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ABSTRACT 

The Joint Tactical Radio System (JTRS) Software Commu-
nications Architecture (SCA) provides an initial baseline 
for the common configuration, initialization, and coarse-
grained management of a set of resources that, when inte-
grated in a cooperative fashion, form a software-defined 
radio.  Policy evolution has expanded the range of appli-
cation of the SCA to all communications systems up to 
55GHz. The architectural impacts these higher capacity 
radio systems present are significantly different that those 
addressed by the initial JTRS procurements.  This paper 
presents an overview of architectural issues and tradeoffs 
associated with developing an SCA-compliant, high capac-
ity radio system.  These issues and tradeoffs will be pre-
sented in conjunction with solution spaces enabling the 
development of a system that meets more than the base set 
of SCA requirements.  An overview of a working reference 
implementation of a radio system that supports up to 300 
Mbps, operates in the 15GHz range, and is configurable 
and re-programmable under SCA control will be pre-
sented. 

INTRODUCTION 

The initial effort of the Joint Tactical Radio System 
(JTRS) program was targeted towards the military tactical 
arena.  These radio systems operated within a relatively 
narrow frequency range from 2 MHz to 2 GHz.  The foun-
dation of the JTRS effort, the Software Communication 
Architecture (SCA), however, is frequency and bandwidth 
agnostic.  Consequently, the SCA may be applied to a 
range of applications, including radios for both military 
and commercial systems that operate at frequencies and 
data rates encompassing a much broader range than origi-
nally envisioned. 

Data throughput and sampling rates stress the capabilities 
of architectures proposed in early JTRS Cluster programs 
beyond their limits.  Furthermore, the approach for build-
ing an SCA compliant radio system for the underlying 
hardware architecture of a high-capacity radio has a differ-
ent problem space and solution set due to a significant reli-
ance on DSP and FPGA processing capabilities.   

In order to provide a common frame of reference, consider 
the abstract implementation paths for a software-based 
radio. 
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Figure 1. Software-defined radio conceptual framework 
 

Logically, the realization of a software-defined radio can 
be visualized as shown in Figure 1.  The waveform to be 
realized is specified and, typically, modeled at a high level 
of abstraction.  Then, depending on the demands of the 
waveform, typically one of two implementation paths is 
taken towards a processing platform.  If the demands of 
the waveform application are capable of being realized on 
a General Purpose Processor (GPP) or, if more specialized 
signal processing is required, a Digital Signal Processor 
(DSP), then the waveform implementation can be realized 
using a high-level programming language such as C or 
C++. 

If the throughput requirements of the waveform exceed the 
capabilities of a GPP and DSP then the waveform can be 
realized using a Hardware Description Language (HDL) 
for Very High Speed Integrated Circuits (VHSIC) or 
VHDL.  Through VHDL a digital program can be realized 
at its most elemental levels as a sequence of instructions 
forming a state machine.  These state machines are then 
targeted for implementation using a Field Programmable 
Gate Array (FPGA) or an Application Specific Integrated 
Circuit (ASIC).  As noted in the figure, ASICs are typi-
cally not considered as an acceptable target for a software-
defined radio due to the fact that they are not re-
programmable – a key requirement in a software defined 
radio.  However, the insertion of ASICs is feasible in an 
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SDR if the underlying communications infrastructure pro-
vides certain capabilities. 

If we expand upon the middle three layers of the Figure 1, 
some of the internal components can be identified and 
these can be organized into four aspects or viewpoints that 
comprise a software-defined radio.  These components, 
organized by aspect are illustrated in Figure 2. 
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Figure 2. Software-defined radio aspect view  
 

At the lowest level exists the physical hardware.  The logi-
cal elements of the underlying hardware must be repre-
sented in such a fashion that the physical implementation 
can be managed in a common fashion as a set of physical 
resources.   

From the Software Infrastructure view, the underlying 
physical components and software components are imple-
mented as a set of software modules providing a means to 
perform logical operations on the physical devices, such as 
load a waveform, and between software components, such 
as establish a signal processing chain. 

