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ABSTRACT

This paper reports on the FPGA implementation of a
Volterra series PA pre-distorter. The implementation
of the pre-distorter and the indirect learning architec-
ture for initializing the system is described. We sup-
ply insight into the implementation of the adaptive
process itself and how the pre-distorter can exploit
new generation heterogeneous FPGAs that provide a
massively parallel compute fabric for demanding real-
time tasks and an embedded processor for processes
that have softer schedules. A recent generation vi-
sual programming design flow has been used for the
implementation. The paper comments on the design
productivity and efficiency aspects of the final FPGA
implementation using this development environment.

1. INTRODUCTION

Bandwidth efficiency and transmission power effi-
ciency are often conflicting criteria in digital communi-
cation systems. One usually has to be traded-off with
the other according to the system requirements. In
wireless applications, the cost of bandwidth accounts
for a considerable portion of overall cost, and it is
therefore important to accommodate as many users
in the system within the link frequency budget. This
requirement imposes a heavy constraint on the power
efficiency of the amplifier, contributing to nonlinear
behavior in this part of the transmitter [1]. Nonlinear
radio frequency (RF) power amplifiers (PA) generate
intermodulation (IM) distortion as adjacent channel
interference for many modulation formats. Therefore,
the design of linearizers has become a key technology
in wideband mobile communication transceivers.

One solution is the linearization of the amplifier by
means of predistorter as shown in Figure 1. The digital
predistortion (DPD) linearizer creates a version of the
desired modulation making use of the feedback mea-
surements of the actual amplifier output. The result-
ing signal, when passed through the nonlinear power
amplifier creates a signal in which the power spectral
density has significantly lower spectral leakage com-
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Figure 1: Adaptive digital predistortion.

pared to an uncompensated transmit signal.

Traditionally, digital predistortion was imple-
mented using a lookup table (LUT) approach. The
LUT employed in this approach is representative of the
inverse of characteristic of the amplifier [2]. While this
approach has widespread application in narrowband
power amplifier (memoryless nonlinear systems) lin-
earization, its effectiveness is hampered by the mem-
ory effects in wideband power amplifiers, such as those
used in multi-carrier Universal Mobile Telecommuni-
cations System (UMTS) and CDMA2000 systems.

In this paper, we address the design of a lin-
earizer based on an adaptive truncated Volterra se-
ries (TVS) approach. TVS systems have become a
very popular tool in adaptive nonlinear signal process-
ing [3]. However, their real-time implementation has
been restricted by the computational complexity as-
sociated with the filtering and adaptive mechanisms.
Field programmable gate arrays (FPGAs) are an at-
tractive option for realization of these highly com-
plex signal processing functions for reasons of perfor-
mance, power consumption and configurability. We
propose an efficient and robust architecture for the
linearizer based on truncated Volterra filters and pro-
vide a simulation model of the system within the Xil-
inx System Generator for DSPTM [4] design flow. The
implementation achieves up to 50 dB spectral suppres-
sion in neighboring frequency bands.
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Figure 2: Baseband equivalent model of the DPD cir-
cuit. G represents the gain of the power amplifier.

2. PREDISTORTER ARCHITECTURE

Our approach to nonlinear predistortion is based on
the method proposed by Eun & Powers [5]. In this
approach, two identical truncated Volterra systems
are used for training and predistortion. Figure 2 de-
picts the block diagram of the equivalent baseband
model of the digital predistortion network. The ob-
jective of the linearizer is to find a transformation
of the signal (z̃(n) = V (x(n))) that in combination
with the nonlinear amplifier (responsible for the dis-
tortion) will result in an identity system that produces
the signal of interest without distortion at the out-
put of the power amplifier (y(n) ' x(n)). The main
challenge of this approach is to track and identify the
time varying characteristics of the amplifier. To ad-
dress this task a stochastic gradient adaptation mech-
anism is employed. The adaptation of the truncated
Volterra system is a two stage process. During initial-
ization, the input and output signals of the power am-
plifier are probed and the Volterra filter coefficients are
adapted off-line using Recursive Least Squares (RLS
or Kalman Filtering) estimation. This process is also
known as initialization through indirect learning. Once
the adaptive filter is initialized at an optimum station-
ary point, a stochastic adaptive mechanism is used to
track the time-varying characteristics of the nonlinear
amplifier.

