
ARCHITECTURE IMPLICATIONS FOR HIGH CAPACITY, SCA-COMPLIANT RADIO SYSTEMS

Vincent J. Kovarik, Jr.
Harris Corporation

Melbourne, FL

ABSTRACT

The Joint Tactical Radio System (JTRS) Software Commu-
nications Architecture (SCA) provides an initial baseline
for the common configuration, initialization, and coarse-
grained management of a set of resources that, when inte-
grated in a cooperative fashion, form a software-defined
radio. Policy evolution has expanded the range of appli-
cation of the SCA to all communications systems up to
55GHz. The architectural impacts these higher capacity
radio systems present are significantly different that those
addressed by the initial JTRS procurements. This paper
presents an overview of architectural issues and tradeoffs
associated with developing an SCA-compliant, high capac-
ity radio system. These issues and tradeoffs will be pre-
sented in conjunction with solution spaces enabling the
development of a system that meets more than the base set
of SCA requirements. An overview of a working reference
implementation of a radio system that supports up to 300
Mbps, operates in the 15GHz range, and is configurable
and re-programmable under SCA control will be pre-
sented.

INTRODUCTION

The initial effort of the Joint Tactical Radio System
(JTRS) program was targeted towards the military tactical
arena. These radio systems operated within a relatively
narrow frequency range from 2 MHz to 2 GHz. The foun-
dation of the JTRS effort, the Software Communication
Architecture (SCA), however, is frequency and bandwidth
agnostic. Consequently, the SCA may be applied to a
range of applications, including radios for both military
and commercial systems that operate at frequencies and
data rates encompassing a much broader range than origi-
nally envisioned.

Data throughput and sampling rates stress the capabilities
of architectures proposed in early JTRS Cluster programs
beyond their limits. Furthermore, the approach for build-
ing an SCA compliant radio system for the underlying
hardware architecture of a high-capacity radio has a differ-
ent problem space and solution set due to a significant reli-
ance on DSP and FPGA processing capabilities.

In order to provide a common frame of reference, consider
the abstract implementation paths for a software-based
radio.

VHDL

Host Platform

GPP DSP

Bandwidth

Ab
st

ra
ct

io
n

Waveform Implementation Options

FPGA ASIC

Operating System

Framework/Infrastructure

C/C++

Waveform Specification

Figure 1. Software-defined radio conceptual framework

Logically, the realization of a software-defined radio can
be visualized as shown in Figure 1. The waveform to be
realized is specified and, typically, modeled at a high level
of abstraction. Then, depending on the demands of the
waveform, typically one of two implementation paths is
taken towards a processing platform. If the demands of
the waveform application are capable of being realized on
a General Purpose Processor (GPP) or, if more specialized
signal processing is required, a Digital Signal Processor
(DSP), then the waveform implementation can be realized
using a high-level programming language such as C or
C++.

If the throughput requirements of the waveform exceed the
capabilities of a GPP and DSP then the waveform can be
realized using a Hardware Description Language (HDL)
for Very High Speed Integrated Circuits (VHSIC) or
VHDL. Through VHDL a digital program can be realized
at its most elemental levels as a sequence of instructions
forming a state machine. These state machines are then
targeted for implementation using a Field Programmable
Gate Array (FPGA) or an Application Specific Integrated
Circuit (ASIC). As noted in the figure, ASICs are typi-
cally not considered as an acceptable target for a software-
defined radio due to the fact that they are not re-
programmable – a key requirement in a software defined
radio. However, the insertion of ASICs is feasible in an

1 of 7

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

SDR if the underlying communications infrastructure pro-
vides certain capabilities.

If we expand upon the middle three layers of the Figure 1,
some of the internal components can be identified and
these can be organized into four aspects or viewpoints that
comprise a software-defined radio. These components,
organized by aspect are illustrated in Figure 2.

