

USE OF DEVICE, MANAGING DEVICE-RELATED INTERFACES IN SCAV2.2

Yusuke KANAHASHI; Isao TESHIMA; Satoru NAKAMURA;

Mitsuyuki GOAMI; Takuzo FUJII
Communication Systems Development Group, Hitachi Kokusai Electric Inc.,

 Tokyo, Japan; email:kanahashi.yusuke@h-kokusai.com

ABSTRACT

In “Development of Software Radio Prototype” [1]
presented during the 2002 SDR Forum Technical
Conference, we reported on a prototype SDR which
provides various types of analogue/digital modulation, two
full duplex channels, and a frequency range of 2-500MHz,
evaluating hardware design approaches for multi-band,
multi-mode SDR. Succeeding this, in “Software
Architecture and Waveform Applications of Software
Defined Radio Based on SCA v2.2”[2][3] presented during
the 2003 same conference, we reported on an improved
prototype with upgraded hardware and adoption of the SCA
v2.2, examining our software architecture approach and
waveform applications. There, we commented “Having
some doubts about the necessity of the interface definition
for devices which generally do not provide software
portability, we reserve application of these interfaces
defined in SCA v2.2 until it becomes clear”.

In order to solve this issue, SDR Forum is studying HAL
(Hardware Abstraction Layer)[4]. We reconsidered
necessity of: By adaptively managing device-related
interfaces, the devices can be used even when internal or
external devices have no software portability due to
differences in compilers, or in memory maps. In order to
realize this consideration in the next SDR prototype, study
was carried out. This paper reports this study result.

The device-related interfaces defined in SCAv2.2
include: Device/LoadableDevice/Executable Device
interfaces that are needed when devices are used, and
aggregateDevice interface that controls relations between
above interfaces. And DeviceManager/DomainManager
interfaces manage above all interfaces. The devices as the
objects of these interfaces are CPU, DSP, FPGA, and
firmware connected to SDR. However, for the sequences of
procedure for using devices through these interfaces, only a
part is shown in SCAv2.2.

Our study results include:
1) For Device / LoadableDevice / ExecutableDevice

/aggregateDevice interfaces:
- The cases where these interfaces are applied.
- The relation between these interfaces and physical

interfaces including; not defined in SCAv2.2.

- Necessary considerations when these interfaces are applied.
2) For Management of the above interfaces by Device
Manager/DomainManager interfaces.
- Proposed description for management to be added to JTRS

SCAv2.2.

Our study results show that: Device-related interfaces
defined in SCAv2.2 become effective for use of devices, by
managing with DeviceManager/DomainManager interfaces
according to additional procedures we propose.

1. INTRODUCTION

We have developed hardware platform that provides high
flexibility and adaptability in SDR. And the prototype
presented during the 2002 SDR Forum Technical
Conference was developed to adopt the software
architecture of SCA v2.2, examining flexibility of
Waveform Applications for the software execution
environment and the expandability of functions. Since it
was unclear for us how Device-related Interface for
hardware contributes to the portability of the Waveform
Applications at that time, we reserved application of these
interfaces. Later, we recognized that: “assuring portability
of the Waveform Applications for hardware” and
“application procedure and management of hardware”
should be considered as independent issue. That is; although
SCA v2.2 made abstraction of how to use or manage logical
hardware and software, in order to contribute to the
portability of Waveform Applications for hardware, it is
necessary to make abstraction of the executive environment
for Waveform Applications. It is concluded with the both
abstractions the portability is available.

2. STATUS OF DEVICE/LOADABLE
DEVICE/EXECUTABLE DEVICE IN SCA V2.2

SCAv2.2 defines Device related Interfaces for abstracted
functions for hardware in the core framework where many

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

The Device related Interfaces are CORBA interfaces that
command hardware according to the above classification.
These interfaces are involved in DeviceManager and
Domain Manager, and the existence of these interface are
registered to the DeviceManager and Domain Manager.

 functions independent of the utilization gathers (Fig.1).
These hardware related Interfaces, that are software, are
called Logical Device and include three kinds classified by
its operation as described below:
a) Device－allocateCapacity:

 Judges availability of resource of hardware function.
3. STUDY RESULTS ON USE OF DEVICE, deallocateCapacity: Returns the resource.

BY MANAGING DEVICE-RELATED b) LoadableDevice－load/unload:
 INTERFACES IN SCAV2.2 Load/unload of information or software on the hardware.

c) ExecutableDevice－execute/terminate:
3.1. Application to Hardware of Device, Loadable Device,

Executable Device, Aggregate Device
Execute/terminate of the software loaded on the hardware.