Then, layered above the Software Infrastructure, is the set 
of applications and services formed by the collection of 
software components allocated to the physical devices 
within the radio system. 

Finally from the user’s perspective, she either performs 
operations on the physical radio, e.g. power up or select a 
waveform, or on the waveform, e.g. select frequency, ad-
just gain, etc. 

The SCA embodies the set of requirements that form the 
specification of a common software infrastructure for radio 
systems.  What this implies and levies on the radio system 
developer is discussed in the following section. 

SCA COMPLIANCE 

As noted in the introduction, the SCA is frequency and 
bandwidth agnostic1.  Thus, it is not the target waveform, 
its operating frequency, or bandwidth that determines 
whether or not a radio system is SCA-compliant or not.  
Compliance is determined by the implementation of the 
SCA specification resulting in a set of common software 
infrastructure components that, collectively, is referred to 
as the Core Framework (CF). 

The SCA specification, currently at version 2.2.1, defines 
the interfaces and behavior of this infrastructure.  The Core 
Framework is the realization of the specification.  And, 
when a Core Framework is integrated with a radio system, 
the system becomes SCA compliant2.   

This concept is illustrated in Figure 3.  In both cases, the 
Core Framework provides the underlying software infra-
structure that enables both the tactical radio and the Sat-
com radio to be SCA-compliant. 

JTRS Radio
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Figure 3. SCA compliance  
 

So, the fundamental test of whether a radio system is SCA-
compliant or not can be condensed down to a system that 
incorporates a Core Framework as the common infrastruc-
ture layer within the radio system and the Core Framework 
enables, 

1. The physical devices to be managed, i.e. config-
ured and controlled, through the set logical device 
interfaces specified by the SCA, and 

                                                 
1 In fact, it can be stated that the SCA is application agnostic as well. 
2 Note that SCA-compliant does not imply a system is SCA-certified.  

The term SCA-compliant is used to identify a system that adheres to 
the SCA specification while SCA-certified refers to a system that has 
passed the formal certification process defined by the JTRS Techni-
cal Lab (JTeL). 
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2. The applications, i.e. waveforms, to be installed, 
configured, and controlled, using the set of SCA 
application interfaces. 

It should be noted that there are a significant number of 
capabilities, behaviors, and requirements that must be sat-
isfied in order to be SCA-compliant, let alone SCA-
certified. 

Taking the layered diagram of Figure 2 and casting it into 
a slightly different form, we can visualize the abstraction 
layers of an SCA-compliant radio.  These layers are illus-
trated in Figure 4. 
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Figure 4. SCA abstraction layers  
 

As noted previously, the radio system consists of a collec-
tion of hardware components.  This is represented as a col-
lection of devices within an SCA-compliant system and is 
shown as the lowest abstraction layer in Figure 4.  The red 
arrows denote a signal processing path through the hard-
ware components, i.e. the physical realization of the signal 
processing path within the radio system. 

The SCA employs the concept of resources to capture the 
processing capabilities and capacities of the radio system.  
The resource forms a logical abstraction of the physical 
device.  Thus, through the logical device interface, a soft-
ware module, the higher-level software entities within the 
radio system can request, allocation of resources to per-
form specific functions required to realize a particular 
waveform application. 

Above the resource layer is a software component layer.  
The component layer consists of a collection of discrete, 
logical software components that form the building blocks 
of a waveform application.  That is, the component con-
cept is used to specify the processing functions that im-
plement a waveform in an abstract manner that is inde-
pendent of the underlying hardware.  These components 

are then logically connected, as denoted by the directed red 
lines at the component level in Figure 4, to specify the sig-
nal processing path.  This logical path is then mapped 
through to resources and, ultimately, physical devices to 
realize the waveform application on the underlying hard-
ware platform. 

Finally, at the topmost layer, the waveform application is 
implemented.  The application, as described in the previ-
ous paragraph, is specified as a collection of components, 
the connections or path, between the components, and the 
set of resources required to support those components.   

