

SOFTWARE DEFINED RADIO SERVICES AND DEVICE APIS

Eric Christensen, Ph.D. (General Dynamics C4 Systems, Scottsdale, AZ 85257

eric.christensen@gdds.com) David Dohse, (General Dynamics C4 Systems,
Scottsdale, AZ dave.dohse@gdds.com)

ABSTRACT

The Software Communications Architecture (SCA)

Version 2.2 and the Application Programming Interface (API)
supplement have been in existence since November 2001.
The objective of the SCA is to foster an open architecture in
which waveforms/applications are portable across a wide
range of SDR implementations. There have been many
incarnations of the Core Framework specified by SCA V2.2
however, to this point in time there have not been any APIs
for Radio Services or Radio Devices which are
unencumbered by intellectual property rights published for
the community. The lack of publicly available APIs for
Radio Services and Devices is inhibiting the progress of
Software Defined Radio technology both from a hardware
platform and SDR application vendor perspective. This lack
of publicly available unencumbered APIs leads to
proprietary single point implementations of waveforms and
Radio Services and Devices. There are several factors that
may be inhibiting the development of an open architecture
SDR: 1) No commonly accepted definition of a set Radio
Services and Devices which are part of a SDR platform; 2)
No Naming conventions; 3) No commonly accepted content
and format for an API. Current API standardization efforts
within the SDR Forum and the OMG [1] have shown promise
yet do not establish interfaces down to the level of method
invocation signatures necessary for portability.

This paper advocates the premise that the SDR should
provide a set of commonly used Radio Services and Devices
to waveforms and other SDR applications. In essence, this
means the SDR existence is independent of any particular
waveform or application, but provides a general set of Radio
Services and Devices that are usable by the many
waveforms and applications. For example, a CVSD vocoder
could be provided as a Radio Service or Device, which could
be then used by several different waveforms to include
SINCGARS, HaveQuick I/II, and SATCOM 181, and 183.
This paper provides a definition of Radio Services and
Devices, a classification of SDRs by capability and then
proposes a set of Radio Services and Devices that should be
present in a class of SDRs. A naming convention for Radio
Services and Devices is proposed. The paper then proposes
a specification for the content and format of Radio Service
and Device APIs using a Serial IO device as an example.

1. INTRODUCTION

 The Software Communications Architecture (SCA)
Version 2.2 (updated to Version 2.2.1, April 30, 2004 and
updated to Version 3.0 August 27, 2004) and the associated
Application Programming Interface (API) Supplement [2]
have been published since November 2001. In the past 2½
years there has been much attention directed towards the
intricacies of the Operating Environment (OE) and Domain
Profile but minimal if any focus on the API supplement or
defining and specifying the services or devices that are
sufficient and necessary to have a software defined radio
(SDR) and waveform portability. The focus on the OE and
Domain Profile have been primarily driven from an abstract
perspective without consideration of the ultimate target
environment of creating a SDR. This is evident from the
multi-megabyte footprints of the OEs. There are multiple
vendors claiming to have SCA V2.2 compliant OEs but to
this date even though a multi-hundreds of million dollar
development contract for SCA compliant Hardware and
Waveforms (JTRS Cluster 1) was awarded in June 2002, there
has not been any publication of unencumbered APIs for the
Radio Services and Devices. The lack of published
unencumbered APIs is inhibiting the progress of SDR
technology and development. Without publicly available
unencumbered APIs, innovative waveform and application
developers cannot participate. This situation is akin to
development of a proprietary closed architecture computer
vs. an open architecture computer. In this case the
development of SDRs and waveforms by JTRS Cluster 1
contractors is beginning to mirror the development of a
proprietary closed architecture rather than the envisioned
open architecture paradigm in which the APIs are published
unencumbered resulting in a multitude of companies writing
software applications and building JTRS compatibles.

