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ABSTRACT 
 

Compared with the analog hardware based radios of past 
years, the modern software-defined radio provides an 
unparalleled degree of capability and versatility, enabling 
complex waveforms that were inconceivable in the past to 
be implemented with ease.  Legacy waveforms and the 
systems dependent on them continue to persist in the present 
day, however, and the new technology has challenges 
meeting certain parameters that were not issues in older, 
analog radios.  Data throughput delay, the end-to-end time 
required to transmit data through a radio system, is one of 
these “problem” parameters. 

  
This paper examines from both a theoretical and 

practical standpoint the modeling of Throughput Delay (TD) 
and its effect on system performance.  Examples are taken 
from both the Joint Tactical Radio System (JTRS) system 
[1] and legacy waveforms employed by that program.  
Techniques that either minimize the delays themselves or 
change the nature of the end-to-end communications system 
such that the delay changes are largely inconsequential are 
discussed, as well as the role of evolving platform 
processing capability in addressing this problem. 

 
 

1. INTRODUCTION 
 

During the last four decades both military and commercial 
radio systems have been undergoing a transition from analog 
voice to digital (or digital voice) communications systems.  
This transition has resulted in the evolution of a vast array of 
digital communications waveforms and associated data 
transmission equipment to support this growing need. 

 
During the same time period, the radio platforms 

supporting these waveforms have been undergoing a 
different evolution.  Whereas as little as 15 years ago the 
vast majority of radio platforms were principally 
implemented using dedicated analog and digital hardware, 
the last decade has seen a strong paradigm shift towards  
software-defined radios and their corresponding waveform 
implementations. 

 

Although in most respects these two trends have been 
synergistic, there exist several well-known areas where these 
two trends have been in tension.  One such area is that of 
waveform throughput delay (here, TD).  Throughput delay 
can be given many specific definitions, but generally 
describes the absolute time delay it takes to move a piece of 
data through a communications system.  In some systems, 
TD is non-critical and has a relatively minor impact of the 
operation of the system – a millisecond-level increase in a 
minute-level message.  In other systems, however relatively 
minor changes in TD can have significant impacts of system 
performance or user quality-of-service (QoS). 

 
To alleviate the problems caused by TD, two 

approaches can be taken.  The first is to identify and 
optimize the individual areas that contribute to the overall 
delay.  A second approach, when practical, is to re-factor the 
overall system such that it accomplishes the same end but in 
a way less impacted by the added delay.  Both techniques 
should be employed to be able to enjoy the beneficial 
features of software-defined radios without paying 
significant performance costs. 

 
2. THROUGHPUT DELAY MODELING 

 
Before we can optimize TD, it pays to understand the 
component contributions to the problem.  A communications 
channel can be defined as consisting of “the part that 
connects a data source to a data sink” [2].  Since the focus in 
this paper is on software-defined radios, we will further limit 
this definition to apply just between two radios in a system 
as connected by a given “waveform” under consideration.   

 
Several types of communications channels are used in 

current systems.  In government and military systems, these 
channels could be classified as follows: 

1. Analog channel (voice or audio information) 
2. Digital voice communications (synchronous) 
3. Synchronous data channel 
4. Asynchronous data channel 
5. Packet-based (usually IP-based) data channel 
Of these channel types, this paper will primarily 

concentrate on the synchronous digital voice and data 
channel types.  From a system performance point-of-view, 
these tend to be the most sensitive to TD variations – in the 
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case of digital voice, the additional delay is annoying to the 
user, while synchronous data is often associated with ARQ 
data links inside the data source/sink. 

 
Synchronous data transmissions systems are 

characterized as continuous data flow systems.  With some 
systems there is an initial “request-to-send / clear-to-send” 
handshake to initiate the flow. Once data flow begins, 
however, the Data Terminal Equipment (DTE) supplies 
continuous data and associated clock at a fixed channel rate.  
The delivery continues without interruption until the 
transmit session (“message”) is finished.  Similarly, on the 
receiving end, once data arrives and has propagated itself 
through the radio, it is presented to the radio as a 
continuous, constant rate flow until end-of-message.  