The Core Framework takes this high-level specification of 
a waveform, represented in eXtensible Markup Language 
(XML), and performs the logic necessary to find and allo-
cate the required resources, load and configure the re-
sources, establish the connections between the compo-
nents, and instantiate the waveform.  The overall 
management and control of an SCA-compliant radio is 
performed by the Domain Manager. 

There are several components that comprise a Core 
Framework implementation.  An overview of these com-
ponents and supporting tools is shown in Figure 5. 

Waveform
Application

Framework
Services

(Log, Event,
and Name)

Domain Knowledge

Application
Factory

Constraint
Engine

Domain 
Modeler COM/CORBA

Bridge

XML
Processor

Run-Time
Monitor

Constraint
Engine

XML
Domain
Profile

Run-Time Environment

Development Environment

Domain Manager

Run-Time
Monitor

XML
Domain Modeler Run-Time Monitor

D
ev

ic
e

M
an

ag
er

(s
)

Device

Device

Device

Device

CORBA Infrastructure
Chassis

Modem

Modem

SBC

dmTK Core Framework

R
F

Am
pl

ifi
er

s

rcv

xmit

Figure 5. Core framework components and tools  
 

In addition to the Domain Manager, a Core Framework 
implementation incorporates common services, e.g. file 
system, logging, event notification, a component called the 
Application Factory which performs the resource alloca-
tion and waveform instantiation, a collection of logical 
devices providing the control interface to the physical 
hardware, one or more Device Managers which provide a 
common reference point for device and services.  Finally, 
a software bus between the components is provided using 
the Common Object Request Broker Architecture 
(CORBA) standard. 
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PROCESSOR IMPLICATIONS 

So, within the context of the SCA, how can a high-level 
waveform specification be realized within an SCA radio?  
Again, as illustrated in Figure 1, the waveform application 
may be realized using a GPP, DSP, FPGA or a combina-
tion of these processors and, within the context and an 
SCA-compliant system, the installation, instantiation, and 
control of the waveforms should be consistent regardless 
of the underlying processing platform, and, finally, the 
actual implementation, high-level language or VHDL, 
should be selected by the Core Framework based on the 
resources available at the time the waveform is instanti-
ated. 

For implementations using a GPP, the ability to install, 
configure, and connect components to instantiate a wave-
form is straightforward.  Essentially, the waveform is sim-
ply another application running as a task within the operat-
ing system of the GPP.  Connecting each of the 
components that form the application within a GPP is 
similarly straightforward as they are simply connected via 
the CORBA software bus. 

However, once the processing demands of the waveform 
requires that the relative comfort and consistency of a GPP 
be abandoned for the capabilities of a DSP or FPGA, then 
the field becomes more complex. 

First of all, the interfaces to the DSP and FPGA are differ-
ent than the GPP.  Specifically, the convenient high-level 
abstraction of the GPP provided by the operating system is 
not available3.  Secondly, the mechanism for configuring 
and controlling a waveform implementation within an 
FPGA is fundamentally different than under a GPP.  In the 
case of the GPP implementation, the waveform component 
is a task within the GPP operating system and, as such, can 
be configured and controlled via function calls. 

A VHDL implementation within an FPGA, however, pre-
sents a more complex problem.  The FPGA does not have 
an operating system to provide a common abstraction for 
interfaces.  Furthermore, control of the state machine 
within the FPGA is performed by reading or writing to 
registers defined in the VHDL.  These registers are typi-
cally mapped to memory locations within the collection of 
hardware that forms the radio system. 

Finally, level of flexibility of interconnections between the 
processing components in an FPGA-based system is usu-
ally more limited and dependent on the vendor.  The data 
path is governed by the physical topology of the hardware 

                                                 
3 While there are operating systems for DSPs that provide higher-level 

services, they are not typically as robust as a GPP operating system 
and, given the FPGA focus of this paper, are not considered. 

and controlled either through routing logic within the 
FPGA or using a flex-fabric. 

