
OSSIE: OPEN SOURCE SCA FOR RESEARCHERS

Max Robert (Virginia Tech, Blacksburg, VA, USA; probert@vt.edu); Shereef Sayed
(Virginia Tech); and Carlos Aguayo (Virginia Tech), Rekha Menon (Virginia Tech),
Karthik Channak (Virginia Tech), Chris Vander Valk (Virginia Tech), Craig Neely

(Virginia Tech), Tom Tsou (Virginia Tech), Jay Mandeville (Virginia Tech), Jeffrey H.
Reed (Virginia Tech)

ABSTRACT

The Software-Defined Radio (SDR) research community
currently needs an implementation of the SCA core
framework (CF) that is open to modifications, free,
simple, and in C++. Recognizing this need Virginia Tech
has developed and released OSSIE (Open Source SCA
Implementation::Embedded). This paper describes the
underlying philosophy for the development of OSSIE, the
basic structure of the released framework, shortcomings to
the current implementation, available sample waveforms,
and a research path for the implementation.

1. INTRODUCTION

The Software Communications Architecture (SCA) is at
the core of the Joint Tactical Radio System (JTRS) family
of radio systems [1], and is likely to form the core of
future military and, through the efforts of organizations
such as the OMG [2], the SDR Forum [3], commercial
systems. One of the primary challenges for universities
today is educating the graduating engineer on the
fundamental choices that are required for the development
of SDR. Traditional education in radio systems has
focused on aspects such as classical communications,
such as modulation, RF circuit design, DSP, and
information theory. Graduating engineers may have a
background in software development, usually in C++, but
little or no background in structured programming and
middleware, two crucial aspects of SDR design.

The SCA offers a powerful architecture that covers the
essential aspects associated with waveform design in
SDR. Given that alternative architectures are unlikely to
differ much from the SCA, the SCA provides a solid
foundation for students to understand SDR development.
The incentive to use the SCA as an educational example
lies in the fact that there is a growing need in the
community for engineers that are familiar with this
architecture. However, two significant problems arise
from the use of the SCA in an educational environment.
First, the SCA is a relatively complex specification, and a
simple sample implementation can be of substantial help

in increasing the level of understanding on the part of the
student. Second, while the Communications Research
Centre (CRC) has released a very useful open-source
implementation of the SCA [4], this implementation is in
Java, and most electrical engineers, the typical
communications system designers, are generally not
familiar with this language. Therefore, there is no simple-
to-use core framework that is freely available in a
language that is well known to most electrical engineers
like C++.

These problems are not limited to the educational
community; they extend to the research community as a
whole. Researchers face many problems that are similar
to those encountered by students. While a researcher may
be already well aware of the SCA specifications, he may
not have available a simple-to-use framework. Such a
framework provides an aid to understanding to the
researcher. The researcher has the opportunity to not only
see how specific issues were resolved, but he also has the
ability to test proof-of-concept implementations with
relative ease. While Java is widely used in the computer
science community, it is not prevalent in the electrical
engineering community. Therefore, just like electrical
engineering students, communications engineers are more
likely to be familiar with C++ than Java, making the
availability of such a framework in C++ an asset.

To resolve this set of problems, researchers at Virginia
Tech have developed OSSIE (Open-Source SCA
Implementation::Embedded). This paper describes the
structure of OSSIE, code-simplification strategies that
reduce the background needed by the student or
researcher, such as a CORBA wrapper, and limits on the
framework implementation imposed by the simplicity of
the implementation.

2. DEVELOPMENT PHILOSOPHY

The target developer for OSSIE is a typical Electrical
Engineering Master’s student. This student is typically
fresh out of the undergraduate program. In the
undergraduate program such a student is likely to have
had some exposure to object-oriented programming in

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

general, especially in C++, but it is unlikely that he is
familiar with advanced object oriented programming
(OOP) concepts like polymorphism or to any kind of
middleware, especially CORBA.

An entry-level Master’s student also has some significant
issues with respect to time and learning curves. A typical
Master’s student spends a total of 2 years in a graduate
program. The first year is generally constrained to taking
classes, leaving only the second year for thesis work and
the remainder of the classes, typically only one or two. In
that final year of the program, the student needs to find a
research topic, assemble the research tools necessary to
execute the research, perform the actual research, write
the thesis, and defend.

Assuming an academic year, until May of year two
(commencement) to finish the research. It generally takes
approximately three months to write a thesis, with an
additional month to defend the thesis and implement the
necessary corrections to the work. Therefore, the student
needs to finish his research and begin writing by January
of the final year of the program at the latest. If the student
begins his research in the beginning of the academic year
(August), this means that the available time for
assembling the tools and perform the research is between
August and December, or five months.