 
The “data-path” processing from data source to antenna 

(or from antenna to data source) can typically be generalized 
as a chain of processing elements, characterized as shown in 
Figure 1.  Each element N receives “blocks” of data from 
the previous element (N-1), except element 1, which initially 
collects and presents the data into the system.   

For a given element, several parameters are considered: 
• Once the data has been transported into the proper 

address space, the operating system must “schedule” the 
block for execution.  This time is represented by tsn.   

• The element must then process the data, which is 
represented in time by tpn. 

• As part of its processing, the element may grow or 
shrink the data rate by a multiplicative factor Gn.  
Examples of this growth would be the application of 
error-correcting or detecting codes, upsampling, etc. 

• The element could add data before the first block of 
data (a preamble of some sort).  This is assumed to be at 
the output data rate, and represented by size Pn. 

• The element could potentially buffer data, i.e. absorb 
one or more input data blocks before outputting a block.  
This generalized buffer behavior is symbolized by Bn, 
which is the amount of data that must be initially 
received before the first output block can be issued. 

• Finally, the output is sent to the next element.  The time 
required to transport the output data to the proper 
address space, etc. for subsequent processing is 
assigned a time of ttn. 
There are certainly more parameters that one could 

characterize, but these are most important in analyzing the 
TD of a system.  Here it is important to note that in a 
synchronous data system, since data flows continuously once 
it starts, when considering TD one only needs to consider 
the “leading edge” of the wave for data – for once at any 
stage in the system data starts flowing, if the average 
constant rate is not maintained, the system fails in real time.  
For this reason, it is unimportant here if, for example a 
element introduces a postamble, as this does not affect the 
leading edge of the data. 

 
Given these parameters, let us look at the overall delay 

through several stages.  Excluding the impact of the 
buffering term (which is discussed later), the delay can be 
calculated as follows: 

 

 
This formula is simpler than it appears.  The first three 

terms inside the sum simply represent the additive delay of 
the scheduling, computation and transport delays.  The 
second term merely accounts for the time to transmit a given 
stage’s preamble as related back to the source bit period 
(Tb0) by using the growth ratio Gn of all previous stages.  It 
could just as easily be expressed as a given stages preamble 
data length divided by the output rate of that stage.  With 
this understanding, it merely states that the total delay is 
equal to the sum of all the component delays plus the extra 
delays introduced by the preambles. 

 
Two additional factors frequently influence TD beyond 

that in the formula above. The first is the Bn parameter, 
which represents the “initial buffering delay”.  This is a key 
factor in influencing TD, but cannot be easily expressed in 
closed form.  For the first element the action of this term is 
straightforward – B1 bits need to be first accumulated before 
the output can be issued at all.  This “startup buffering 
delay” is almost always present in software-based systems, 
since usually at least a byte (8 bits) of data or more needs to 
be accumulated before any processing begins.  For 
subsequent stages, however, the effect of such buffering is 
more complex.  First of all, it is important to remember that 
only the initial “data wavefront” need to considered – so for 
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Figure 1: Processing Element Parameters 
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a given stage, the only thing that matters is if the first output 
data block will be issued as a result of the first input block 
of data, or the second, etc.  If first received block results in 
the issuance of an output block, than that stage’s the data 
wave propagates with no buffering delay (and hence has not 
impact).  If additional input blocks are required, however, 
the TD is increased by the time equivalent to an integral 
number of data blocks timed at the input of the processing 
element.  For example, if an processing element contains a 
block interleaver that requires 110 bytes of data, and if data 
is arriving in 12 byte blocks at a rate of 2000 bytes per 
second (166.678 blocks per second), the TD added by the 
interleaver would be 60 ms, as it takes 10 blocks of data to 
deliver (and somewhat exceed) the required data.  On the 
other hand, if data was arriving in 200 byte blocks, the 
interleaver would add no output delay, as the required 
amount of data would already be satisfied. 