2. RADIO SET VS. WAVEFORM VIEW

A major contributor to the lack of unencumbered published
APIs for Radio Services and Devices is the fact there is not
an accepted definition of what a Radio Service or Device is
or what Radio Services and Devices are required for a SDR.
Another factor clouding the API landscape is the
perspective from which APIs should be defined. There are

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

two opposing views. One view is that APIs are defined in
terms of waveforms such that each Waveform has its own
set of APIs. Another view is that APIs are defined from the
perspective of the Radio Set and then waveforms are
developed to the Radio Set APIs. For the purpose of this
paper these views are the Waveform API and the JTR Set
API respectively. The Radio Set API view is based upon
the premise that the Radio Set exists independent of any
particular waveform and as such provides a common set of
Radio Services and Devices that may be used by any
waveform. The Waveform API approach implies that there is
no commonality between waveforms and that the services or
devices required for each waveform are unique.

The Waveform API approach is attempted in the SCA
API Supplement but is abandoned with the statement “The
range and variety of services at the various interfaces, most
notably the MAC and Physical, make a common API for all
waveform applications large and burdensome for resource
constrained implementations.” The SCA API supplement
also attempted to partition waveforms using the OSI stack,
which does not map directly to the Radio Set services and
devices. Ultimately the SCA API supplement essentially
abandoned the effort to define APIs by defining
abstractions called “Building Blocks” (BB). These BB are
intended to be templates, which are to be used by
developers as a basis for forming APIs. A collection of the
instantiated BB for a particular layer of the waveform defines
the API for that waveform layer. The BB do not provide a
sufficient level of abstraction to support portability since
they are more physically than logically oriented.

When defined from the Radio Set perspective APIs are
defined for the Radio Services and Devices which are then
used by the waveforms. To put the Radio Set definition of
APIs and Services into perspective and context of the SCA it
is useful to use an architectural diagram of the Software
Defined Radio Domain as shown in Figure 1[3]. Figure 1
shows there are 4 architectural components in the SDR
Domain. The Computational Architecture component is the
equivalent of the SCA Operating Environment. The
Management Architecture contains the Domain Manager
(Configuration Management) of the SCA and adds other
necessary management services such as system control,
fault management, performance management, virtual channel
management, security management, and network
management. The Services component of the architecture
contains the radio domain services and devices. The
Waveform/Application comp onent of the architecture
interacts through the Services architecture with the other
architectural components. Another way of expressing the
SDR Domain architecture is to view the Computational,
Management, and Service components as a hardware
abstraction layer upon which waveforms/applications are
executed. From either a waveform view or a Radio Set view

of APIs, each of the architecture components in the SDR
Domain are required.

If the Waveform view is taken then each of the required
services is defined in terms of a particular waveform. If
another waveform requires that very same service
(functionality) then that waveform will define the service in
its terms. Thus for example SINCGARS and HaveQuick both
require a CVSD vocoder. Each will implement the same
algorithm (possibly from the same source) however each
may choose to have different names for attributes and
operations. In fact if the IDL structures are different the
implementations will be guaranteed to have different names
for the operations.

Figure 1 SDR Domain Architecture Model

If the Radio Set view is taken, a baseline for a service is
defined based upon the requirements of a set of available
waveforms. For example the JTRS ORD specifies the
waveforms required for a particular domain. Using those
waveforms an analysis can be performed to determine which
vocoding algorithm is used by which waveforms. Further
analysis can also be performed as to whether bridging may
be required between the waveforms. From this analysis a
determination could be made as to whether to implement a
general Vocoding Service or to implement specific services
such as CVSD, LPC-10, MELP, IMBE, and etc. Even if
specific Vocoding services are implemented, it is advisable
to implement them as commonly as possible to facilitate the
implementation of transcoding which will be required, for
example, to bridge a waveform that uses CVSD to a
waveform that uses LPC-10.