The problem that arises in SDR research is that
specifications in general, and the SCA in particular, are
fairly sophisticated, requiring a fairly steep learning curve.
Therefore, if OSSIE is to be used in an academic
environment, ideally the student should be able to get to
the point where he can perform SDR-related research on
the platform within two months of beginning the work. In
that span of time, not only does the student need to
familiarize himself with the specifications, but he needs to
familiarize himself with the existing framework.

Given these constraints, one the key attributes of OSSIE is
that it must be very simple to use. Readability and
simplicity are actually more important than attributes that
are more critical for production implementations, such as
exception handling. While good exception handling can
accelerate development, it was deemed that for the first
version it would add significant amounts of code that may
reduce readability. To decrease the level of confusion, it
is also imperative that the implementation match the
specification layout as much as possible. This means that
the methods and attributes included in the framework
implementation should match as closely as possible the
specifications. This concept extends to helper classes; if
additional classes are needed that are not described in the
specifications, such as XML parsers, they should be

included in a separate software package (in the case of
OSSIE, framework packages are released as libraries).

Furthermore, the typical Master’s student is unlikely to be
familiar with CORBA. The implementation should be
aware of this limitation, and where possible, should
isolate the developer from the idiosyncratic semantics
associated with CORBA. The basic concept behind
CORBA is fairly simple and can be quickly understood.
However, the problem with CORBA arises from two basic
problems.

First, additional steps are necessary than would at first
seem unnecessary, but upon further inspection are
important given the way that CORBA works. For
example, passing a string is a common step that the
framework needs to support. However, if one were to
pass just a reference to a string, this is likely to cause
problems, especially when the called method leaves
scope, and the memory is deallocated. To resolve this
problem, CORBA::string_dup should be used when a
reference to a string is passed. Using the string duplicate,
the scoping problem disappears. Implementations using
CORBA are rife with problems along these lines, and it is
desirable to isolate, at least initially, the beginner as much
as possible from these problems.

Second, CORBA semantics can be overwhelming to the
developer, yet only a handful of tasks need to be
supported by CORBA, most of which can be considered
“cut & paste” code. A simpler semantic structure would
reduce the apparent complexity of the code, thus reducing
the learning curve. It should be noted that while CORBA
is an integral part of SCA version 2.2, the actual calls
performed are not part of the specifications. Therefore, if
the set of calls necessary to perform certain operations are
collected into a smaller subset that is easier for the
developer to relate to, then the implementation becomes
easier to navigate while staying strictly within the bounds
of the specifications.

Finally, the implementation should be fairly open,
allowing for significant additions. For example, while
exception handling is not included in the current version
of OSSIE, it should allow the developer to add it if need
be, since that may be an integral part of the student’s
research agenda.

One of the interesting aspects of the needs of a Master’s
student is that they match the needs of the typical engineer
that wants to investigate aspects or specific scenarios in
the SCA. The relative simplicity makes it easy for the
researcher, especially one that is already familiar with the
specifications, to investigate specific research topics with
little regard for other aspects which may not be directly

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

relevant. For example, if one were to investigate power
management algorithms at the framework level, OSSIE
allows the researcher to implement these concepts either
as part of the framework by modifying the code directly
or as an additional service. Finding the entry point into
the software for this type of investigation should be
relatively easy. This type of simple, open structure allows
the researcher to invest a relatively little amount of time to
increase his understanding of the topic while maintaining
the freedom to add as many features to the framework as
he wants.

3. IMPLEMENTATION OVERVIEW

OSSIE is an implementation that follows the SCA 2.2
specifications. While this implementation does not yet
implement all the requirements in the specifications, it
does attempt to follow the specifications. With the
exception of Aggregate Device, the implementation
contains implementations of all the classes seen in Figure
1.

Figure 1 – CF Classes

The implemented classes comprise all the relevant classes
necessary to support waveforms in a wide variety of
configurations. One of the key early questions that
needed to be resolved was what platform to support. The
first version of OSSIE was written for Windows 2000
using Visual C++ 6.0. While this operating system is
neither real-time nor POSIX-compliant, it is an operating
system that is widely available. Therefore, the
implementation was made such that calls are made to look
like POSIX through an additional layer where it was
deemed necessary.