2.1. Memory Polynomial Predistorter

We use the memory polynomial model (Eq. 1) for
the predistorter block as described in [6]

z[n] =
K∑

k = 1
k even

Q∑

q=0

akqx(n − q) ∗ |x(n − q)|k−1 (1)

where K is the nonlinearity order and Q represents
the memory length of the power amplifier. In order to
reduce the implementation complexity of the predis-
torter while maintaining acceptable performance, only
the odd-order terms in the nonlinearity are included
in the model. This compromise reduces the complex-
ity of the predistorter by approximately 40% at the
expense of 3 to 5 dB spectral regrowth. A detailed
investigation of the benefits of even-order terms in the
baseband model is presented in [7].

2.2. Indirect Learning

Initialization of the DPD linearizer is performed
using optimum filtering, which is done as an off-line
computation in our DPD implementation. Adaptive
filter coefficient estimation can be considered a lin-
ear optimization task. Any of the common estima-
tion methods - Least Square Estimation [8], minimum
mean squared error (MMSE) [8] or Wiener Filtering,
Kalman [8] or recursive least squares (RLS) filter-
ing [8] - can be used.

We note that while all of the above methods try
to solve one optimization problem, that is the linear
parameter estimation, the stationary point obtained
from using these methods might be quite different.
This is mainly due to the fact that the error criterion
for the approaches are different, causing a different
profile for the error surface.

2.3. Tracking and Direct Learning

The inverse of the nonlinear amplifier is adaptively
tracked using a stochastic gradient method. Least
mean squares (LMS) adaptive filters are known to
have a slow convergence rate. However, since the
power amplifier characteristics vary slowly as a func-
tion of time, the LMS approach is a reasonable choice
for performing parameter tracking.

At each iteration of the stochastic gradient algo-
rithm, an update for the unknown vector is obtained
from

Wn+1 = Wn + µ × en ×X∗
n (2)

where the error vector is defined as

en = z(n) − Wn ×Xn (3)

X is the vector containing all the necessary nonlinear
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products of the input sample and can be expressed as

Xn
∆=




y(n)
y(n) ∗ |y(n)|2
y(n) ∗ |y(n)|4

y(n − 1)
y(n − 1) ∗ |y(n − 1)|2
y(n − 1) ∗ |y(n − 1)|4

y(n − 2)
y(n − 2) ∗ |y(n − 2)|2
y(n − 2) ∗ |y(n − 2)|4




(4)

A nonlinear combiner is used to form all the necessary
powers of the training signal as needed by the memory
polynomial filter.

3. DPD FPGA IMPLEMENTATION

The DPD linearizer implemented in this case study is
defined in Eq. 5. This is a slight modification to the
procedure in Eq. 1 and includes signal phase informa-
tion.

z[n] =
K∑

k=1,k odd

Q∑

q=0

akqx(n − q)k (5)

In the DPD System Generator reference design the
linearity order was selected as K = 5 with a PA mem-
ory duration Q = 2. Fully expanded, the linearized
signal z(n) is expressed as

z(n) =
5∑

k = 1
k odd

2∑

q=0

akqx(n − q)k (6)

= a10x(n) + a11x(n − 1) + a12x(n − 2) (7)
+a30x

3(n) + a31x
3(n − 1) + a32x

3(n − 2) (8)
+a50x

5(n) + a51x
5(n − 1) + a52x

5(n − 2) (9)

Only odd terms are included in the model. Eq. 7 is
recognized as a standard inner-product, with Eq. 8
and 9 contributing a weighted combination of third-
and fifth-order non-linearities respectively.

The truncated Volterra adaptive filter is imple-
mented using the minimum-multiplier direct-form re-
alization shown in Figure 3.

The simulation setup for the DPD system is shown
in Figure 4. A pseudo-random data sequence is first
pulse-shaped and then processed by the predistorter
before being presented to the power amplifier model.
The coefficients in the DPD linearizer are updated us-
ing an LMS-based adaptive process. The apdation
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Figure 3: Direct form realization of the truncated
Volterra series linearizer. This implementation pro-
vides minimum multiplicative complexity.
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Figure 4: DPD simulation model comprising data gen-
eration, pulse shaping filter, the DPD circuit itself, PA
model, and adaptive learning sub-system. The predis-
torter training is based on the LMS algorithm.

rate is a function of the system performance require-
ments. These requirements would typically include
considerations that account for variations in the PA
characteristics that are functions of time and temper-
ature, in addition to electro-thermal effects that influ-
ence the PA effective memory. In our first implemen-
tation the Volterra filter coefficients are updated at
each simulation time-step. Given the relatively long
time-constant associated with changes in the PA char-
acteristics this high rate of adaption is probably to
rapid. However, the flexible nature of the FPGA pro-
vides for any amount of hardware resource sharing to
achieve a target performance/cost objective.