Device has the following attributes: - UsageState/adminState/operationalState: Returns the
status. In order to meet the timing issues in such as sampling, data

processing of SDR, DSP and FPGA are widely used, though
CORBA Bus installation to these devices is difficult. In
order to cope with this issue, SCA v2.2 provides interfaces
so called adopter that works for connection between the
Software Bus and non-CORBA Bus of DSP and FPGA.

- SoftwareProfile: Returns the XML software description
for device.

- Label: device’s label.
- CompositeDevice: Returns the ObjectReference of

aggregateDevice The following are our study results on application to
the hardware:

Figure 1. Abstracted interfaces of hardware

＜＜Interface＞＞
Device

Attribute

usageState:UsageType
adminState:AdminType
operationalState:OperationalType
softwareProfile:string
label:string
compositeDevice:AggregateDevice

Method(operation)

allocateCapacity（capacities:in Properties）:boolean

deallocateCapacity（capacities:in Properties）:void

＜＜Interface＞＞
ExecutableDevice

execute（name:in string,options:in Properties,

paeameters:in Properties）:ProcessID_Type

terminate（processId:in ProcessID_Type）:void

＜＜Interface＞＞
LoadableDevice

load（fs:in FileSystem,filename:in string,

loadKind:in LoadType）:void

unload（fileName:in string）:void

 CPU inherits ExecutableDevic behaving software
execution.In general, GPP Device, which is the interface of
CPU (GPP), inherits ExecutableDevice, and will take a
sequence shown in Fig. 2 for the software allocated to CPU.
The allocate Capacity Judges availability of CPU for the
software to be allocated, from factors such as, CPU load
factor, use factor of the operation memory, and number of
software to be executed on the CPU. When it is available,
software is permitted to use the CPU and executes being
deployed on operation memory of the CPU.

 Although DSP and FPGA operate software execution

similar to the CPU, they inherit LoadableDevice. DSP and
FPGA behave load of software and configuration data
similar to CPU, but do not behave execute/terminate of
software without OS. Usually DSP and FPGA do not
provide Linux-like OS. However, they execute software that
is read out from memory where executing software and
configuration data are clearly allocated. Therefore, it is
convenient to use DSP and FPGA on operation of load
method for allocation and reading out of software to the
memory.

:GPP Device

allocateCapacity()
Capacity Check

execute()
SystemCall
⇒Load & Execute

Software using OS
system call

Figure 2. Sequence for software allocation on GPPFigure 1. Abstracted interfaces of hardware

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Table 1. Application Method of Device-related Interfaces

Hardware
Device

Interface Method Operation to be Applied Application Method of Operation

allocate
Capacity

･Judges margin of CPU load, CPU
occupancy time-rate, etc.
･Increments number of Executed

Software, etc.

deallocate
Capacity

Decrements number of the Executed
Software, etc.

Judges availability of the device by:
･Obtaining data by OS System Call, and
･Managing number of executed Software in GPP

Device Class.

load/
execute

Load and Execution of the Software. Executed by OS System Call that depends on the Load
Types.

CPU
(GPP)

Executable
Device

unload/
terminate

Termination of the Software Terminates by using Process ID of executed Software
used by OS System Call
.

allocate
Capacity

･Judges margin of available DSP
Resource, Memory size, etc.
･Increments number of DSP, renews

memory size, etc.
deallocate
Capacity

･Decrements number of DSP, renews
memory size, etc.

Judges availability of the device by managing DSP
resource and memory size in DSP Device Interface.

load ･Writes in Software to memory.
･Interruption of reboot to DSP.

DSP Loadable
Device

unload ･Interruption of reset to DSP.
･Erase Software from memory.

･Memory write in / erase out, by using the device
driver. (The directions to a device driver depends on
arg LoadType.)
･Reset/reboot interruption to DSP by using the device

driver.
allocate
Capacity

･Judges margin of available FPGA,
memory size, etc.
･Increment number of FPGA, etc.

deallcate
Capacity

･Decrements number of FPGA, etc.

Judges availability of the device by managing FPGA
resource in FPGA Device Interface.

load ･Writes in configuration data to memory
to be loaded.
･Interruption of reboot to FPGA.

FPGA Loadable
Device

unload Erases configuration data from memory.
･Interruption of reset to FPGA.

･Memory write in / erase out, by using the device
driver
(The directions to a device driver depend on arg
LoadType.)
･Reset/reboot interruption to FPGA by using the

device driver.
LAN
/Serial

Device allocate
Capacity/
deallcate
Capacity

･Judges available number of resources
(e.g. LAN/Serial port).
･Increments/Decrements number of

resources, etc.