With the selection of an operating system (in the first
release version) allowed the selection of an appropriate

middleware. It was expected that eventually a new
operating system would be used, therefore The ACE ORB
(TAO) was selected as the CORBA version used in this
implementation. One of the additional benefits of using
TAO is that ACE is a required component. ACE
(ADAPTIVE Communications Environment) provides
what can best be described as an operating system
abstraction. Furthermore, both ACE and TAO are open-
source, thus keeping with the overall spirit of the OSSIE
implementation. Furthermore, by using ACE, system
calls can be made that are ACE-specific yet portable, thus
increasing the flexibility of the implementation.

With the selection of an operating system also allowed for
the selection of an XML parser. From a practical
perspective, parsing in the SCA is broken down into two
principal pieces, XML parsing and SCA-specific parsing.
XML parsing involves general navigation issues in XML
like identifying tags and creating a way to manage the
content within these tags. SCA-specific parsing involves
understanding the relevant files and tags so that the
correct information from the correct file is sent to the
correct component. It is impractical to develop a new
XML parser since several exists today that are free and
reliable. The Xerces C++ parser, available under the
Apache Software License, was selected as the XML
parser for the OSSIE project. The SCA-specific parsing
was performed using specialized code that was written for
OSSIE. The SCA-specific parser is one of two libraries in
the OSSIE framework release.

3.1. Additional Operating System Support

Windows is limited in its ability to support SDR
applications, primarily in terms of access to some low-
level system functionality, and as mentioned above, it was
expected from early on in the project that alternate
platforms would eventually need to be supported.
Therefore, OSSIE was ported to Linux (Fedora with
kernel version 2.6). Furthermore, to extend the support
within Windows, project files that are used with VC++
7.1 were included in this port. Version B, released in
October of 2004, supports Windows 2000/XP and Linux.
It should be noted that, while some OS-specific
functionality was included in the framework through the
use of preprocessor directives (i.e.: #ifdef), functionality
that could be implemented through ACE was
implemented that way, thus increasing the portability of
the code.

4. RELEASE STRUCTURE

As mentioned before, the OSSIE implementation is
released as a set of two libraries, a parsing library and a

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

framework library. The parsing library contains the SCA-
specific parsing calls. A structure similar to that used in
the CRC’s SCA Reference Implementation (SCARI)
[Ref:SCARI] was used for the parsers used in OSSIE. It
was found that the approach used by the CRC team is an
efficient and clean way of achieving the parsing goals.

The library containing the SCA-specific parser was also
selected as the site for locating the only other class used in
OSSIE as a helper class, the ORB wrapper. The ORB
wrapper will be discussed in more detail in the Code
Simplification Strategies section of this paper.

The second library released under OSSIE is the Core
Framework library. This library contains an
implementation of all the CF classes, except Aggregate
Device, which was considered unnecessary for the scale
of projects that have been attempted to date. It should be
noted that later versions are likely to include the
Aggregate Device class, since research at Virginia Tech is
expected to move in the direction of multi-processor
boards.

The CF library includes the core application services as
well as pieces of the non-core applications. The non-core
applications include classes such as Device and Resource,
which are implementation-specific. However, there are
some common pieces exist in these different classes, and
to minimize the amount of work required on the part of
the developer, these pieces were implemented. The
virtual methods that cannot be populated because the
specifics of the application are unknown, then they were
implemented as empty methods. The use of empty
methods means that the developer implements the
required functionality only if needed to investigate the
specific behavior, otherwise it is left empty and the
resulting code still compiles.

An example of this selective population of methods is the
Resource class. The Resource class needs to implement
just four methods: the constructor, start(), stop(), and
identifier(). The constructor resource just associates a
UUID (Universal Unique Identifier) and the name with
the Resource. Therefore, if the developer provides a non-
NULL UUID and a non-NULL name, the Resource’s
UUID and name are set to the given values. If the
developer does not provide this information into the
constructor, then the Resource reads the information from
the configuration file; this behavior is standard and a
developer is unlikely to want to re-define it, so there was
no sense in not including it in the implementation. The
same concept applies to the method identifier(), where the
identifier value is returned. The methods start() and
stop(), however, are implementation-specific. The

developer is expected to overload these methods in the
implementation with the appropriate code so that the start
and stop commands implement the desired functionality.

In order to reduce the amount of code that is directly
visible to the developer, OSSIE is released as a set of
libraries. A shared library provides significant benefits in
the management of code, since it can significantly reduce
the amount of visible code that the developer needs to
deal with. In order to reduce the footprint of the
implementation, dynamic libraries were used. With static
libraries, the whole library would have been included in
each component, thus leading to large executable sizes.
The use of dynamic libraries means that the component
loads only the code that is necessary to execute the
required functions, thus significantly reducing the
required memory. While OSSIE is not designed with a
small footprint in mind, such an approach was considered
a no-cost improvement on the implementation.