PhysicalEle ment

SWApplication

AppCompone nt Eve ntLogicalDev ice

SWCom ponent

Wave form Se rv ice

Port

Property

Radio

Application and
Serv ices

Softw are
Infrastructure

Hardw are

Radio User

Capacity

User

Resource

Ante nnaRFProcessor

G PP DSP FPG A

I/O Dev ice

NIC AD-DA

1
issues

0..*

«realize»
«realize»

hasDependency

1..*

1..*

1

isAllocatedTo

1..*

requires

hasDependency

1
provides Interface

1

«realize»

hasDependency

connectsVia
0..*

0..*

operates

controls

«realize»

Figure 2. Software-defined radio aspect view

At the lowest level exists the physical hardware. The logi-
cal elements of the underlying hardware must be repre-
sented in such a fashion that the physical implementation
can be managed in a common fashion as a set of physical
resources.

From the Software Infrastructure view, the underlying
physical components and software components are imple-
mented as a set of software modules providing a means to
perform logical operations on the physical devices, such as
load a waveform, and between software components, such
as establish a signal processing chain.

Then, layered above the Software Infrastructure, is the set
of applications and services formed by the collection of
software components allocated to the physical devices
within the radio system.

Finally from the user’s perspective, she either performs
operations on the physical radio, e.g. power up or select a
waveform, or on the waveform, e.g. select frequency, ad-
just gain, etc.

The SCA embodies the set of requirements that form the
specification of a common software infrastructure for radio
systems. What this implies and levies on the radio system
developer is discussed in the following section.

SCA COMPLIANCE

As noted in the introduction, the SCA is frequency and
bandwidth agnostic1. Thus, it is not the target waveform,
its operating frequency, or bandwidth that determines
whether or not a radio system is SCA-compliant or not.
Compliance is determined by the implementation of the
SCA specification resulting in a set of common software
infrastructure components that, collectively, is referred to
as the Core Framework (CF).

The SCA specification, currently at version 2.2.1, defines
the interfaces and behavior of this infrastructure. The Core
Framework is the realization of the specification. And,
when a Core Framework is integrated with a radio system,
the system becomes SCA compliant2.

This concept is illustrated in Figure 3. In both cases, the
Core Framework provides the underlying software infra-
structure that enables both the tactical radio and the Sat-
com radio to be SCA-compliant.

JTRS Radio

Core Framework

2Mhz-2GHz

SCA 2.2

SATCOM Radio

Core Framework

>2GHzDefines

Both radios are SCA-Compliant

Figure 3. SCA compliance

So, the fundamental test of whether a radio system is SCA-
compliant or not can be condensed down to a system that
incorporates a Core Framework as the common infrastruc-
ture layer within the radio system and the Core Framework
enables,

1. The physical devices to be managed, i.e. config-
ured and controlled, through the set logical device
interfaces specified by the SCA, and

1 In fact, it can be stated that the SCA is application agnostic as well.
2 Note that SCA-compliant does not imply a system is SCA-certified.

The term SCA-compliant is used to identify a system that adheres to
the SCA specification while SCA-certified refers to a system that has
passed the formal certification process defined by the JTRS Techni-
cal Lab (JTeL).

2 of 7

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

2. The applications, i.e. waveforms, to be installed,
configured, and controlled, using the set of SCA
application interfaces.

It should be noted that there are a significant number of
capabilities, behaviors, and requirements that must be sat-
isfied in order to be SCA-compliant, let alone SCA-
certified.

Taking the layered diagram of Figure 2 and casting it into
a slightly different form, we can visualize the abstraction
layers of an SCA-compliant radio. These layers are illus-
trated in Figure 4.

Applications

Components

Resources

Devices

Domain
Manager

Figure 4. SCA abstraction layers

As noted previously, the radio system consists of a collec-
tion of hardware components. This is represented as a col-
lection of devices within an SCA-compliant system and is
shown as the lowest abstraction layer in Figure 4. The red
arrows denote a signal processing path through the hard-
ware components, i.e. the physical realization of the signal
processing path within the radio system.

The SCA employs the concept of resources to capture the
processing capabilities and capacities of the radio system.
The resource forms a logical abstraction of the physical
device. Thus, through the logical device interface, a soft-
ware module, the higher-level software entities within the
radio system can request, allocation of resources to per-
form specific functions required to realize a particular
waveform application.

