

ASSESSING THE IMPACT OF SOFTWARE-DEFINED RADIO TECHNOLOGY

ON WAVEFORM THROUGHPUT DELAY

Charles A. Linn (Harris Corporation, Rochester, NY USA email: Charles.Linn@harris.com)

ABSTRACT

Compared with the analog hardware based radios of past
years, the modern software-defined radio provides an
unparalleled degree of capability and versatility, enabling
complex waveforms that were inconceivable in the past to
be implemented with ease. Legacy waveforms and the
systems dependent on them continue to persist in the present
day, however, and the new technology has challenges
meeting certain parameters that were not issues in older,
analog radios. Data throughput delay, the end-to-end time
required to transmit data through a radio system, is one of
these “problem” parameters.

This paper examines from both a theoretical and

practical standpoint the modeling of Throughput Delay (TD)
and its effect on system performance. Examples are taken
from both the Joint Tactical Radio System (JTRS) system
[1] and legacy waveforms employed by that program.
Techniques that either minimize the delays themselves or
change the nature of the end-to-end communications system
such that the delay changes are largely inconsequential are
discussed, as well as the role of evolving platform
processing capability in addressing this problem.

1. INTRODUCTION

During the last four decades both military and commercial
radio systems have been undergoing a transition from analog
voice to digital (or digital voice) communications systems.
This transition has resulted in the evolution of a vast array of
digital communications waveforms and associated data
transmission equipment to support this growing need.

During the same time period, the radio platforms

supporting these waveforms have been undergoing a
different evolution. Whereas as little as 15 years ago the
vast majority of radio platforms were principally
implemented using dedicated analog and digital hardware,
the last decade has seen a strong paradigm shift towards
software-defined radios and their corresponding waveform
implementations.

Although in most respects these two trends have been
synergistic, there exist several well-known areas where these
two trends have been in tension. One such area is that of
waveform throughput delay (here, TD). Throughput delay
can be given many specific definitions, but generally
describes the absolute time delay it takes to move a piece of
data through a communications system. In some systems,
TD is non-critical and has a relatively minor impact of the
operation of the system – a millisecond-level increase in a
minute-level message. In other systems, however relatively
minor changes in TD can have significant impacts of system
performance or user quality-of-service (QoS).

To alleviate the problems caused by TD, two

approaches can be taken. The first is to identify and
optimize the individual areas that contribute to the overall
delay. A second approach, when practical, is to re-factor the
overall system such that it accomplishes the same end but in
a way less impacted by the added delay. Both techniques
should be employed to be able to enjoy the beneficial
features of software-defined radios without paying
significant performance costs.

2. THROUGHPUT DELAY MODELING

Before we can optimize TD, it pays to understand the
component contributions to the problem. A communications
channel can be defined as consisting of “the part that
connects a data source to a data sink” [2]. Since the focus in
this paper is on software-defined radios, we will further limit
this definition to apply just between two radios in a system
as connected by a given “waveform” under consideration.

Several types of communications channels are used in

current systems. In government and military systems, these
channels could be classified as follows:

1. Analog channel (voice or audio information)
2. Digital voice communications (synchronous)
3. Synchronous data channel
4. Asynchronous data channel
5. Packet-based (usually IP-based) data channel
Of these channel types, this paper will primarily

concentrate on the synchronous digital voice and data
channel types. From a system performance point-of-view,
these tend to be the most sensitive to TD variations – in the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

case of digital voice, the additional delay is annoying to the
user, while synchronous data is often associated with ARQ
data links inside the data source/sink.

Synchronous data transmissions systems are

characterized as continuous data flow systems. With some
systems there is an initial “request-to-send / clear-to-send”
handshake to initiate the flow. Once data flow begins,
however, the Data Terminal Equipment (DTE) supplies
continuous data and associated clock at a fixed channel rate.
The delivery continues without interruption until the
transmit session (“message”) is finished. Similarly, on the
receiving end, once data arrives and has propagated itself
through the radio, it is presented to the radio as a
continuous, constant rate flow until end-of-message.