5. CODING STRATEGIES AND SHORTCUTS

As mentioned above, an ORB wrapper was implemented
in OSSIE. The goal of the ORB wrapper is to reduce the
amount of exposure that a developer has to the CORBA
interface. While the ORB wrapper is a work in progress
and is expected to further isolate the developer from
CORBA, there are some calls that it now contains that
perform some tasks. Sample methods in the ORB
wrapper class include: lookup (get an object reference by
name), bindobj (bind a name to an object reference), and
getNamingContext (return the current naming context
used).

The ORB wrapper coupled with a project-wide ORB
reference means that the developer is isolated from some
of the CORBA interface. It should be noted that the
developer still needs to perform actions such as narrow
the object reference and activate the object, but where
possible those will be abstracted in future versions.

3.1. Limits on Implementation

The current implementation of OSSIE follows a basic
philosophy of simplicity and readability. To achieve this
goal, the implementation is missing some pieces that are
considered important in other types of implementation,
such as commercial implementations. The two principal
aspects that were not implemented in this version are the
Aggregate Device class and exception handling.

Aggregate Devices were considered unnecessary given
the types of implementations that the OSSIE is intended to
support. However, it should be noted that Aggregate

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Device is considered a non-core application component.
Therefore, it should be fairly straightforward for a
developer to add this functionality into the framework.
Given the progress of ongoing research at Virginia Tech
based on OSSIE, it is likely that this class will be added in
later versions.

The other missing aspect of the implementation, exception
handling, is not as straightforward or as easy to
implement. The SCA specifications outline what
exceptions to catch, but leaves the developer to determine
what to do when exceptions are caught. In general, the
path that the point to which the framework should go to
when an exception occurs is fairly obvious. While this is
the case in most instances, it is not consistently so.

Even though the framework is intended for relatively
inexperienced developers, it was deemed that the
developer should aware of what he is supposed to
implement, and experiments would be executed in a
controlled environment. Given these base assumptions,
the OSSIE implementation catches some, though not all,
exceptions, but performs no exception handling. Thus, if
an exception is thrown program execution halts.

It should be noted that the addition of exception handling,
while laborious, would not be conceptually difficult.
Furthermore, the elimination of exception management
from the framework implementation has lead to
significant reductions in the amount of code.

6. SAMPLE WAVEFORMS

One of the crucial aspects in the release of OSSIE is the
application or set of applications that are provided as
sample implementations. These samples should be
sufficiently simple for the beginner to understand, but
sufficiently sophisticated for the examples to be
meaningful.

Version A of OSSIE, released in July of 2004, included a
sample waveform that followed the structure seen in
Figure 2.

 Assembly
Controller

Modulator Channel

Demodulator

Figure 2 – Diagram of sample application

For the sake of simplicity, the Port and Resource
functionality was combined into a single class in this
application, as seen in Figure 3.

Port Resource

Assembly
Controller Modulator Channel Demodulator

Figure 3 – Inheritance for components in sample

application

The reason for this choice is that this approach simplifies
the implementation. Conceptually, using this approach,
the GetPort() call to PortSupplier returns a pointer to the
Resource itself. This is a relatively simple concept, and it
was considered to be a good starting point for an entry-
level developer. However, there are some issues
drawbacks associated with this approach, which are best
illustrated by investigating alternate ways to implement
components.

The above example is not the only way to implement a
waveform; Port and Resource can be implemented as
separate classes, as is implied in the specifications. If Port
and Resource were implemented as separate classes in this
application, then it would increase the complexity of the
sample waveform. To basic approaches could have been
implemented, a single-thread case and a multi-thread case.
In the case of the single thread, the Resource class would
have created an instance of the Port within the Resource.
In this approach, the two classes would have been kept
separate. Functionally speaking, this approach would
have yielded the same type of behavior.