To produce a DPD simulation, a simulation model
for the PA is required. The Wiener model [3] shown
in Figure 5 will be employed in the simulation. This
system consists of a linear time invariant (LTI) sub-
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Figure 5: Wiener system PA model employed in the
DPD simulation.
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Figure 6: Effectiveness of DPD in suppressing spectral
regrowth. The figure shows an overlay of the baseband
signal spectrum, the PA output without linearization
and with linearization.

system, H(z), in cascade with a memoryless nonlin-
earity F (ν). Ding [6] provides expressions for

H(z) =
1 + 0.5z−2

1 − 0.2z−1
(10)

and

y(n) =
K∑

k=1,k odd

bkv(n)|v(n)|k−1 (11)

where v(n) and y(n) are the input and output of the
memoryless non-linearity F (ν). Ding [6] provides val-
ues for the coefficients bk based on measurements from
a class AB PA as

b1 = 1.0108 + j0.0858 (12)
b3 = 0.0879− j0.1583 (13)
b5 = −1.0992− j0.8891 (14)

Figure 6 shows the effectiveness of the baseband
predistortion in suppressing spectral regrowth. As
shown in the figure, DPD can effectively reduce spec-
tral regrowth by 40 dB.

3.1. Simulation Model

When the System Generator simulation is opened
in the Simulink environment a pre-load function is
called that computes an initial estimate of the sys-
tem coefficients using RLS estimation. The optimum
coefficients resulting from the estimate are

0.0003 - j0.0066
0.0005 + j0.0120

-0.0036 + j0.0005
1.1632 - j0.0936
0.0890 + j0.3610

-0.0554 + j0.0254
-0.6712 + j0.0543
-0.0525 - j0.2041
0.0295 - j0.0144

In order to demonstrate adaptive tracking one of the
coefficients is deliberately perturbed - the fourth co-
efficient (1.1632 − j0.0936) is scaled by a factor of 3.
The modified coefficient vector is used as the initial
condition for the adaptive processor.

The least mean squares processor in the system
adaptively updates the coefficients, iteratively forcing
the perturbed coefficient back to its optimum value.

Figure 7 shows the trajectory of the real component
of the modified element (fourth entry of the vector)
as a function of the LMS update iteration number.
The figure provides an overlay of the Matlab double-
precision floating-point simulation and the fixed-point
arithmetic FPGA implementation. The floating-point
and fixed-point simulations are in close agreement.
The residual mean-squared error (MSE) of the FPGA
based LMS filtering is plotted in Figure 8.

The System Generator predistorter reference imple-
mentation employs a fully parallel adaptive processor
for the adaptive learning sub-system. This means that
the 9 complex coefficients in Eq. 6 are all updated at
the output sample rate. This is a very high-frequency
update rate and may be too rapid for many applica-
tions. It is straightforward to modify the adaptive pro-
cessor to employ a decimated update. In this scenario
the coefficients would be updated at a lower frequency
than the Volterra filter processing rate. Using a dec-
imated update permits functional unit folding in the
adaptive processor so that the FPGA footprint can
be reduced, i.e., both the number of logic slices and
embedded multiplier can be minimized.

When the simulation completes a post simulation
stop function is executed that plots the linearizer input
function overlaid with the predistorter output, gener-
ating a plot similar to Figure 6.
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Figure 7: Volterra Kernel tracking based on LMS in-
direct learning. The figure shows the evolution of the
fourth coefficient in the model. The floating-point and
FPGA fixed-point simulation results are overlaid in
the figure.
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Figure 8: Residual MSE of the LMS coefficient update.

Table 1 provides the FPGA resource utilization for
the complete design employing a fully parallel DPD
coefficient update operating at the output sample rate.

In applications where the adaptive learning is not
needed (due to the time invariant characteristics of
the amplifier), the DPD can be implemented using
only 2032 FPGA slices and 48 embedded multipliers.