 
There is a common misconception that when multiple 

processing elements are “chained”, you pay a TD time for 
each element, since the pipeline “must be filled”.  While true 
in many clocked hardware systems, in the typical SW radio 
case this is often not true.  If a proper starting block size 
(B1) is chosen to be large enough for downstream blocks, 
then the first packet of data will flow through the system 
without additional buffering delays – just the scheduling, 
processing and propagation times will be additive. 

 
A second additional factor is the time that passes from 

the initial “data request” (typically represented by “RTS”, or 
request-to-send) to the “clear-to-send” signal, (“CTS”) 
issued to the data source.  During this period of time the 
source wants to send data, but is not allowed to send it.  For 
the purpose of this paper this is considered part of the 
overall TD period, as it has the same effect of “delaying” the 
data to its definition as waveform “pipeline delay” alone has. 

 
To tie these concepts together, let us consider the 

simple representative example shown in Figure 2.  Data is 
received by a serial interface at 16kbps.  The element 1 
output data “block size” is 128 bits (16 bytes), giving a 
“block rate” of 8 ms per block – typical for a SW radio.   It 
is then encrypted, which adds a 1000 bit preamble, then 
encoded using a 2:1 code.  The resultant bit stream is then 
sent to a modulator which modulates it to a 96 K 

symbol/second stream in conjunction with a 8,000 symbol 
modem preamble. Given the sample parameters supplied, 
Ttot is calculated at 103.3 ms, to which we add an additional 
8 ms to account for the initial stage’s buffering of 128 bits, 
giving an overall TD of 111.3 ms. 

 
3. THROUGHPUT DELAY SYSTEM IMPACT 
 

In many cases a moderate increase in TD has negligible 
effects on overall system performance.  For example, if a 
synchronous data link is used to transmit a video image 
(without error correction, which is often acceptable in this 
case), a 50 ms increase in TD is trivial compared with, for 
example a 10 minute image transmission time.  However, 
when an external data link protocol is employed outside of 
the radio itself, performance problems can become more 
significant.  These systems typically use Automatic Repeat 
Request (ARQ) and TDMA techniques that involve rapid 
changes of the (half-duplex) radio link between transmit and 
receive or precise positioning of transmissions in time over 
the channel.  In ARQ data links, a single long message is 
broken into multiple “slices”, with each slice sent, checked 
at the far end, with an acknowledgement of receipt returned 
before the next slice is sent (or the previous block is resent).  
In these systems since the transmissions themselves are very 
short, an increase in throughput delay constitutes a larger 
proportion of the channel time.  This alone tends to cause a 
moderate decrease in system performance. 

 
When these systems are combined with multiple 

channel access techniques, however, the problem can be 
compounded.  In these systems, there are potentially 
multiple nodes competing for the channel.  Most systems of 
this type use some sort of traffic sensing (carrier sense) on 
the channel prior to transmission, i.e. “listen before 
transmit”.  The problem is that it takes a finite amount of 
time for the radio to detect the traffic and propagate this 
information to the data link.  In addition, once a given node 
decides the channel is clear, it takes a finite amount of time 
(throughput delay) to actually start transmitting on the 
channel, in addition to the time it takes for the RF wavefront 
to propagate to the other nodes.  During this critical time, 
other nodes could also be beginning similar transmissions, 
resulting in collisions between traffic, at which point the 
entire process begins again.  Although many different 

Figure 2: Example Processing Chain 
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protocols have been developed to avoid unnecessary 
collisions, for all practical purposes the transmit waveform’s 
“key-time to traffic on channel” (which falls within the TD 
definition for this paper) is additive to the channels 
propagation delay time.  In addition, if the system relies on 
actual receive data as the only carrier sense mechanism, the 
receive TD time also adds in this way.  In these cases, even 
small increases in TD can cause a significant fraction of the 
channel to be denied in saturated traffic conditions. 

 
Several applicable examples in the military community 

would be with Mil-Std-188-220 [4] and the Mil-Std-188-184 
[5] protocols, both of which are sensitive to TD and other 
radio delays. Another example employing TDMA 
techniques would be Mil-Std-188-203 (Link-11) [6].  Link 
11 employs a TDMA type structure between a central station 
and a number of “picket” stations.  Picket responses are time 
slotted in nature, and fixed in the standard– as a result it is 
up to the radio equipment to comply with the key time and 
TD requirements or not be usable in the system. 