In the case of a multi-threaded implementation, the Port
would be instantiated as a separate thread of execution.
This approach has significant benefits. The primary
benefit is that separate event reactors could have been
created. In implementations using CORBA clients, the
simplest implementation is to place the client in a
blocking loop that waits for CORBA events to arrive.
When a CORBA event is serviced and the loop returned
to a blocked wait. Generally, this blocking call is
combined with a timeout to allow for the Resource to
gracefully exit execution. If the Resource were to need to
service a separate event source, like a GUI, then a
separate loop is necessary to service those events. If the
process has a single thread, then it is geared for the
management of a single source of events. Of course, this
is not necessary if non-blocking calls are used, but those
types of implementation can be more complicated and for
the purposes of this sample are assumed to be outside the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

scope of the developer. For the process to be able to
manage multiple types of events that are services through
different blocking calls, then separate threads of execution
are necessary.
The basic signal that was passed between the components
in the simulated link is a BPSK signal with an arbitrary
signal bandwidth. The nature of the components,
inheriting from both Port and Resource, and operating
within a single thread means that the whole waveform
behaved as though all components operated under a single
thread. The best way to understand the concept is to step
through the signal flow. The modulator generates a
symbol stream, in this case 1000 symbols. The modulator
component now pushes the information onto the channel
component. For the reader that is not familiar with
CORBA, this is essentially like calling a public method on
an object. Since the object making the call is essentially
calling a method on another object, execution does not
return to the calling object until the called method returns.

This process is cascaded from object to object in the
application. In this case, the channel object then pushed
the data to the demodulator object using semantics that
look just like calling a method on an object. The channel
object’s execution is now blocked until the execution of
the demodulator object’s called method is complete.
Thus, we have a cascade effect; the modulator object
cannot continue until the channel object is complete, and
the channel object cannot complete until the demodulator
execution is complete. Hence, the modulator execution is
blocked until the demodulator execution is complete.
This effect is common in distributed processing, and
sometimes it is a desired effect, such as when all
execution is dependent on a single system component or
resource that cannot be concurrently shared. However, in
the case of a radio system, this is a program flow that is
not desirable, since system resources are likely to be
unnecessarily idle, thus leading to a (possibly) suboptimal
use of system resources. Ideally, the thread of execution
should be non-blocking and concurrent. However, the
initial example presented to the beginning SCA developer
had to strike a balance between functionality and
simplicity. In order to strike this balance, the first
released sample version followed the simple program flow
described above.

One of the problems encountered in the development was
to find a good way of presenting data to the developer
such that it had some visual impact. Given the cross-
platform nature of OSSIE, a platform-specific graphical
environment was deemed an inadequate solution.
Therefore, for the Version A release, MATLAB was
selected for graphing the received information. To
implement this, the Demodulator component was

developed using the C libraries provided by the MATLAB
6.5 release 13. When the waveform is installed, the
Demodulator component begins the MATLAB process
automatically. When the demodulator component
receives the data signal from the channel component, it is
then passed to the MATLAB environment, and the
Demodulator component executes a series of commands
to graph the data onto a window. Not all developers have
access to MATLAB. To resolve this issue, Version B of
OSSIE, released in October of 2004, provides the
developer with the option of using MATLAB or
wxWindows [3], a cross-platform graphing library. It was
decided to keep the MATLAB option because it provides
the developer with an example of how to interface
MATLAB and the SCA. The combination of the SCA
with MATLAB provides the developer with a powerful
platform that allows rapid prototyping.

7. THE DEVELOPMENT PATH FOR OSSIE

The OSSIE development team considers the development
of OSSIE to be an asset to the Virginia Tech wireless
research community as well as the SDR research and
development community as a whole, and hence is
dedicated to the vision of an open-source C++
implementation of the SCA CF that is true to the initial
release philosophy. Planned improvements for the future
include a more complete framework as well as more
advanced waveforms. The eventual goal is to receive
certification for OSSIE under JTEL, and thus
enhancements and corrections are expected on the
framework as time progresses. Given that OSSIE is a
research platform, additions to the framework are
expected such as power management. Waveforms that are
expected for future releases are ones that support
concurrent processing, waveforms that integrate test
equipment into the SCA, SCA 3.0, and other outgrowths
from ongoing research. Visit
http://www.mprg.org/research/ossie/ to download OSSIE.

8. ACKNOWLEDGEMENT

The first year of the OSSIE development effort has been
largely unpaid, volunteer effort by a group of dedicated
graduate and undergraduate students, all of whom are
listed in the authors list for this paper. Direct and/or
indirect funding for this effort was received for some
members of the team through the DCI Postdoctoral
Research Fellowship, the Office of Naval Research,
Tektronix, and the MPRG Affiliates Program.

9. REFERENCES

[1] – http://jtrs.army.mil

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

[2] – http://sbc.omg.org/
[3] – http://www.sdrforum.org
[4] – http://www.freiburg.linux.de/~wxxt/

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

