platform. In addition, there is an ARM proc-
essor for the execution of the protocol stacks. 

Figure 2: Baseband processing platform
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2.1. SIMD core 

The SIMD core ( ) is based upon previous work [6] 
and has been simplified as well as extended for the applica-
tion in communication systems. Each SIMD core contains 
four processing elements (PEs) and operates with a clock 
frequency of 300 MHz. It supports special instructions like 
saturating operations and finite-field arithmetic, and long-
instruction word (LIW) features for performing arithmetic 
operations and memory accesses in parallel. The pipeline of 
the PEs’ execution units is four stages long, which is used to 
relax the timing requirements for the memories, reduce the 
memories’ supply voltage and thereby the power consump-
tion. However, a long pipeline leads to stalls in case of data 
dependencies between instructions from the same task. That 
is why here each of the pipeline stages contains an instruc-
tion of one of four separate tasks. Four SIMD cores each 
running four tasks results in a task-level parallelism of 16. 

Figure 3

Figure 3: SIMD core block diagram 
 

2.2. Accelerators 

Table 1 and  show, respectively, parameters of chan-
nel coding algorithms and FIR filters used in different stan-
dards. The channel coding and filter processors must support 
all these parameters. In addition, both dedicated processors 
must be able to run at least two standards concurrently. In-
stead of implementing a separate macro for each of the sup-
ported modes the processors are based on fine-grain instruc-
tions, e.g. for arithmetic operations (add/sub) or bit manipu-
lation. This retains the maximum level of flexibility for the 
entire platform.  and  show block diagrams 
of the channel coding and filter accelerators, respectively. 

Table 2

Table 2: FIR filter parameters for selected standards 

Figure 4

Figure 4: Channel coding accelerator 

Figure 5

The accelerators’ flexibility can be exploited in two 
ways. Firstly, it is possible to modify the functionality within 
a single standard. Secondly, to assign more computational 

resources to one standard and use algorithms that are more 
sophisticated. Examples are the use of more iterations in 
Turbo decoding or a larger number of taps for FIR filtering. 
 

Table 1: Channel coding parameters for selected standards 

 Turbo Decoder Viterbi Decoder 

 UMTS CDMA 
2000 UMTS CDMA 

2000 802.11a

max. data 
rate 

384 
kbps 

307 
kbps 

64 
kbps 

38.4 
kbps 

24 
Mbps 

Code rate 1/3 1/3, 1/5 1/2, 1/3 1/2..1/6 1/2 
number of 
trellis 
states 

8 8 256 256 64 

decoder 
type SISO SISO 

hard 
decision 
or SOVA 

hard  
decision 
or SOVA

hard 
deci-
sion 

parallel 
butterflies 8 8 8 8 8 

recursion 
direction fwd, bck fwd, bck fwd fwd fwd 

forward 
window 
size 

~30 ~30 – – flexible

backward 
window 
size 

~30 ~30 ~45 
(SOVA) 

~45  
(SOVA) – 

stopping 
criterion yes yes no no no 

 

 filter 
length 

data word 
length 

coeff. 
word 

length 

sample 
rate 

WCDMA 19..25 8..10 8..10 7.68 MHz 
WLAN 
802.11 15..21 10..12 10..12 20 MHz / 

22 MHz 
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Figure 5: FIR filter accelerator 

 

3. SOFTWARE ENVIRONMENT 

It is important to note that the hardware platform architec-
ture resembles a computer architecture. To keep the simplic-
ity of the programming model of this SDR approach, a suit-
able software development environment is required that en-
ables the programmer to exploit the potential of the hard-
ware easily, however, without knowing its details. The de-
velopment environment consists of an application-
programming interface (API), compiler and debugger, a 
real-time operating system, and a cycle-accurate SystemC 
simulation of the SDR platform, each component bearing a 
research problem of its own. 

3.1. Customer interface 

The API provides access to functions from an SDR library 
and their parameters, peripherals, and operating system 
functions. The SDR library contains simple functions like 
convolution, complex functions like a RAKE receiver, and 
complete virtual radio engines like WCDMA. 

As the SDR architect must know these functions, the 
API interface is the borderline for the intellectual property 
owned by the ODM and OEM, respectively. 

3.2. SIMD compiler 

The SIMD compiler is a crucial component of the SDR plat-
form programming environment. It extracts data parallelism 
out of a C program and maps it onto a parallel processor. To 
support the extraction of data parallelism, the input to the 
compiler is C code with data-parallel C extensions (DPCE). 
The compiler splits the code into a sequential part for the 
SIMD core controller and generates machine code for the 
array of processing elements. Simplicity of the programming 

model requires the compiler to generate machine code that is 
efficient enough even for performance-critical functions so 
that no assembler code must be written. The mapping must 
be done such that the throughput for each of the four proc-
essing elements is maximized and the communication band-
width between the processing elements is minimal. This 
simple optimization goal turns into a formidable research 
problem with the increase of architectural variables: various 
word widths, cache size of each PE, depth of PE pipeline, 
number of registers, PE-PE communication bandwidth, and 
more. 