Judges availability of I/O device, by managing number
of Ether/Serial resources, and memory size.

allocate
Capacity

Increments number of resources (e.g.
number of RF Channels) in use, etc

deallcate
Capacity

Decrements number of resources, etc.

Manages number of Firmware resources (e.g. RF
Channel etc.).

load Transmits and commands configuration
information or software.

unload Transmits deletion command.

Transmits load/unload command according to the
interface specifications, by using device drivers or OS
services (May transmits execute command
simultaneously).

execute Transmits execute command.

Firm
Ware

Loadable
Device
or
Executable
Device

terminate Transmits terminate command.

Transmits execute/terminate command according to
the interface specifications by using device drivers or
OS services. (May transmits load command

simultaneously).

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

 Each interface of CPU, DSP, FPGA is allocated as shown in
Fig. 3 so that each can be commanded through CORBA. Table2. Necessary considerations for application

of Device-related interface
 Consideration

item Necessary consideration

Kind of
applied
interface

･Availability of major functions of devices.

･Appropriate operation sequence for
devices.

･Exchangeability of device software

Allocated
position

Availability for connection of device
Interface to both software bus and
hardware.

Execution
ability

･Judgment of applicable software to device.

･Command to hardware on: loading,
execution/stop, and deletion of software.

Expandability Ability of addition/removal of Device
interface for hardware expansion/reduction

Software Bus

Black Hardware Bus

CPU（Hardware） DSP or FPGA
（Hardware）

FPGA or DSP
Device

GPP_Device

OS
 Device

Driver

 Figure 3. Distribution example 3.3 Management by Device Manager and use for Device Command from each interface to hardware is included in
Table 1. Based upon the partial descriptions on this theme in SCA

v2.2, we understand as follows: In order to use Device
related interface, DeviceManager is provided. It is a
software interface that indicates available software resource
that inherits the Device interface. DeviceManager provides
method for registration/removal of ObjectReference of
Device and Service. DeviceManager adds the registered
ObjectReference to the attribute value. As shown in Fig. 4,
the software can obtain Object Reference of available
Device and Service from its attribute value identified by
accessing to the attribute of DeviceManager.

 According to the application methods indicate in Table
1, it is possible to use functions uniformly as CORBA
interfaces of Device/ loadableDevice/ExecutableDevice
regardless of control object, DSP/FPGA or external
interface/firmware.
 Linux-like OS can make socket with system call as an
application of network device (e.g. Ether).
 Since restriction of use of hardware device by allocate
Capacity depends on capacity, interface or method, which
treats approval of software execution, need to be added as
described in the following Section.

The sequence of registration by Device, using
DeviceManager, from start of hardware operation until
completion of the registration, is shown in SCA v.2.2. Aggregatedevice is the interface that commands the

combination of devices (e.g. combination of DSP and
FPGA) when such combination is used.

Device
Manager

Get attribute(registeredDevice)

Get attribute(registeredService)

DomainManager or
ApplicationFactory

ServiceSequence

DeviceSequence

3.2. Necessary consideration for application of Device,

Loadable Device, Executable Device, Aggregate
Device

Necessary consideration for application of Device-related
interface is shown in Table 2. In particular consideration
for Execution ability is important.

 SCA v2.2 does not explain protection method for
combination of unauthorized or unidentified software and
hardware. In order to cope with this issue, we defined
following to the framework: interface for acceptance and
detailed behavior, for the software execution on device.

Figure 4. Use of available Device and Service
ObjectReference

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

 3.4. Management and use of Device by DomainManager

As described in SCA v2.2, DoaminManager manages the
resource in Domain as the whole. That is, all the object
references of Device and Service, registered by Device
Manager as described in section 3.3, are registered in
DomainManager. Object References, such as Application,
are registered also in DomainManager.

For the management and the usage of Device that are
not described in SCA, we used the following methods:

 - For ObjectReference of available Device: To obtain based on the attribute of DomainManager which includes all
 available Device Managers in a domain.
 - For hardware availability and expandability: To perform

registration operation to DomainManager by allocating
one or more DeviceManager/Device to the additional
CPU board and additional hardware.

- For hardware reduction or removal: By the sequence
shown in Fig.5.

create

Domain
Profile

Evaluate & Obtain profile Instance

Domain &
Application Info

DeviceManagerSequence

Get attribute(registeredDevices)

DeviceSequence

repeats

continue

Identifier,label

Get attribute(identifier,label)

Get attribute(registeredDeviceManagers)

Domain
Manager

Device

Device
Manager

Application
Factory

Domain
Manager

unregisterDevice(in Device)

Delete Device’s ObjectReference
 from registeringDevices.

unbind

ReleaseObject()

Shutdown()

Naming
Service

Device Device
Manager Figure6. Uses Device, DeviceManager and

DomainManager for DomainCreate

3.5. Arrangement and command for Device-related

interface, DeviceManager, and DomainManager

We have coped with this issue that is not described in
SCA v2.2, as follows:

Device-related interface, DeviceManager, and Domain
Manager are arranged as shown in Fig. 7.