The “data-path” processing from data source to antenna

(or from antenna to data source) can typically be generalized
as a chain of processing elements, characterized as shown in
Figure 1. Each element N receives “blocks” of data from
the previous element (N-1), except element 1, which initially
collects and presents the data into the system.

For a given element, several parameters are considered:
• Once the data has been transported into the proper

address space, the operating system must “schedule” the
block for execution. This time is represented by tsn.

• The element must then process the data, which is
represented in time by tpn.

• As part of its processing, the element may grow or
shrink the data rate by a multiplicative factor Gn.
Examples of this growth would be the application of
error-correcting or detecting codes, upsampling, etc.

• The element could add data before the first block of
data (a preamble of some sort). This is assumed to be at
the output data rate, and represented by size Pn.

• The element could potentially buffer data, i.e. absorb
one or more input data blocks before outputting a block.
This generalized buffer behavior is symbolized by Bn,
which is the amount of data that must be initially
received before the first output block can be issued.

• Finally, the output is sent to the next element. The time
required to transport the output data to the proper
address space, etc. for subsequent processing is
assigned a time of ttn.
There are certainly more parameters that one could

characterize, but these are most important in analyzing the
TD of a system. Here it is important to note that in a
synchronous data system, since data flows continuously once
it starts, when considering TD one only needs to consider
the “leading edge” of the wave for data – for once at any
stage in the system data starts flowing, if the average
constant rate is not maintained, the system fails in real time.
For this reason, it is unimportant here if, for example a
element introduces a postamble, as this does not affect the
leading edge of the data.

Given these parameters, let us look at the overall delay

through several stages. Excluding the impact of the
buffering term (which is discussed later), the delay can be
calculated as follows:

This formula is simpler than it appears. The first three

terms inside the sum simply represent the additive delay of
the scheduling, computation and transport delays. The
second term merely accounts for the time to transmit a given
stage’s preamble as related back to the source bit period
(Tb0) by using the growth ratio Gn of all previous stages. It
could just as easily be expressed as a given stages preamble
data length divided by the output rate of that stage. With
this understanding, it merely states that the total delay is
equal to the sum of all the component delays plus the extra
delays introduced by the preambles.

Two additional factors frequently influence TD beyond

that in the formula above. The first is the Bn parameter,
which represents the “initial buffering delay”. This is a key
factor in influencing TD, but cannot be easily expressed in
closed form. For the first element the action of this term is
straightforward – B1 bits need to be first accumulated before
the output can be issued at all. This “startup buffering
delay” is almost always present in software-based systems,
since usually at least a byte (8 bits) of data or more needs to
be accumulated before any processing begins. For
subsequent stages, however, the effect of such buffering is
more complex. First of all, it is important to remember that
only the initial “data wavefront” need to considered – so for

∑
∏=

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+++=
k

n
bn

m
m

n
tnpnsntot T

G

Ptttt
1

0

1

Figure 1: Processing Element Parameters

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

a given stage, the only thing that matters is if the first output
data block will be issued as a result of the first input block
of data, or the second, etc. If first received block results in
the issuance of an output block, than that stage’s the data
wave propagates with no buffering delay (and hence has not
impact). If additional input blocks are required, however,
the TD is increased by the time equivalent to an integral
number of data blocks timed at the input of the processing
element. For example, if an processing element contains a
block interleaver that requires 110 bytes of data, and if data
is arriving in 12 byte blocks at a rate of 2000 bytes per
second (166.678 blocks per second), the TD added by the
interleaver would be 60 ms, as it takes 10 blocks of data to
deliver (and somewhat exceed) the required data. On the
other hand, if data was arriving in 200 byte blocks, the
interleaver would add no output delay, as the required
amount of data would already be satisfied.

There is a common misconception that when multiple

processing elements are “chained”, you pay a TD time for
each element, since the pipeline “must be filled”. While true
in many clocked hardware systems, in the typical SW radio
case this is often not true. If a proper starting block size
(B1) is chosen to be large enough for downstream blocks,
then the first packet of data will flow through the system
without additional buffering delays – just the scheduling,
processing and propagation times will be additive.