Above the resource layer is a software component layer.
The component layer consists of a collection of discrete,
logical software components that form the building blocks
of a waveform application. That is, the component con-
cept is used to specify the processing functions that im-
plement a waveform in an abstract manner that is inde-
pendent of the underlying hardware. These components

are then logically connected, as denoted by the directed red
lines at the component level in Figure 4, to specify the sig-
nal processing path. This logical path is then mapped
through to resources and, ultimately, physical devices to
realize the waveform application on the underlying hard-
ware platform.

Finally, at the topmost layer, the waveform application is
implemented. The application, as described in the previ-
ous paragraph, is specified as a collection of components,
the connections or path, between the components, and the
set of resources required to support those components.

The Core Framework takes this high-level specification of
a waveform, represented in eXtensible Markup Language
(XML), and performs the logic necessary to find and allo-
cate the required resources, load and configure the re-
sources, establish the connections between the compo-
nents, and instantiate the waveform. The overall
management and control of an SCA-compliant radio is
performed by the Domain Manager.

There are several components that comprise a Core
Framework implementation. An overview of these com-
ponents and supporting tools is shown in Figure 5.

Waveform
Application

Framework
Services

(Log, Event,
and Name)

Domain Knowledge

Application
Factory

Constraint
Engine

Domain
Modeler COM/CORBA

Bridge

XML
Processor

Run-Time
Monitor

Constraint
Engine

XML
Domain
Profile

Run-Time Environment

Development Environment

Domain Manager

Run-Time
Monitor

XML
Domain Modeler Run-Time Monitor

D
ev

ic
e

M
an

ag
er

(s
)

Device

Device

Device

Device

CORBA Infrastructure
Chassis

Modem

Modem

SBC

dmTK Core Framework

R
F

Am
pl

ifi
er

s

rcv

xmit

Figure 5. Core framework components and tools

In addition to the Domain Manager, a Core Framework
implementation incorporates common services, e.g. file
system, logging, event notification, a component called the
Application Factory which performs the resource alloca-
tion and waveform instantiation, a collection of logical
devices providing the control interface to the physical
hardware, one or more Device Managers which provide a
common reference point for device and services. Finally,
a software bus between the components is provided using
the Common Object Request Broker Architecture
(CORBA) standard.

3 of 7

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

PROCESSOR IMPLICATIONS

So, within the context of the SCA, how can a high-level
waveform specification be realized within an SCA radio?
Again, as illustrated in Figure 1, the waveform application
may be realized using a GPP, DSP, FPGA or a combina-
tion of these processors and, within the context and an
SCA-compliant system, the installation, instantiation, and
control of the waveforms should be consistent regardless
of the underlying processing platform, and, finally, the
actual implementation, high-level language or VHDL,
should be selected by the Core Framework based on the
resources available at the time the waveform is instanti-
ated.

For implementations using a GPP, the ability to install,
configure, and connect components to instantiate a wave-
form is straightforward. Essentially, the waveform is sim-
ply another application running as a task within the operat-
ing system of the GPP. Connecting each of the
components that form the application within a GPP is
similarly straightforward as they are simply connected via
the CORBA software bus.

However, once the processing demands of the waveform
requires that the relative comfort and consistency of a GPP
be abandoned for the capabilities of a DSP or FPGA, then
the field becomes more complex.

First of all, the interfaces to the DSP and FPGA are differ-
ent than the GPP. Specifically, the convenient high-level
abstraction of the GPP provided by the operating system is
not available3. Secondly, the mechanism for configuring
and controlling a waveform implementation within an
FPGA is fundamentally different than under a GPP. In the
case of the GPP implementation, the waveform component
is a task within the GPP operating system and, as such, can
be configured and controlled via function calls.

A VHDL implementation within an FPGA, however, pre-
sents a more complex problem. The FPGA does not have
an operating system to provide a common abstraction for
interfaces. Furthermore, control of the state machine
within the FPGA is performed by reading or writing to
registers defined in the VHDL. These registers are typi-
cally mapped to memory locations within the collection of
hardware that forms the radio system.

Finally, level of flexibility of interconnections between the
processing components in an FPGA-based system is usu-
ally more limited and dependent on the vendor. The data
path is governed by the physical topology of the hardware

3 While there are operating systems for DSPs that provide higher-level

services, they are not typically as robust as a GPP operating system
and, given the FPGA focus of this paper, are not considered.

and controlled either through routing logic within the
FPGA or using a flex-fabric.