 
4. ANALOG VS. SW-DEFINED RADIO 

CHARACTERISTICS 
 

Now that a model TD has been defined, we can discuss in 
these terms what has happened as we have evolved from an 
analog, hardware-based platform to today’s SW-defined 
radio platform. 

 
Analog platforms (at least with simple waveforms) are 

in many cases capable of processing the data bit by bit as it 
arrives.  The encryption, and digital voice processing is 
traditionally not integrated “into” the radio, further reducing 
delays.  The “processing elements” are often indistinct and 
little or no scheduling or tasking delay occurs between them. 
From a model standpoint, here are some typical parameters 
for, say a VHF-FSK waveform: 

• tsn = 0 (no processor) 
• tpn, ttn < 1 ms (hardware, filter delays) 
• Gn =1 (inherent in FSK, no coding) 
• Pn still present for modem, delays CTS return 

 Here we see that for this simple waveform, the TD due 
to the processing elements is quite small.  However, the 
same modem preamble (usually a “dotting” 1/0 pattern) still 
needs to be emitted.  Since the analog hardware cannot 
“buffer bits”, this is accomplished by either delaying the 
return of CTS, or by having the data source supply the 
preamble pattern itself.  However this is done, this time 
should be considered as TD, and will be similar to the same 
element on any radio platform, hardware or software based. 

 
A modern software based radio is quite different for a 

number of reasons.  First of all, almost all implementations 
process data in blocks of one or more bytes, not “by the bit”.  

Since in many implementations the scheduling tsn and 
transport ttn times are relatively independent of data block 
size and significant compared with the data processing time 
tpn, this pressures the designers to utilize still larger block 
sizes to limit the processing capability required to host the 
waveform.   

 
At the same time, cryptographic functions, which have 

traditionally been external, standalone pieces of equipment, 
have been integrated into the radio.  In addition, the 
characteristics of the cryptographic equipment itself are 
changing.  Whereas most US government cryptographic 
devices traditionally processed data one bit at a time, both 
newer cryptographic algorithms as well as the software 
encapsulations of the “classic” algorithms frequently process 
multiples of bytes of data.  For example, in the JTRS 
Security Supplement “transform” API [3], data is submitted 
to the cryptographic subsystem as a sequence of bytes – no 
provision is mode for processing less than 8 bits of data.  
Although in general this does not cause an increase in TD 
unless the block size used is greater than the output block 
size of the preceding stage, it does set a minimum block size 
of 8 bits, hence setting a minimum TD for any system.   

 
It is hard to generalize “typical” software-based radio 

system parameters, but the following parameter ranges are 
common in radio platforms designed to the JTRS SCA[1] 
standard: 
• tsn (scheduling time): .1 to 4 ms 
• tpn (processing time): .5 – 20 ms, varies with function, 

block size, etc. 
• ttn (transport time): .6 – 3 ms minimum, plus data copy 

time 
• B1 (initial buffering size, first element in chain): 4 – 20 

ms. 
The other parameters (Gn and intermediate buffering 

size Bn) are typically a function of waveform design and not 
specifically influenced by the SDR architecture per-se. 

 
In summary, when one considers all of the factors it can 

be difficult to perform true “apples to apples” comparisons 
between older, analog radios and today’s SDRs.  However, 
in many cases the additive delays plus a typical initial 
buffering delay typically adds an additional 20 – 30 ms to an 
SDR implementation compared with its analog brethren. 

 
 

5. REDUCING SDR THROUGHPUT DELAY 
 

To reduce the TD in a system, one works by minimizing the 
individual contributors in conjunction with intelligent 
architecting of the waveform itself. 
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Minimizing tsn (scheduling delay): in an SDR, this 
represents the time when a given process element can 
logically begin processing, but has not yet been allotted time 
(scheduled) by the operation system to do so.  Two things 
are required in most operating systems– the process (or 
thread) must become the highest priority available to run, 
and the “context” switch to that new task must be 
accomplished.  Here standard embedded system 
optimization techniques apply—ensure that the waveform 
runs at a higher priority than other, less critical functions, 
and avoid priority inversion situations.   