The set of APIs for the Radio Services and Devices may
be defined more narrowly and then extended to support
additional waveforms. A common argument that derails
serious attempts to define APIs from the JTR Set perspective

ConfigurationManagement

Waveform/Application

System_Control

Antenna RF Interference
Management

Modem INFOSEC Network

HMI

Framework

global

IO

System_Fabric

initiates management

Services inherit framework services from
system control which inherits from
Framework

SDR Domain Architecture
Components Logical Model

provides physical interconnects

managed managedmanaged

managed

Local or
Remote

Black
Processing

Red Processing

managed
managedmanagedmanagedmanaged

Amp

managed

FaultManagement

uses services/resources

uses services/resources
uses services/resources

uses services/resources

uses services/resources

managed

uses services/resources
uses services/resources

uses services/resources
uses services/resources

uses services/resources

PerformanceMa
nagement

VirtualChannel
Management

NetworkManagement

SecurityManagement

uses framework services

manages manages

ConfigurationManagement

Waveform/Application

System_Control

Antenna RF Interference
Management

Modem INFOSEC Network

HMI

Framework

global

IO

System_Fabric

initiates management

Services inherit framework services from
system control which inherits from
Framework

SDR Domain Architecture
Components Logical Model

provides physical interconnects

managed managedmanaged

managed

Local or
Remote

Black
Processing

Red Processing

managed
managedmanagedmanagedmanaged

Amp

managed

FaultManagement

uses services/resources

uses services/resources
uses services/resources

uses services/resources

uses services/resources

managed

uses services/resources
uses services/resources

uses services/resources
uses services/resources

uses services/resources

PerformanceMa
nagement

VirtualChannel
Management

NetworkManagement

SecurityManagement

uses framework services

manages manages

Computational
ArchitectureManagement

Architecture

Services
Architecture

Application/Waveform
and Platform APIs

Waveforms/Applications

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

is “What are Radio Services and Devices and which of the
Services and Devices are required?” For the purposes of
this paper, a Radio Service is implemented in software,
waveform independent, hardware independent, and inherits
from the SCA CF Resource class. A device is hardware
dependent, waveform independent, and provides a software
interface inherited from the SCA CF Device Class. Examples
of typical Radio Services are System Control, Vocoding,
Waveform Monitoring, HMI interface; User Interface
Control… Examples of typical radio devices are Serial I/O;
Analog I/O; Ethernet I/O; DAC; Digital Signal Processor
(DSP); General Purpose Processor (GPP), Field Programmable
Gate Array (FPGA) Transmitter, Receiver; Transceiver, and
Security Module.

3. CLASSIFICATION OF SDRS

 Every SDR does not require the same set of services or
devices. For example a single channel SDR rarely has need
for a cosite interference mitigation service. Thus, the
number of channels is one consideration in determining the
required services. Other considerations may be size, weight,
power, cost (SWAP-C), and types of waveforms to be
hosted. The ultimate goal in defining and providing services
is to minimize the effort to port a waveform and to maximize
software reuse. Figure 2 illustrates the multi-dimensionality
of SDR requirements.

Figure 2 Many Considerations Impact What
Requirements must be Anticipated in a SDR

In Figure 2, platform classes are defined as Handheld, Man
Pack, Mobile/Vehicular, Airborne/Maritime/Fixed and Multi-
Hundred Megabit Data. These classes are primarily defined
in terms of number of channels, size, weight, and power
consumption. The notation of subscriber and basestation
also implies in some cases a complexity factor for a particular
waveform. For example the complexity of an APCO-25
basestation is significantly greater than that of an APCO-25
subscriber.

Waveform complexity as shown in Figure 2 ranges from
very simple waveforms such as AM/FM to more complex
waveforms such as Common Data Link. The waveform
complexity may range from the digital signal processing
required, to the demands placed upon the Transmitter or
Receiver for tuning time and speed. If SWAP-C were not
considerations then there would be no need to classify
SDRs, since a single SDR class could execute all waveforms.
However since SWAP-C are significant elements in
determining the ability of an SDR to meet user requirements
it is imperative that SDRs have a classification system that
allows the user to understand its current and future
capabilities as well as allowing SDR vendors to target
appropriate market segments. For example, a vendor desiring
to enter the commercial single channel handheld market is
not going to need cosite interference management whereas a
vendor entering the Fixed basestation market could use their
cosite interference management service as a major market
distinguisher. For the purposes of this paper SDRs, are
classified in terms of the waveforms they are intended to
host, Security type, and number of channels in a package.
The following classes are defined:

Class I: Single Channel, Handheld/ManPack, nonType I,
narrowband data and voice
Class II: Single Channel, Handheld/ManPack. Type I,
narrowband data and voice
Class III: Single Channel, Handheld/ManPack, Type I,
wideband data and voice
Class IV: 2 Channel, Handheld/ManPack, Type I, wideband
data and voice
Class V: 2 or more Channel Vehicular/ Airborne/
Maritime/Fixed, nonType I, wideband data and voice
Class VI: 2 or more Channel Vehicular/Airborne/
Maritime/Fixed, Type I, wideband data and voice
Class VII: 1 or more Channel Multi-Hundred Megabit Data,
Type 1

Table I is a listing of potential services for a SDR and a
mapping to SDR classes which must implement the service.
An X indicates the class is required to implement the service.
Items in bold print indicate proposed groupings of
devices/services used to organize the services by function.

Table I: Devices/Services required by SDR Class
Devices/Services
/ SDR Class

I II III IV V VI VII

External RF
 Antenna X X
 Antenna
 Coupler

 X X

 Amplifier X X X
 RF Switching X X X

Waveforms Platforms

H
igh C

apability
and SW

A
P

L
ow

 C
apability

and SW
A

P

H
igh C

om
plexity

L
ow

 C
om

plexity

Wideband Networking

Narrowband Digital

Embedded INFOSEC

Analog AM/FM

Link 16

Spreading Narrowband
Digital

EHF Extended Data
Rate (XDR)

Common Data Link
(CDL)

Wideband Networking

Narrowband Digital

Embedded INFOSEC

Analog AM/FM

Link 16

Spreading Narrowband
Digital

EHF Extended Data
Rate (XDR)

Common Data Link
(CDL)

2MHz 60GHz

(Airborne/Maritime/Fixed)
Subscriber/Base Station

Man Pack Subscriber

(Mobile Vehicular)
Subscriber/Base Station

Handheld Subscriber

Multi-Hundred Megabit Data
Rate

(Airborne/Maritime/Fixed)
Subscriber/Base Station

Man Pack Subscriber

(Mobile Vehicular)
Subscriber/Base Station

Handheld Subscriber

Multi-Hundred Megabit Data
Rate

Waveform Frequency Range

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Table I: Devices/Services required by SDR Class
Devices/Services
/ SDR Class

I II III IV V VI VII

 External RF
 Control IO

 X X X

Internal RF
 Transceiver X X X X X X X
 Cosite
 Mitigation

 X X X

Digital to Analog X X X X X X X
Analog to Digital X X X X X X X
Signal Processing
 Modem X X X X X X X
Black GPP
 Processing

X X X X X X X

Type 1 Security
 Key
 Management

 X X X X X

 Crypto
 Services

 X X X X X

 Red GPP
 Processing

X X X X X

NonType 1 Security
 Key
 Management

X X

 Crypto
 Services

X X

Networking X X X X X
Audio IO
 Codec X X X X X X X
 Vocoder X X X X X X X
 Transcoding X X X
 Speaker X X X X X X X
 Microphone X X X X X X X
 Push-to-Talk X X X X X X X
Digital Data IO
 Serial IO X X X X X X X
 Ethernet IO X X X X
 1553 IO X X X
System Management
 System Control X X X X X X X
 Preset
 Management

X X X X X X X

 Software
 Download

X X X X X X X

 Timer X X X X X X X
 Fault
 Management

X X X X X X X

 Configuration
 Management

X X X X X X X

Table I: Devices/Services required by SDR Class
Devices/Services
/ SDR Class

I II III IV V VI VII

 Virtual Channel
 Management

X X X X X X X

 Performance
 Management

X X X X X X X

 Network
 Management

 X X X X

At this high level of the Service/Device decomposition it is
apparent that not all classes of SDRs require the same
services. Even in the services/devices that appear to be
common the same functionality is not required. For example
all classes required a transceiver, however, the control for a
transceiver in a Class I SDR is much simpler than that
required for a Class III and above. Thus, for those
services/devices that indicate they are required for all
classes further decomposition may required to establish a
level of capability that must be provided. For some
services/devices such as Black GP Processing no further
definition is required.