So, the fundamental question becomes how can waveform
implementations requiring the processing capabilities of a
DSP and, more specifically, an FPGA be integrated within
an SCA Core Framework such that the actual implementa-
tion hardware is transparent to the configuration and con-
trol aspect of the system.

This was the core issue to be solved in order to enable a
high-capacity programmable modem developed at Harris
to be integrated within an SCA radio system. In the next
section, the approaches that were considered are identified,
the development path selected is presented, and the poten-
tial long-term implications for the SCA specification are
discussed.

 THE PROGRAMMABLE MODEM

Harris has been conducting internal research and develop-
ment for the past several years in the development of a
programmable modem. Use of the word modem can be a
bit misleading, however. While the initial and primary
focus was use of the board as a modem, it is essentially a
high-capacity digital signal processing board. The high-
level architecture of the modem is shown in Figure 6.

P2 P1

Power
Module

FPGA-3
(Virtex E)

FPGA-2
(Virtex E)

FPGA-1
(Virtex E)

Control
FPGA

(VirtexE)

DSP

Programmable
Interface

MP1

MP3

MP2

RX

Control

Signal Proc

RAM

Global
Memory

Memory

Figure 6. Programmable modem high-level architecture

As illustrated, the core processing capability is furnished
by three signal processing FPGAs and a DSP. Each of the
FPGAs are interconnected enabling direct communication
between any two FPGAs or logic within an FPGA to route
data through it to another FPGA or board component.

The board form factor allows it to be incorporated into
either a VME or cPCI bus system. Additional processing
capabilities, baseband interfaces, intermediate frequency
(IF) conversion, and other functions can be added to the

4 of 7

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

board through the use of a mezzanine card that plugs di-
rectly onto the main board.

In addition to the processing capabilities, the base card
provides on-board storage through the Flash memory.
This allows several FPGA loads to be stored directly on
the board enabling a standard power-up load as well as
alternate loads.

Further complicating the issue was the fact that the defini-
tion and location of the registers within a VHDL wave-
form implementation were, essentially, at the whim of the
VHDL developer. This implied that the names, locations,
and usage of the registers can and will change from wave-
form to waveform.

So, the core question to be addressed in developing an
SCA device interface for the programmable modem was
how to achieve the high-level of abstraction defined within
the SCA, handle the differing VHDL implementations
without placing undue constraints on the VHDL developer,
and provide a fine-grained control of the resources that
comprise the modem board.

IMPLEMENTING THE SCA DEVICE INTERFACE

Several implementation approaches for the SCA device
interface were considered. The initial approach considered
was to implement an abstraction library for the modem
board. After some consideration this approach was dis-
carded because, for each new waveform, and the new reg-
ister definitions inherent in the VHDL, the library would
be required modification to handle the new definitions.
Thus, the library would monotonically expand as new
waveforms were incorporated.

While the library could be designed such that the interface
were more abstract to minimize the extensions required for
a waveform, the library approach still represents essen-
tially a function call or Application Programmer Interface
(API) to the board. This would entail extensions to the
Device interface that would need to be specified, managed,
and linked into the overall application. Although such API
extensions are permitted, as noted in the SCA API Sup-
plement, and, in many cases provide a prudent implemen-
tation, it was felt that, given the underlying state machine
perspective of the FPGA implementation, that an alterna-
tive solution would be more appropriate.

The first step was to define the abstract view of the modem
board from the SCA perspective. An initial thought was to
implement the modem board as a single device. While this
approach would have yielded a solution, it was felt that it
was not a solution that would provide flexibility as the
modem hardware evolved, would provide a fine-grained
view and control of the on-board resources, and, finally,
was not in the spirit of the SCA.

After some discussion, the approach taken was to represent
each discrete processing component on the board as an
SCA Device and to implement a Device Manager for the
board. This architecture is illustrated in Figure 7.