3.3. Scheduling 

The SIMD compiler extracts data parallelism out of a single 
piece of program and maps the program onto one SIMD 
core. What is left is the task distribution and scheduling onto 
the platform of parallel SIMD cores and dedicated proces-
sors. Simplicity of the programming model again mandates 
this process to be automated or at least tool-supported. Nev-
ertheless, it is essential that the scheduling result is efficient 
in terms of minimum synchronization overhead and maxi-
mum utilization of computing resources. 

There is an inherent partitioning of a communication 
system into tasks coming from the algorithms (scrambling, 
modulation, FIR filter, etc.), which have to be performed. 
The computational complexity of these tasks shows a huge 
variance. Usually tasks close to the A/D and D/A converters 
performing the chip or sample rate processing demand much 
more computing power than tasks for the bit processing. 
However, for the mapping onto a parallel platform the sys-
tem has to be partitioned into a set of balanced tasks with 
similar run time. This implies that computationally complex 
tasks must be split into separate tasks if throughput require-
ments cannot be met. The split of tasks has to take into ac-
count their data dependencies. Less complex tasks can be 
joined into a single combined task making it possible for the 
compiler to optimize beyond task boundaries. 

The automation of this process of mapping and schedul-
ing is a difficult research problem [1]. Our approach is to 
start with a manual partitioning and scheduling of the repre-
sentative standards that will be part of the SDR demonstra-
tor. From this, a methodology and heuristics shall be derived 
for the construction of a scheduling tool. 

3.4. Real-time operating system 

The application software requires a real-time operating sys-
tem (RTOS) running on the layer-1 controller core and on 
each SIMD core. The RTOS contains all the necessary func-
tions for task creation and synchronization, interrupt han-
dling, access to peripherals, and input/output. The task 
scheduling of a parallel program can be done prior to execu-
tion as was described before. Nevertheless, it would be more 
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flexible if the task schedule were determined during run time 
so that the system can react automatically to varying load 
conditions. For this, efficient scheduling algorithms will be 
elaborated and integrated into the operating system. 

 

For future architecture space exploration, we would like 
to use different processors. In order to reduce the design 
time for the virtual prototype, we develop a methodology to 
generate the necessary operating system and device drivers 
automatically. 

3.5. System design and virtual prototyping 

The iterative methodology of architecture space exploration, 
which was described above, requires examining and profil-
ing for multiple points in the architecture space. In order to 
do this in short time and with precise results, it is necessary 
to use a virtual prototype of the entire system rather than 
using coarse-grain models or even designing real hardware. 
Here, the virtual prototype is based on a cycle-accurate Sys-
temC simulation of the hardware platform with the applica-
tion software and the operating system running on it. The 
virtual prototype also allows a programmer to write applica-
tions for mobile equipment well ahead of fabrication of the 
final baseband chip. 

In this context, it is also necessary to perform simula-
tion of the virtual prototype with reasonable speed. The op-
tions under consideration are the distributed simulation on 
parallel workstations or the mapping onto a prototyping 
hardware based on FPGAs. 

4. APPLICATION PROFILING 

In order to prove the feasibility of our approach we started 
with a detailed profiling of physical layer software running 
on the virtual prototype of our hardware platform. The first 
communication standard we investigated was WLAN 
802.11b. WLAN standards in general show the most de-
manding requirements regarding throughput and latency. In 
the 802.11b standard the most critical timing is the short 
inter-frame space (SIFS), in particular.  illustrates 
the SIFS time. Disregarding the time the signal takes 
through the RF stages of a terminal the SIFS denotes the 
time from the last sample of a frame coming into the base-
band through the ADC until the first sample of an acknowl-
edgement frame is sent to the DAC. The profiling was car-
ried out in two steps. Firstly, the SIFS time was distributed 
equally over all functions contained in the signal processing 
chain. Secondly, each function was profiled in detail on the 
cycle-accurate simulator in order to find out all optimization 
potential both in hardware and software. 

Figure 6

Figure 6: Illustration of the short inter-frame space (SIFS) 

The detailed profiling showed the following results. 
1. Using a virtual prototype for the detailed profiling is cru-

cial for hardware optimization because it allows for short 
iteration cycles. 

2. The overhead for synchronization between tasks running 
in different threads is very costly. 

3. Mapping of tasks onto the hardware has to be done very 
carefully. It should be supported by an automatic tool in 
order to find an optimum mapping which fulfils the 
throughput and latency requirements. 

All in all our profiling results show that there is no blocking 
point in principle for this approach. Currently, profiling is 
also carried out for the UMTS physical layer which is one of 
the most demanding standard in terms of complexity. 

5. CONCLUSION 

The next few years will see a transition from dual-band sin-
gle-standard to multi-band multi-standard terminals. This 
revolutionary innovation will drive the further evolution of 
baseband processing. Flexibility and simplicity of the pro-
gramming model turn out to be the decisive design criteria 
for the baseband architects. Although baseband processing 
will be growing in number of tasks, our research has shown 
that the respective performance requirements will be able to 
be accommodated in a 90-nm CMOS technology by parallel 
programmable SIMD DSPs with few adjacent dedicated 
processors. Hence, software-defined radio technology is a 
key enabling technology for future cognitive radios. These 
will have to be able to utilize otherwise unused spectrum by 
transmitting in temporal or spectral gaps and to recognize 
and support a variety of single standards. A respective re-
search project including mobile carriers, OEMs and univer-
sities is in preparation. 
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