The predistorter sub-system in the design operates
at a clock frequency of 212 MHz in a Virtex-II Pro
XC2VP50FF1152-7 FPGA (System Generator v 6.2,
ISE 6.3.03i, Speedfile, Production 1.86 2004-05-01).

There is adequate resources available in this device
to support the predistorter along with other system
functions such as up-conversion and crest factor re-
duction.

Table 1: FPGA Resource Utilization for DPD and
LMS Adaptive Learning. The Volterra filter coeffi-
cients are updated at the full output data rate using
a fully parallel LMS processor. The design is easily
modified to accommodate a decimated update using a
reduced number of embedded multipliers.

Volterra Filter LMS Total
Slices 2032 3483 5515

Block Memory 0 0 0
Multipliers 48 106 154

The computation rate of the predistorter alone is
212e6 × 48 = 10.176e9. This 10 Giga-op process-
ing rate exceeds the compute capacity of other pro-
grammable DSP technologies. The FPGA implemen-
tation easily supports the processing requirements,
while providing the system architect with a flexible
solution that can be easily modified based on evolving
specifications or future system requirements.

4. ADAPTIVE COEFFICIENT UPDATE
USING EMBEDDED PROCESSING

In many typical applications the PA characteristics do
not change rapidly with time. The PA characteristics
vary as a function of temperature drift and component
aging, parameters that have long time-constants.

The previous section described a predistorter de-
sign that employed a dedicated customized datapath
constructed using the logic fabric and embedded mul-
tipliers, to implement the DPD coefficient update. De-
pending on system requirements, and in particular the
required rate of coefficient adaption, an FPGA em-
bedded processor could be employed to realize the up-
date. In this approach a buffer of the samples y(n) and
z(n) in Figure 2 are prepared and processed offline.
This lowers the overall implementation requirements
of the system. State-of-the-art FPGAs like Virtex-II
Pro [9] and Virtex-4 [10] include embedded Power PC
405 (PPC405) processing cores. The adaptive algo-
rithm can be coded in C and executed on the PPC405.
When a new coefficient vector is available the PPC405
can transfer this data to the coefficient memory in the
Volterra filter. The PPC could also be used for other
tasks in the system, in addition to periodically servic-
ing the DPD processor.

The Xilinx MicroblazeTM soft processor core [11]
could also be used for implementing the adaptive up-
date. Microblaze is supported by the Virtex-II Pro
and Virtex-4 platforms, in addition to architectures
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like Virtex-II [12] and the low-cost Spartan-3 [13] fam-
ily that do not include embedded PPC405 processors.

5. CONCLUSION

In this paper we have provided an architecture study
for the FPGA implementation of a wideband digi-
tal baseband predistortion processor. As communica-
tion infrastructure providers operating in the UMTS,
CDMA2000 and military radio application spaces con-
tinue to increase transmission bandwidth and sup-
port multi-carrier systems, traditional look-up table
approaches to power amplifier linearization are no
longer appropriate, and alternative methods that sup-
port wideband signals are required. Linearization
techniques based on non-linear signal processing tech-
niques have been studied for some time, but their
practical deployment has been restricted due to the
limited processing capabilites of traditional config-
urable signal processors. While an application spe-
cific integrated circuit (ASIC) approach could meet
the processing requirements, non-recurring engineer-
ing (NRE) costs, high mask-set costs, lengthy devel-
opment schedules and lack of flexibility have limited
the ASIC implementation of sophisticated PA lineariz-
ers.

The highly parallel nature of Xilinx FPGAs eas-
ily support the processing requirements of complex
non-linear signal processing algorithms. The System
Generator design described in this paper implements
a baseband linearizer that includes a 5th order non-
linearity and a 2nd order term that accounts for PA
memory. These design parameters are easily modi-
fied to reflect the characteristics of any given power
amplifier.

The LMS coefficient update procedure used in the
implementation is a fully parallel design that updates
all of the linearizer coefficients at the output sam-
ple rate. Depending on the system requirements, the
adaptive processor could be modified to include func-
tional unit time-sharing that would reduce the FPGA
footprint in return for a decimated coefficient update
rate. The coefficient update procedure could entirely,
or partially, be relocated to embedded software run-
ning on either a Microblaze soft processor core or
embedded PPC405 hard core in the Virtex-II Pro or
Virtex-4 FPGA families.
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