PM SCA Implementation PM Physical HardwareSCA Interface

DeviceManager

Fi leSystem

Device

Dev iceManager

DSPDev ice

FPGA1Dev ice

FPGA2Dev ice

FPGA3Dev ice

FileSystem

«real ize»

0..2

0..*

«realize»

manages

manages

«real ize»

3

«real ize»
0..*

«realize»

manages

manages

manages

manages

«realize»

manages

DSP and FPGAs
are represented as

discrete SCA
Devices providing a

fine-grained
management and
control capability.

Manage on-
board flash
memory as
an SCA File

System.
Allows

external
access into
the flash by

3rd party
software.

Base card is
represented as an

SCA Device
Manager. This

maps to the use of
the File System

for flash and
multiple devices

on the card.

Figure 7. SCA interfaces to the programmable modem

As shown in the figure, each FPGA and DSP has a corre-
sponding SCA Device implementation and a Device Man-
ager implementation for the entire board. As this architec-
tural approach evolved, it became apparent that one of the
design options it offered was to incorporate an SCA File
System as part of the Device Manager. This solved an-
other problem related to the management of the Flash
memory contents. By implementing a pseudo-file system
for the Flash memory and providing an SCA File System
interface, any SCA-compliant component could now inter-
rogate the Flash memory as if it were a standard file sys-
tem. This also helped to simplify loading images into the
Flash memory.

Although the design of the SCA interfaces for the modem
board addressed the basic architectural tenets, there was
still the issue of the actual programmatic interface to the
VHDL implementation on the FPGAs. Again, the objec-
tive was to provide a flexible interface that did not require
modifications to a library or API for new waveforms, did
not place undue constraints on the VHDL developer, and
adhered to the specification and spirit of the SCA.

After considering several alternatives, an approach was
developed for configuring and controlling a VHDL wave-
form implementation in an FPGA that meets the above
objectives and, more importantly, has been tested through
implementation of an SCA-compliant radio system. This
approach is described below.

5 of 7

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

 THE FPGA DEVICE INTERFACE

As implementation approaches were considered, we took a
step back and asked what facilities were already available
through the SCA that could be applied or adapted with
minimal impact to solve the FPGA control problem. After
some discussion, the subject of the SCA PropertySet was
put forward. The PropertySet allows the definition of arbi-
trary name/value tuples that can be associated with an en-
tity within the SCA. The property is defined using XML
already specified as part of the SCA specification. An ex-
ample of an SCA property definition for an FPGA register
is shown in Figure 8.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE properties SYSTEM "properties.2.2.dtd">
<properties>

<simple id="BoardID"
type="long"
name="BoardID"
mode="readonly">

<description>
Board ID and revision, typically in date format (yyyymmdd).

</description>
<kind kindtype="configure"/>

</simple>

<simple id="DDS1TuningWord"
type="double"
name="DDS1TuningWord"
mode="readwrite">

<description>
32-bit tuning word calculated by the formula, FTW = (Desired output freq x 2^N)/SYSCLK.

</description>
<kind kindtype="configure"/>

</simple>

However, how those properties are mapped to
underlying device characteristics is

implemented in device-specific, non-portable
code. Changes in the load characteristics

requires re-writing software.

Device Properties are defined using
SCA Properties XML. This provides

access to set/get property values from
applications and external components.

Figure 8. Defining SCA properties

As shown in the figure, the property definition is some-
what limiting in that it allows the specification of a prop-
erty ID, name, data type, and mode. At first glance it does
not appear that properties would be a viable approach.
However, the advantage of using properties is that, from
an interface perspective, a property definition abstracts and
encapsulates the actual property implementation. Thus,
from an interface perspective, it presents only the informa-
tion required to access the property. This was attractive
because it offered a mechanism to access FPGA registers
in a manner that was consistent with the SCA specifica-
tion, did not impose any additional interface definitions,
and closely matched the concept of an FPGA register as an
entity that may be read or written.

So, if SCA properties were to be used, the remaining prob-
lem o be solved was how to map the abstract property
definitions through to the specific register and memory
locations imposed by the VHDL implementation. Again
the approach of building an abstraction library for the
properties was considered but quickly abandoned.