So, the fundamental question becomes how can waveform 
implementations requiring the processing capabilities of a 
DSP and, more specifically, an FPGA be integrated within 
an SCA Core Framework such that the actual implementa-
tion hardware is transparent to the configuration and con-
trol aspect of the system.   

This was the core issue to be solved in order to enable a 
high-capacity programmable modem developed at Harris 
to be integrated within an SCA radio system.  In the next 
section, the approaches that were considered are identified, 
the development path selected is presented, and the poten-
tial long-term implications for the SCA specification are 
discussed. 

  THE PROGRAMMABLE MODEM 

Harris has been conducting internal research and develop-
ment for the past several years in the development of a 
programmable modem.  Use of the word modem can be a 
bit misleading, however.  While the initial and primary 
focus was use of the board as a modem, it is essentially a 
high-capacity digital signal processing board.  The high-
level architecture of the modem is shown in Figure 6. 
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Figure 6. Programmable modem high-level architecture 
 

As illustrated, the core processing capability is furnished 
by three signal processing FPGAs and a DSP.  Each of the 
FPGAs are interconnected enabling direct communication 
between any two FPGAs or logic within an FPGA to route 
data through it to another FPGA or board component. 

The board form factor allows it to be incorporated into 
either a VME or cPCI bus system.  Additional processing 
capabilities, baseband interfaces, intermediate frequency 
(IF) conversion, and other functions can be added to the 
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board through the use of a mezzanine card that plugs di-
rectly onto the main board. 

In addition to the processing capabilities, the base card 
provides on-board storage through the Flash memory.  
This allows several FPGA loads to be stored directly on 
the board enabling a standard power-up load as well as 
alternate loads. 

Further complicating the issue was the fact that the defini-
tion and location of the registers within a VHDL wave-
form implementation were, essentially, at the whim of the 
VHDL developer.  This implied that the names, locations, 
and usage of the registers can and will change from wave-
form to waveform. 

So, the core question to be addressed in developing an 
SCA device interface for the programmable modem was 
how to achieve the high-level of abstraction defined within 
the SCA, handle the differing VHDL implementations 
without placing undue constraints on the VHDL developer, 
and provide a fine-grained control of the resources that 
comprise the modem board.  

IMPLEMENTING THE SCA DEVICE INTERFACE 

Several implementation approaches for the SCA device 
interface were considered.  The initial approach considered 
was to implement an abstraction library for the modem 
board.  After some consideration this approach was dis-
carded because, for each new waveform, and the new reg-
ister definitions inherent in the VHDL, the library would 
be required modification to handle the new definitions.  
Thus, the library would monotonically expand as new 
waveforms were incorporated. 

While the library could be designed such that the interface 
were more abstract to minimize the extensions required for 
a waveform, the library approach still represents essen-
tially a function call or Application Programmer Interface 
(API) to the board.  This would entail extensions to the 
Device interface that would need to be specified, managed, 
and linked into the overall application.  Although such API 
extensions are permitted, as noted in the SCA API Sup-
plement, and, in many cases provide a prudent implemen-
tation, it was felt that, given the underlying state machine 
perspective of the FPGA implementation, that an alterna-
tive solution would be more appropriate. 

The first step was to define the abstract view of the modem 
board from the SCA perspective.  An initial thought was to 
implement the modem board as a single device.  While this 
approach would have yielded a solution, it was felt that it 
was not a solution that would provide flexibility as the 
modem hardware evolved, would provide a fine-grained 
view and control of the on-board resources, and, finally, 
was not in the spirit of the SCA. 

After some discussion, the approach taken was to represent 
each discrete processing component on the board as an 
SCA Device and to implement a Device Manager for the 
board.  This architecture is illustrated in Figure 7. 
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Figure 7. SCA interfaces to the programmable modem  
 

As shown in the figure, each FPGA and DSP has a corre-
sponding SCA Device implementation and a Device Man-
ager implementation for the entire board.  As this architec-
tural approach evolved, it became apparent that one of the 
design options it offered was to incorporate an SCA File 
System as part of the Device Manager.  This solved an-
other problem related to the management of the Flash 
memory contents.  By implementing a pseudo-file system 
for the Flash memory and providing an SCA File System 
interface, any SCA-compliant component could now inter-
rogate the Flash memory as if it were a standard file sys-
tem.  This also helped to simplify loading images into the 
Flash memory. 