A second additional factor is the time that passes from

the initial “data request” (typically represented by “RTS”, or
request-to-send) to the “clear-to-send” signal, (“CTS”)
issued to the data source. During this period of time the
source wants to send data, but is not allowed to send it. For
the purpose of this paper this is considered part of the
overall TD period, as it has the same effect of “delaying” the
data to its definition as waveform “pipeline delay” alone has.

To tie these concepts together, let us consider the

simple representative example shown in Figure 2. Data is
received by a serial interface at 16kbps. The element 1
output data “block size” is 128 bits (16 bytes), giving a
“block rate” of 8 ms per block – typical for a SW radio. It
is then encrypted, which adds a 1000 bit preamble, then
encoded using a 2:1 code. The resultant bit stream is then
sent to a modulator which modulates it to a 96 K

symbol/second stream in conjunction with a 8,000 symbol
modem preamble. Given the sample parameters supplied,
Ttot is calculated at 103.3 ms, to which we add an additional
8 ms to account for the initial stage’s buffering of 128 bits,
giving an overall TD of 111.3 ms.

3. THROUGHPUT DELAY SYSTEM IMPACT

In many cases a moderate increase in TD has negligible
effects on overall system performance. For example, if a
synchronous data link is used to transmit a video image
(without error correction, which is often acceptable in this
case), a 50 ms increase in TD is trivial compared with, for
example a 10 minute image transmission time. However,
when an external data link protocol is employed outside of
the radio itself, performance problems can become more
significant. These systems typically use Automatic Repeat
Request (ARQ) and TDMA techniques that involve rapid
changes of the (half-duplex) radio link between transmit and
receive or precise positioning of transmissions in time over
the channel. In ARQ data links, a single long message is
broken into multiple “slices”, with each slice sent, checked
at the far end, with an acknowledgement of receipt returned
before the next slice is sent (or the previous block is resent).
In these systems since the transmissions themselves are very
short, an increase in throughput delay constitutes a larger
proportion of the channel time. This alone tends to cause a
moderate decrease in system performance.

When these systems are combined with multiple

channel access techniques, however, the problem can be
compounded. In these systems, there are potentially
multiple nodes competing for the channel. Most systems of
this type use some sort of traffic sensing (carrier sense) on
the channel prior to transmission, i.e. “listen before
transmit”. The problem is that it takes a finite amount of
time for the radio to detect the traffic and propagate this
information to the data link. In addition, once a given node
decides the channel is clear, it takes a finite amount of time
(throughput delay) to actually start transmitting on the
channel, in addition to the time it takes for the RF wavefront
to propagate to the other nodes. During this critical time,
other nodes could also be beginning similar transmissions,
resulting in collisions between traffic, at which point the
entire process begins again. Although many different

Figure 2: Example Processing Chain

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

protocols have been developed to avoid unnecessary
collisions, for all practical purposes the transmit waveform’s
“key-time to traffic on channel” (which falls within the TD
definition for this paper) is additive to the channels
propagation delay time. In addition, if the system relies on
actual receive data as the only carrier sense mechanism, the
receive TD time also adds in this way. In these cases, even
small increases in TD can cause a significant fraction of the
channel to be denied in saturated traffic conditions.

Several applicable examples in the military community

would be with Mil-Std-188-220 [4] and the Mil-Std-188-184
[5] protocols, both of which are sensitive to TD and other
radio delays. Another example employing TDMA
techniques would be Mil-Std-188-203 (Link-11) [6]. Link
11 employs a TDMA type structure between a central station
and a number of “picket” stations. Picket responses are time
slotted in nature, and fixed in the standard– as a result it is
up to the radio equipment to comply with the key time and
TD requirements or not be usable in the system.

4. ANALOG VS. SW-DEFINED RADIO

CHARACTERISTICS

Now that a model TD has been defined, we can discuss in
these terms what has happened as we have evolved from an
analog, hardware-based platform to today’s SW-defined
radio platform.