 
Several techniques can be used to minimize the 

scheduling delay. First, the sequence of scheduling itself can 
be modeled to ensure no more context switches are required 
than are necessary.  For example, when an upstream element 
A sends data to element B, depending on the OS it may be 
beneficial to have element A at a higher priority than B, so 
A can send its data, block, and only then have a single 
context switch to B (vs. an A  B <runs, blocks>  return 
to A <which blocks> sequence).  Many OS’s address this 
problem by, when several processes are eligible to run at the 
same priority, allowing the currently executing process to 
complete its processing before the other processes can be 
scheduled.  This of course needs to be traded off with OS 
“fairness” policy. 

 
A second technique is to minimize the context switch 

time itself.  Operating systems that implement 
“heavyweight” processes involving separate address spaces 
provide a useful isolation mechanism, but it comes at a 
significant cost when context switches must be performed.  
Consider instead using either a lightweight thread tasking 
model, or, if possible, implement the two components in the 
same address space involving a simple “call” relationship.  
This technique not only minimizes the scheduling delay, but 
also simultaneously minimizes the transport delay ttn as well. 

 
Minimizing ttn (transport delay): To minimize ttn, first 
work to collocate components in the same process space, 
and if possible in the same thread space.  In some cases this 
allows the “transport” to be optimized to a simple function 
call, with dramatic savings.  When compared with a typical 
waveform using an “each component in its own process 
space” approach, tens of milliseconds in TD can be 
potentially saved in this way. 

 
In architectures (such as JTRS) where a middleware 

layer such as CORBA is being used, be sure that you are 
using an efficient transport mechanism.  Often the 
“standard” transport mechanism is based on TCP/IP, which 
is very inefficient and often overkill compared with alternate 
transport mechanisms such as shared memory or OS 
message passing protocols. 

 
Choosing an optimal data block size: Several factors 
affect the choice of block size, and in this area minimizing 
TD is in tension with minimizing processing power.  For 
example, compare two otherwise identical systems where 
only the block size defined by the most upstream component 
(B1) varies.  Since in many systems the most upstream block 
size is used throughout the entire element chain, and the 
time it takes to collect this data block is proportional to the 
block size, it is obvious that a system with a one byte block 
size is going to have both a lower TD and a higher required 
processing load than a system with a block size of, say 256 
bytes.  Although many systems use a fixed block size 
(usually based on the highest data rate in the system), this 
can result in very long TDs at the lower data rates, even 
though spare processing power may be available at these 
lower data rates.  Since most systems support multiple data 
rates, it also appears likely that different block sizes 
probably make sense for different data rates.    To address 
this, the data sources at the “edge” of a waveform (such as 
audio and data interfaces in the transmit directions, and the 
receiving modem FPGA / DSP component in “receive”) 
should be configurable to allow different block sizes.  For 
example, it would be useful to have a configuration property 
“desired block size” in a Serial Port Device to allow the 
waveform to set this parameter to appropriate values as a 
function of data rate and waveform needs. 

 
But what block size should a waveform choose?  It is 

usually best to strive for a (mostly) common “block rate”, 
independent of data rate.  For a small, battery powered 
system this “block rate” may be 20 ms per block, while for a 
more powerful platform a block size of closer to 8 ms could 
be used.  The block size, where possible should be chosen to 
be at least as large as the largest initial buffer (max of Bn, 
adjusted to match the source data rate) in any downstream 
components.  For example, if in a system with a 256 byte 
interleaver block somewhere downstream, having the Serial 
Port Device dole out 8 byte packets is most likely to cost 
processing power without improving TD.  When calculating 
these levels, it is important to also consider the additive 
effects of any preambles as well as the data rate growth 
ratios (Gn) in the calculations. 