Although the design of the SCA interfaces for the modem 
board addressed the basic architectural tenets, there was 
still the issue of the actual programmatic interface to the 
VHDL implementation on the FPGAs.  Again, the objec-
tive was to provide a flexible interface that did not require 
modifications to a library or API for new waveforms, did 
not place undue constraints on the VHDL developer, and 
adhered to the specification and spirit of the SCA. 

After considering several alternatives, an approach was 
developed for configuring and controlling a VHDL wave-
form implementation in an FPGA that meets the above 
objectives and, more importantly, has been tested through 
implementation of an SCA-compliant radio system.  This 
approach is described below. 
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  THE FPGA DEVICE INTERFACE 

As implementation approaches were considered, we took a 
step back and asked what facilities were already available 
through the SCA that could be applied or adapted with 
minimal impact to solve the FPGA control problem.  After 
some discussion, the subject of the SCA PropertySet was 
put forward.  The PropertySet allows the definition of arbi-
trary name/value tuples that can be associated with an en-
tity within the SCA.  The property is defined using XML 
already specified as part of the SCA specification.  An ex-
ample of an SCA property definition for an FPGA register 
is shown in Figure 8. 

<?xml version="1.0" standalone="no"?>
<!DOCTYPE properties SYSTEM "properties.2.2.dtd">
<properties>

<simple id="BoardID"                
type="long"    
name="BoardID"                
mode="readonly">

<description>
Board ID and revision, typically in date format (yyyymmdd).

</description>
<kind kindtype="configure"/>

</simple>

<simple id="DDS1TuningWord"         
type="double"  
name="DDS1TuningWord"         
mode="readwrite">

<description>
32-bit tuning word calculated by the formula, FTW = (Desired output freq x 2^N)/SYSCLK.

</description>
<kind kindtype="configure"/>

</simple>

However, how those properties are mapped to 
underlying device characteristics is 

implemented in device-specific, non-portable 
code.  Changes in the load characteristics 

requires re-writing software.

Device Properties are defined using 
SCA Properties XML.  This provides 

access to set/get property values from 
applications and external components.

Figure 8. Defining SCA properties  
 

As shown in the figure, the property definition is some-
what limiting in that it allows the specification of a prop-
erty ID, name, data type, and mode.  At first glance it does 
not appear that properties would be a viable approach.  
However, the advantage of using properties is that, from 
an interface perspective, a property definition abstracts and 
encapsulates the actual property implementation.  Thus, 
from an interface perspective, it presents only the informa-
tion required to access the property.  This was attractive 
because it offered a mechanism to access FPGA registers 
in a manner that was consistent with the SCA specifica-
tion, did not impose any additional interface definitions, 
and closely matched the concept of an FPGA register as an 
entity that may be read or written. 

So, if SCA properties were to be used, the remaining prob-
lem o be solved was how to map the abstract property 
definitions through to the specific register and memory 
locations imposed by the VHDL implementation.  Again 
the approach of building an abstraction library for the 
properties was considered but quickly abandoned. 

After several more discussions, the approach chosen was 
to develop a mechanism for defining the mapping of SCA 
properties to underlying FPGA registers using a property 
mapping XML file4.  This concept is illustrated in Figure 
9. 

<?xml version="1.0" standalone="no"?>
<!DOCTYPE fpgaregisters SYSTEM "fpgaregisters.dtd">
<fpgaregisters id="PMControlFPGARegisterMap">

<description>
Harris Programmable Modem Control FPGA Register Map

</description>

<item id="BoardID"                
block="0" 
register="1"
startbit="31"
stopbit="0"  
type="long"    
access="read">

<description>
Board ID and revision, typically in date format (yyyymmdd).