Analog platforms (at least with simple waveforms) are

in many cases capable of processing the data bit by bit as it
arrives. The encryption, and digital voice processing is
traditionally not integrated “into” the radio, further reducing
delays. The “processing elements” are often indistinct and
little or no scheduling or tasking delay occurs between them.
From a model standpoint, here are some typical parameters
for, say a VHF-FSK waveform:

• tsn = 0 (no processor)
• tpn, ttn < 1 ms (hardware, filter delays)
• Gn =1 (inherent in FSK, no coding)
• Pn still present for modem, delays CTS return

 Here we see that for this simple waveform, the TD due
to the processing elements is quite small. However, the
same modem preamble (usually a “dotting” 1/0 pattern) still
needs to be emitted. Since the analog hardware cannot
“buffer bits”, this is accomplished by either delaying the
return of CTS, or by having the data source supply the
preamble pattern itself. However this is done, this time
should be considered as TD, and will be similar to the same
element on any radio platform, hardware or software based.

A modern software based radio is quite different for a

number of reasons. First of all, almost all implementations
process data in blocks of one or more bytes, not “by the bit”.

Since in many implementations the scheduling tsn and
transport ttn times are relatively independent of data block
size and significant compared with the data processing time
tpn, this pressures the designers to utilize still larger block
sizes to limit the processing capability required to host the
waveform.

At the same time, cryptographic functions, which have

traditionally been external, standalone pieces of equipment,
have been integrated into the radio. In addition, the
characteristics of the cryptographic equipment itself are
changing. Whereas most US government cryptographic
devices traditionally processed data one bit at a time, both
newer cryptographic algorithms as well as the software
encapsulations of the “classic” algorithms frequently process
multiples of bytes of data. For example, in the JTRS
Security Supplement “transform” API [3], data is submitted
to the cryptographic subsystem as a sequence of bytes – no
provision is mode for processing less than 8 bits of data.
Although in general this does not cause an increase in TD
unless the block size used is greater than the output block
size of the preceding stage, it does set a minimum block size
of 8 bits, hence setting a minimum TD for any system.

It is hard to generalize “typical” software-based radio

system parameters, but the following parameter ranges are
common in radio platforms designed to the JTRS SCA[1]
standard:
• tsn (scheduling time): .1 to 4 ms
• tpn (processing time): .5 – 20 ms, varies with function,

block size, etc.
• ttn (transport time): .6 – 3 ms minimum, plus data copy

time
• B1 (initial buffering size, first element in chain): 4 – 20

ms.
The other parameters (Gn and intermediate buffering

size Bn) are typically a function of waveform design and not
specifically influenced by the SDR architecture per-se.

In summary, when one considers all of the factors it can

be difficult to perform true “apples to apples” comparisons
between older, analog radios and today’s SDRs. However,
in many cases the additive delays plus a typical initial
buffering delay typically adds an additional 20 – 30 ms to an
SDR implementation compared with its analog brethren.

5. REDUCING SDR THROUGHPUT DELAY

To reduce the TD in a system, one works by minimizing the
individual contributors in conjunction with intelligent
architecting of the waveform itself.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Minimizing tsn (scheduling delay): in an SDR, this
represents the time when a given process element can
logically begin processing, but has not yet been allotted time
(scheduled) by the operation system to do so. Two things
are required in most operating systems– the process (or
thread) must become the highest priority available to run,
and the “context” switch to that new task must be
accomplished. Here standard embedded system
optimization techniques apply—ensure that the waveform
runs at a higher priority than other, less critical functions,
and avoid priority inversion situations.

Several techniques can be used to minimize the

scheduling delay. First, the sequence of scheduling itself can
be modeled to ensure no more context switches are required
than are necessary. For example, when an upstream element
A sends data to element B, depending on the OS it may be
beneficial to have element A at a higher priority than B, so
A can send its data, block, and only then have a single
context switch to B (vs. an A B <runs, blocks> return
to A <which blocks> sequence). Many OS’s address this
problem by, when several processes are eligible to run at the
same priority, allowing the currently executing process to
complete its processing before the other processes can be
scheduled. This of course needs to be traded off with OS
“fairness” policy.