The organization of the services/devices by function or
some other method must be standardized or it will lead to
significant effort during waveform porting.

3. API NAMING CONVENTION

Crucial to the achievement of software portability is the use
of a standard naming convention and a data dictionary. The
use of a standard naming convention includes not only the
IDL definitions but also the XML profiles. The use of
standard naming conventions also extends to the structure
hierarchy of the IDL interface definitions. The hierarchy
structure of the IDL ultimately defines the particular name of
a class or function. In the transformation of IDL to the
implementation language binding, the Module, Interface and
Operation names are used differently depending upon the
implementation language. The C++ mapping for IDL maps an
IDL module to a C++ namespace and maps an IDL interface
to a C++ class provided the C++ environment supports
Namespaces. If Namespaces are not supported in the C++
environment but the C++ environment supports the use of
nested classes then modules are mapped to C++ classes as
well as the interfaces. If the C++ environment does not
support Namespaces or nested classes then the mapping is
defined following C language mapping of concatenating
identifiers using an underscore (“_”) as a separator. [4,5]
Thus in defining an API, it is not sufficient to specify the
interface name, its operations, and its attributes but also the
module and its scope in which a particular interface is being
defined must also be specified.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

A data dictionary is used to describe the data elements
being used in a particular system/program. Developers use
the data dictionary to determine if a data element that they
need has been defined previously or if they need to define a
new data element and add it to the dictionary. The following
are some simple naming convention rules [6].

 Module and Interface names: 1st Letter uppercase and
the 1st letter of concatenated words upper case. No
underscores allowed.

Operation and Attribute names: 1st Letter lower case and
1st letter of concatenated words upper case. No underscores
allowed.

The prohibition of underscores in the naming
convention provides the IDL portability across
implementation languages. As mentioned earlier some
implementation languages mappings require the use of
underscores to concatenate the IDL identifiers to form
implementation language identifiers.

4. API CONTENT

To be useful an API must provide sufficient information to
allow a third party to implement a component that uses the
Service/Devices for which the API was defined without the
support of the service/device developer. If it is too difficult
to use an API, developers will implement their own version
of the service, thereby developing redundant services,
which lead to, increased cost and schedule.

The contents of an API should be more than a simple
IDL listing of its interface name, operations and attributes.
As indicated earlier in this paper an API must also be
defined in a “context” by including the IDL module name
within which the API is being defined. Additionally the API
should include quality of service in terms of latency and
jitter. Many datalinks have latency and jitter requirements
and as a part of system design these latency and jitter
requirements must be allocated to the SDR hosting the
datalink. Thus the services/devices provided by the SDR
must be characterized in terms of the latency and jitter to
provide systems engineers the necessary information to
make a determination whether the services/devices provided
by a SDR are adequate to support a particular waveform or
data link. In addition to quality of service, the performance
of devices (MIPS, FLOPS, memory, etc) and whether the
device supports sharing among waveforms and
Management Infrastructure or if the device may only be
exclusively allocated to a single waveform/application needs
to be documented. The performance of the devices must be
specified in terms of performance available to a
waveform/application. Thus, for example, if the device is a
general purpose processor (GPP) the performance available
to the waveform/application is the GPP performance
decremented by the overhead of the OE and the memory

available is decremented by the memory consumed by the
OE.