</description>
</item>

<item id="DDS1TuningWord"         
block="0" 
register="2"
startbit="31"
stopbit="0"  
type="double"  
access="readwrite">

<description>
32-bit tuning word calculated by the formula, FTW = (Desired output freq x 2^N)/SYSCLK.

</description>
</item>

Representing knowledge about the 
load format, location, register map, 

etc. provides a transformational 
mapping between the high-level 
SCA Property definition and the 

actual implementation.

Figure 9. Mapping properties through to registers  
 

As shown in the figure, the property mapping XML file 
takes the SCA property definition and extends the defini-
tion by specifying the information necessary to uniquely 
identify the register, its location, bit order, offset, etc.  By 
using this simple approach, new waveforms can be 
brought up under SCA control within days after the VHDL 
has been completed.  All that is required is some time with 
the waveform developer to identify and define the regis-
ters, their use, location, and other characteristics, define 
the high-level SCA properties, and then develop the map-
ping XML. 

A further benefit is that the underlying device interface 
code for the modem board does not change for a new 
waveform.  There is no abstraction library to extend or link 
into existing code.  Once the properties and mapping XML 
files have been developed, along with the standard XML 
files defining the waveform, the waveform can be installed 
and instantiated in an SCA radio system.  The following 
section provides a brief example of access to the modem 
FPGA properties and control of a waveform. 

INTEGRATING THE DEVICE 

Once the waveform properties have been mapped and the 
waveform installed, the FPGA properties may be accessed 
through the standard properties interface.  Figure 10 shows 
                                                 
4 For those with practical experience in applying the SCA, there may be 

the cry of “not another XML file.”  The benefits of the approach, 
however, far outweigh the additional effort required to define the ad-
ditional XML. 
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a screen capture of a run-time GUI listing the programma-
ble modem as one of the SCA devices in the system. 

Figure 10. Accessing the modem as an SCA device  
 

Selecting the device and clicking on the Properties… menu 
selection brings up the properties dialog shown in Figure 
11 below. 

Figure 11. Viewing and modifying modem properties  
 

At this point, direct access to the FPGA registers is avail-
able through the properties dialog above.  Simply changing 
a value in the dialog and clicking Apply will write the new 
values through to the underlying FPGA registers using the 
configure operation on SCA properties. 

Although the above interface shows the ability to define 
and access properties, it is not a user-oriented interface.  
As part of our development effort we have successfully 
implemented and brought up under SCA control both a 
TCDL and CDL waveform.  The TCDL waveform is fully 

functional and has been demonstrated in conjunction with 
a legacy TCDL-ELB terminal.  This configuration support 
a symmetrical 10.71Mbps link between the SCA-
compliant system and the legacy terminal running live 
video using IP packets over the link.  The CDL is a 274 
Mbps implementation. 

Instantiation of the waveforms is performed through the 
Core Framework using the GUI shown below in Figure 12.  
Switching between the two waveforms entails re-loading 
the FPGAs and is accomplished in several seconds. 

Figure 12. Waveform control interface  
 

 

SUMMARY 

In summary, a flexible approach for integrating FPGA-
based waveform implementations has been presented.  
This approach builds on current SCA specifications and 
utilizes standard SCA conventions to define specific prop-
erties associated with an FPGA.  

The approach has been validated through successful im-
plementation and testing of waveforms and interoperability 
with an existing non-SCA, legacy terminal. 

The Specialized Hardware Supplement recently adopted 
by the JTRS/JPO is an initial step towards a more global 
solution to the issues presented herein.  Work to evolve the 
initial document needs to continue to be successful and 
have the long-term benefit envisioned. 

Further work is required to address the full range of re-
quirements that would need to be addressed for FPGA-
based implementations.  However, the approach described 
above presents a straightforward, flexible, and adaptable 
approach that maintains the integrity of the SCA while 
minimizing impacts due to changes in waveform imple-
mentation. 
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