After several more discussions, the approach chosen was
to develop a mechanism for defining the mapping of SCA
properties to underlying FPGA registers using a property
mapping XML file4. This concept is illustrated in Figure
9.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE fpgaregisters SYSTEM "fpgaregisters.dtd">
<fpgaregisters id="PMControlFPGARegisterMap">

<description>
Harris Programmable Modem Control FPGA Register Map

</description>

<item id="BoardID"
block="0"
register="1"
startbit="31"
stopbit="0"
type="long"
access="read">

<description>
Board ID and revision, typically in date format (yyyymmdd).

</description>
</item>

<item id="DDS1TuningWord"
block="0"
register="2"
startbit="31"
stopbit="0"
type="double"
access="readwrite">

<description>
32-bit tuning word calculated by the formula, FTW = (Desired output freq x 2^N)/SYSCLK.

</description>
</item>

Representing knowledge about the
load format, location, register map,

etc. provides a transformational
mapping between the high-level
SCA Property definition and the

actual implementation.

Figure 9. Mapping properties through to registers

As shown in the figure, the property mapping XML file
takes the SCA property definition and extends the defini-
tion by specifying the information necessary to uniquely
identify the register, its location, bit order, offset, etc. By
using this simple approach, new waveforms can be
brought up under SCA control within days after the VHDL
has been completed. All that is required is some time with
the waveform developer to identify and define the regis-
ters, their use, location, and other characteristics, define
the high-level SCA properties, and then develop the map-
ping XML.

A further benefit is that the underlying device interface
code for the modem board does not change for a new
waveform. There is no abstraction library to extend or link
into existing code. Once the properties and mapping XML
files have been developed, along with the standard XML
files defining the waveform, the waveform can be installed
and instantiated in an SCA radio system. The following
section provides a brief example of access to the modem
FPGA properties and control of a waveform.

INTEGRATING THE DEVICE

Once the waveform properties have been mapped and the
waveform installed, the FPGA properties may be accessed
through the standard properties interface. Figure 10 shows

4 For those with practical experience in applying the SCA, there may be

the cry of “not another XML file.” The benefits of the approach,
however, far outweigh the additional effort required to define the ad-
ditional XML.

6 of 7

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

a screen capture of a run-time GUI listing the programma-
ble modem as one of the SCA devices in the system.

Figure 10. Accessing the modem as an SCA device

Selecting the device and clicking on the Properties… menu
selection brings up the properties dialog shown in Figure
11 below.

Figure 11. Viewing and modifying modem properties

At this point, direct access to the FPGA registers is avail-
able through the properties dialog above. Simply changing
a value in the dialog and clicking Apply will write the new
values through to the underlying FPGA registers using the
configure operation on SCA properties.

Although the above interface shows the ability to define
and access properties, it is not a user-oriented interface.
As part of our development effort we have successfully
implemented and brought up under SCA control both a
TCDL and CDL waveform. The TCDL waveform is fully

functional and has been demonstrated in conjunction with
a legacy TCDL-ELB terminal. This configuration support
a symmetrical 10.71Mbps link between the SCA-
compliant system and the legacy terminal running live
video using IP packets over the link. The CDL is a 274
Mbps implementation.

Instantiation of the waveforms is performed through the
Core Framework using the GUI shown below in Figure 12.
Switching between the two waveforms entails re-loading
the FPGAs and is accomplished in several seconds.

Figure 12. Waveform control interface

SUMMARY

In summary, a flexible approach for integrating FPGA-
based waveform implementations has been presented.
This approach builds on current SCA specifications and
utilizes standard SCA conventions to define specific prop-
erties associated with an FPGA.

The approach has been validated through successful im-
plementation and testing of waveforms and interoperability
with an existing non-SCA, legacy terminal.

The Specialized Hardware Supplement recently adopted
by the JTRS/JPO is an initial step towards a more global
solution to the issues presented herein. Work to evolve the
initial document needs to continue to be successful and
have the long-term benefit envisioned.

Further work is required to address the full range of re-
quirements that would need to be addressed for FPGA-
based implementations. However, the approach described
above presents a straightforward, flexible, and adaptable
approach that maintains the integrity of the SCA while
minimizing impacts due to changes in waveform imple-
mentation.

7 of 7

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