5. API DOCUMENTATION SET

The SCA API supplement specifies a structure for API
documentation, requires the API be specified in IDL, but use
of UML is optional. It is recommended that an API in
addition to the IDL definition must also be documented
using UML to model the dynamic and static characteristics
of the API. The required UML documentation consists of
the following diagrams: Class Diagrams; Sequence
Diagrams, State Transition Diagrams; and Object
Collaboration Diagrams. In addition as mentioned above the
API documentation should include a quality of service
description that enables a system engineer to determine
whether the provided service/device is adequate for a
particular waveform or data link. For a service performance
specification, the performance should be stated in terms of
the particular device hosting the service as well as in terms
of the processing requirements of the service. The
processing requirements of the service are of interest to
determine if an existing service can be ported to a different
device.

Figure 3. A Standardized API Documentation Set

5. API EXAMPLE

The Serial IO Package defined in the PIM and PSM for
Software Radio Components [1] is used as the starting point
for the specification of the Serial IO API. Figure 4 is taken
from reference [1].
 Reference [1] also contains a brief description of the
interfaces and their attributes. Reference [1] does not
specify any quality of service or performance requirements
for the Serial IO. Reference [1] also does not specify any

• Service/Device Description
• IDL Listing
• UML

– Class Diagrams
– Sequence Diagrams
– State Diagrams
– Object Collaboration Diagrams

• Quality of Service Characterization
– Quality of Service Requirements
– As implemented on Device

• Performance Characterization
– Service Requirements
– As implemented on Device

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

naming conventions to enable a consistent extension of the
PIM

Figure 4. Serial IO UML Class Diagram

 Figure 5 is taken from reference [1] to illustrate an
IDL listing. In this listing SerialIO is declared as a module
subordinate to the DfSWRadio and PhysicalLayer modules.

Figure 5. Example SerialIO API IDL Listing

The IDL in Figure 5 is used to illustrate the impact of the IDL
structure and naming conventions on waveform portability.
For example, given a C++ environment in which Namespaces
and nested classes are not supported, the SerialIO module
would be mapped to the following name
DFSWRadio_PhysicalLayer_SerialIO [4]. However, if the
implementer decided to partition their system differently, as

indicated in Table 1, the SerialIO would be mapped to
DFSWRadio_DigitalDataIO_SerialIO. At porting time, all of
these naming issues have to be resolved. If the C++
environment supports Namespaces a similar issue at porting
time would arise in reconciling the Namespace and the scope
of the namespace.
 For SerialIO, the state transition diagram is trivial since
the SerialIO can transition from idle to transmit or receive;
from transmit to idle or receive; and from receive to idle or
transmit as shown in Figure 6.
 The sequence and object collaboration diagrams are
also trivial for SerialIO and are not provided.
 The performance and quality of service for SerialIO
should be stated in terms of the latency and jitter associated
with the SerialIO device and the processor requirements to
host the SerialIO device.

Figure 6. SerialIO State Transition Diagram

6. SUMMARY

The definition and promulgation of unencumbered APIs is
essential to achieve the goals of the Software
Communications Architecture. The acceptance of a Radio
Set view for API definition is essential to waveform
portability since a radio is expected to support a multiplicity
of waveforms that exist now and in the future.

REFERENCES

 [1] PIM and PSM Software Radio Components, Object
Management Group, dtc/04-05-04, May 2004

[2] JTRS JPO Application Program Interface Supplement to
the Software Communications Architecture
Specification, JTRS-5000API V3.0, August 27, 2004

[3] D. Szelc, “API Position Paper” SDRF-I-030-V1.0, SDR
Forum, June 18, 2003

[4] C++ Language Mapping Specification V1.1, Object
Management Group, formal/03-06-03, June 2003

[5] C Language Mapping Specification V1.0, Object
Management Group, June 1999

[6] E. Christensen, “Application Programming Interface
(API) Discussion”, SDR Forum, November 15, 2000

//File:DfSWRadioPhysicalLayer.idl
….
module DfSWRadio {

module PhysicalLayer {
interface IOSignals {

oneway void signal_RTS ();
};
module SerialIO {

interface SerialIOSignals : IOSignals {};
interface SerialIOControl {

void enableRTS_CTS (
in boolean enble

);
void setCTS (

in boolean cts
);

};
};

IDLEIDLE TxTx

RxRx

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