A second technique is to minimize the context switch

time itself. Operating systems that implement
“heavyweight” processes involving separate address spaces
provide a useful isolation mechanism, but it comes at a
significant cost when context switches must be performed.
Consider instead using either a lightweight thread tasking
model, or, if possible, implement the two components in the
same address space involving a simple “call” relationship.
This technique not only minimizes the scheduling delay, but
also simultaneously minimizes the transport delay ttn as well.

Minimizing ttn (transport delay): To minimize ttn, first
work to collocate components in the same process space,
and if possible in the same thread space. In some cases this
allows the “transport” to be optimized to a simple function
call, with dramatic savings. When compared with a typical
waveform using an “each component in its own process
space” approach, tens of milliseconds in TD can be
potentially saved in this way.

In architectures (such as JTRS) where a middleware

layer such as CORBA is being used, be sure that you are
using an efficient transport mechanism. Often the
“standard” transport mechanism is based on TCP/IP, which
is very inefficient and often overkill compared with alternate
transport mechanisms such as shared memory or OS
message passing protocols.

Choosing an optimal data block size: Several factors
affect the choice of block size, and in this area minimizing
TD is in tension with minimizing processing power. For
example, compare two otherwise identical systems where
only the block size defined by the most upstream component
(B1) varies. Since in many systems the most upstream block
size is used throughout the entire element chain, and the
time it takes to collect this data block is proportional to the
block size, it is obvious that a system with a one byte block
size is going to have both a lower TD and a higher required
processing load than a system with a block size of, say 256
bytes. Although many systems use a fixed block size
(usually based on the highest data rate in the system), this
can result in very long TDs at the lower data rates, even
though spare processing power may be available at these
lower data rates. Since most systems support multiple data
rates, it also appears likely that different block sizes
probably make sense for different data rates. To address
this, the data sources at the “edge” of a waveform (such as
audio and data interfaces in the transmit directions, and the
receiving modem FPGA / DSP component in “receive”)
should be configurable to allow different block sizes. For
example, it would be useful to have a configuration property
“desired block size” in a Serial Port Device to allow the
waveform to set this parameter to appropriate values as a
function of data rate and waveform needs.

But what block size should a waveform choose? It is

usually best to strive for a (mostly) common “block rate”,
independent of data rate. For a small, battery powered
system this “block rate” may be 20 ms per block, while for a
more powerful platform a block size of closer to 8 ms could
be used. The block size, where possible should be chosen to
be at least as large as the largest initial buffer (max of Bn,
adjusted to match the source data rate) in any downstream
components. For example, if in a system with a 256 byte
interleaver block somewhere downstream, having the Serial
Port Device dole out 8 byte packets is most likely to cost
processing power without improving TD. When calculating
these levels, it is important to also consider the additive
effects of any preambles as well as the data rate growth
ratios (Gn) in the calculations.

Carefully design clock correction functions: Often in
synchronous systems so-called “clock correction” is
required. Although outside of the scope of this paper, clock
correction is the overall process whereas the transmit signal-
in-space timing is adjusted to match the DTE Tx clock, and
conversely, where the receive Rx clock supplied to the DTE
is adjusted to match that of the incoming signaling.

In hardware based systems, clock correction was a

rather straightforward phase-lock-loop problem. In software

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

systems, however, the “control loop” approach is difficult to
implement without use of “measure buffers”, a.k.a. “leaky
buckets”. In these systems, changes to the data level in a
buffer are used to make clock adjustments. While simple to
implement, the data level in the bucket adds to TD. A
harder but alternate “open loop” approach minimizes this
problem by directly measuring clock procession on one side
of the system and communicating the desired changes to the
other side.