 
Carefully design clock correction functions:  Often in 
synchronous systems so-called “clock correction” is 
required.  Although outside of the scope of this paper, clock 
correction is the overall process whereas the transmit signal-
in-space timing is adjusted to match the DTE Tx clock, and 
conversely, where the receive Rx clock supplied to the DTE 
is adjusted to match that of the incoming signaling. 

 
In hardware based systems, clock correction was a 

rather straightforward phase-lock-loop problem.  In software 
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systems, however, the “control loop” approach is difficult to 
implement without use of “measure buffers”, a.k.a. “leaky 
buckets”.  In these systems, changes to the data level in a 
buffer are used to make clock adjustments.  While simple to 
implement, the data level in the bucket adds to TD.  A 
harder but alternate “open loop” approach minimizes this 
problem by directly measuring clock procession on one side 
of the system and communicating the desired changes to the 
other side. 

 
Optimize RTS / CTS (“keyup”) delay: Another 
contributor to TD is the time it takes for the system to accept 
data for transmission.  In general, standard optimization 
techniques should be considered to reduce this critical 
parameter in the system.  From the specific context of 
minimizing TD, however, several other techniques can be 
employed.  The first technique, usable when the keyup delay 
is rather deterministic, allow the data to start flowing (and 
hence filling the system buffers) in parallel with preparing 
the rest of the system for transmission.  While effective, this 
technique is fraught with danger, however.  With a 
synchronous interface, once data flow begins, it cannot be 
stopped.  If for any reason the system is unable to transmit, 
or takes much longer than anticipated, internal buffers could 
overflow, and data could potentially be lost from the system.    
This technique can also lead to the dreaded “execution time 
dependent software package”, and even minor delays in 
execution could cause system failure. 

 
A similar and somewhat safer technique is to allow 

preamble transmission to begin before the first data packet 
has been buffered from the most upstream data device.  
Consider a system with a encryption preamble of 100 ms 
operating in conjunction with an upstream Serial Port 
Device that is configured to provide data blocks at a 16ms 
block rate.  If, one the system is ready to transmit data, the 
encryption preamble can be passed downstream immediately 
simultaneous with the issuance of CTS to the data device.  In 
this way, 16 ms of throughput delay is saved.  Care must be 
taken, however to ensure that the transmitted preamble is 
longer (at a minimum) than the first packet buffer time – 
otherwise the system could “run dry” of data while waiting 
for the first packet (a system failure). 

 
6. MIMIMIZING THROUGHPUT DELAY IMPACT 

 
Although not always an option, perhaps the best solution to 
optimize system performance is to refactor the system to be 
less sensitive to TD as well as other system timing variations 
(which also tend to be higher on SDRs compared to legacy 
hardware-based radios).  To do this, external functions are 
drawn “inside” the waveform, where it is possible to better 
control the timing.  ARQ and TDMA protocols should if 
possible be run on the non-encrypted side to provide for 

tighter control of timing as well as to minimize 
“downstream” TD contributions.  Not only does this make 
the system “tighter”, but also does not constrain the system 
from communicating in critical areas using legacy hardware 
interfaces. 
 
For an example, when Mil-Std-188-220 [4] is moved from 
an external piece of equipment to an internal function, some 
TD is immediately saved because the data link does not need 
to stream this data to the radio at a fixed bit rate – rather it 
simply sends a packet downstream.  In this way, the “first 
block” collection time is saved.  Further savings are realized 
since the system does not have to perform clock correction 
functions, and better signal presence communications are 
available. Using similar reasoning, internally hosted TDMA 
systems can more accurately position over-the-air signaling 
compared with an external unit. 
 
Unfortunately, in many cases the legacy standards are 
written in such a way that prevents taking full advantage 
with embedment.  Still, it is important to keep these 
techniques in mind as newer waveforms are designed. 

 
7. CONCLUSIONS 

 
With an understanding of what factors can contribute to TD 
in a radio coupled with knowledge on how TD can affect an 
overall system, platform and waveform architects can work 
to minimize this parameter.  While TD can never be 
eliminated or reduced to match the levels in prior analog 
radios, yet one more “challenge” can be removed from the 
promise that software-defined-radios have to offer. 
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