- Construction of Application (Domain formation) by

ApplicationFactory: Information of available Device
resource for construction of Application is obtained from
Object References managed by DomainManager. Based
on this information, ApplicationFactory accesses to
Device necessary for construction of Application (Fig.6).

FPGA

Modem_
GPP

Control_
GPP

DSP LAN/
Serial

FPGA_
Device

Device
Manager

Adaptor

DSP_
Device

GPP_
Device

Device
Manager

GPP_
Device

Domain
Manager

Device
Manager

I/O
Device

GPP_
Device

Interface_
GPP

Figure7. Device/DeviceManager/DomainManager
deployment

：CORBA component on OS

Figure 5. Sequence for hardware reduction
or removal

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

With this arrangement, each interface is called through the
software bus, so that management and use of Device can be
made corresponding to the following various cases:
- Loading and execution of software for the hardware

device where Device delegates its function,
- Addition or removal of hardware device can be performed

freely by operation of a Device related interface that
delegates its function to the hardware device. This makes
system flexible for system expansion or reduction.

3.6. Management procedures to be added to SCAv2.2

Device-related Interfaces defined in SCAv2.2 are abstracted
interfaces that can correspond to various physical interfaces
or use cases for application to a hardware device. And
combining with a Manager interface, addition or removal of
a hardware device can be performed flexibly. That is,
Device is sufficiently managed.

However, as described in the previous Sections, the
following management procedures should be added to
SCAv2.2 and standardized.
1) Software approval sequence (See 3.1):

The software executed on GPP board should be approved
one for each GPP board (CPU) operation.

2) Operation for obtaining the ObjectReference of arranged
Device in creating operation of ApplicationFactory. (See
3.4):
(By standardizing the method of obtaining ObjectReference
of Device that arranges software, compatibility of Application
Factory with the platform can be increased)

3) The arrangement rule of a Device interface (See 3.5):
Arrangement of Device interface should be described
(Depend upon the Arrangement of Device, some isolated
interfaces may exist which can not be called from
software bus.)

4. CONCLUSION

We have carried out our study considering that:
By adaptively managing Device-related interfaces, the
Devices can be used even when internal or external devices
have no software portability due to differences in compilers,
or in memory maps.
 As the results, we have confirmed appropriateness of
the above consideration, as described in Section 3. That is:
With the following countermeasures, Device-related
interface of the framework in SCAv2.2 is sufficiently
effective:
- Appropriate consideration for application hardware of

Device-related interface (Table 1 and 2).
- Appropriate arrangement and direction system of Device

Manager and DomainManager. And management
and use of Device by DeviceManager and Domain
Manager (Fig.3, and 3.5)

- Appropriate management procedures to be added to
SCAv2.2 (3.3, 3.4, and 3.6)

In the above, we proposed management procedures for
Device-related interface to be standardized (Fig. 5 and 6).
We hope that: These standardizations are put into practice
and the portability in the field of management procedure
progresses. Furthermore, by SCA with HAL, portability of
execution environment is further progressed, and obstacle to
standardization on execution environment is eliminated.

We will further continue our studies including HAL.
However, above study results will be introduced to our
recent SDR proto type, aiming at SDR where Device-related
Interfaces and Managers are fully applied.

Our goal is production of SDR that is fully application
compatible. SCA should further be improved. We will also
continue our study according to that.

5. REFERENCES

[1] I.Teshima, K.Takahashi, Y.Kikuchi, S.Nakamura, and

M. Goami, “Development of Software Radio Prototype”,
Proceedings of the 2002 Software Defined Radio
Technical Conference Volume 1, pp.169-174, November
11-12, 2002.

[2]Y.Kanahashi, I.Teshima, S.Nakamura, M.Goami, and
T.Fujii “Software Architecture and Waveform
Applications of Software Defined Radio Based on
SCAV2.2”, Proceedings of the 2003 Software Defined
Radio Technical Conference Volume 2, PST-2,
November 18-19, 2003.

[3]Software Communications Architecture (SCA)
Specification MSRC-5000SCA, V2.2,17 November
2001

[4] Software Communications Architecture (SCA)
Specification JTRS-5000SCA, V3.0, 27 August 2004

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