Optimize RTS / CTS (“keyup”) delay: Another
contributor to TD is the time it takes for the system to accept
data for transmission. In general, standard optimization
techniques should be considered to reduce this critical
parameter in the system. From the specific context of
minimizing TD, however, several other techniques can be
employed. The first technique, usable when the keyup delay
is rather deterministic, allow the data to start flowing (and
hence filling the system buffers) in parallel with preparing
the rest of the system for transmission. While effective, this
technique is fraught with danger, however. With a
synchronous interface, once data flow begins, it cannot be
stopped. If for any reason the system is unable to transmit,
or takes much longer than anticipated, internal buffers could
overflow, and data could potentially be lost from the system.
This technique can also lead to the dreaded “execution time
dependent software package”, and even minor delays in
execution could cause system failure.

A similar and somewhat safer technique is to allow

preamble transmission to begin before the first data packet
has been buffered from the most upstream data device.
Consider a system with a encryption preamble of 100 ms
operating in conjunction with an upstream Serial Port
Device that is configured to provide data blocks at a 16ms
block rate. If, one the system is ready to transmit data, the
encryption preamble can be passed downstream immediately
simultaneous with the issuance of CTS to the data device. In
this way, 16 ms of throughput delay is saved. Care must be
taken, however to ensure that the transmitted preamble is
longer (at a minimum) than the first packet buffer time –
otherwise the system could “run dry” of data while waiting
for the first packet (a system failure).

6. MIMIMIZING THROUGHPUT DELAY IMPACT

Although not always an option, perhaps the best solution to
optimize system performance is to refactor the system to be
less sensitive to TD as well as other system timing variations
(which also tend to be higher on SDRs compared to legacy
hardware-based radios). To do this, external functions are
drawn “inside” the waveform, where it is possible to better
control the timing. ARQ and TDMA protocols should if
possible be run on the non-encrypted side to provide for

tighter control of timing as well as to minimize
“downstream” TD contributions. Not only does this make
the system “tighter”, but also does not constrain the system
from communicating in critical areas using legacy hardware
interfaces.

For an example, when Mil-Std-188-220 [4] is moved from
an external piece of equipment to an internal function, some
TD is immediately saved because the data link does not need
to stream this data to the radio at a fixed bit rate – rather it
simply sends a packet downstream. In this way, the “first
block” collection time is saved. Further savings are realized
since the system does not have to perform clock correction
functions, and better signal presence communications are
available. Using similar reasoning, internally hosted TDMA
systems can more accurately position over-the-air signaling
compared with an external unit.

Unfortunately, in many cases the legacy standards are
written in such a way that prevents taking full advantage
with embedment. Still, it is important to keep these
techniques in mind as newer waveforms are designed.

7. CONCLUSIONS

With an understanding of what factors can contribute to TD
in a radio coupled with knowledge on how TD can affect an
overall system, platform and waveform architects can work
to minimize this parameter. While TD can never be
eliminated or reduced to match the levels in prior analog
radios, yet one more “challenge” can be removed from the
promise that software-defined-radios have to offer.

10. REFERENCES

[1] Joint Tactical Radio Systems (JTRS) Joint Program Office.

“Software Communications Architecture Specification”
Document JTRS-5000 SCA V3.0, August 27, 2004.

[2] American National Standards Institute, Inc., “ATIS Telecom
Glossary 2000” Document T1.523-2001, www.atis.org, 28
Februrary, 2001.

[3] Joint Tactical Radio Systems (JTRS) Joint Program Office.
“Security Supplement to the Software Communications
Architecture Specification” Document JTRS-5000 SEC v3.0,
August 27, 2004.

[4] Department of Defense. " DIGITAL MESSAGE TRANSFER
DEVICE SUBSYSTEMS” MIL-STD-188-220C. 22 May,
2002

[5] Department of Defense. "INTEROPERABILITY AND
PERFORMANCE STANDARD FOR THE DATA
CONTROL WAVEFORM” MIL-STD-188-184. 20 August,
1993.

[6] Department of Defense. “MILITARY STANDARD
Interoperability and Performance Standards for Tactical
Digital Information Link (TADIL) A” MIL-STD-188-203-1A.
8 January, 1988.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

