
ACHIEVING SELF-AWARENESS OF SDR NODES THROUGH ONTOLOGY-BASED
REASONING AND REFLECTION

J. Wang (Department of Electrical and Computer Engineering, Northeastern University,
Boston, jiawang@ece.neu.edu); M. M. Kokar (Department of Electrical and Computer

Engineering, Northeastern University, Boston, kokar@coe.neu.edu); K. Baclawski
(College of Computer and Information Science, Northeastern University, Boston

kenb@ccs.neu.edu); D. Brady (Department of Electrical and Computer Engineering,
Northeastern University, Boston, brady@ece.neu.edu).

ABSTRACT

Software defined radios add a degree of flexibility and
versatility that is not possible with hardware based
communication. However, software based on ad hoc data
structures or database schemas is limited to the features
explicitly supported by the software. Ontology-Based
Radio (OBR) uses ontologies to add inferencing and
reasoning capabilities which make radios self-aware, i.e.,
understand their own capabilities and the capabilities of
other nodes. One important application is for radios to
query each other and to interoperate in ways that are not
explicitly provided by the software. We show how
ontologies and rules, in combination with Java reflection,
can be used to implement self-awareness and
interoperability. We illustrate how such radios would
interoperate by giving an example in which radios negotiate
the length and structure of equalizer training sequences.

1. INTRODUCTION

Ontology-Based Radio (OBR) is a mechanism for software
defined communication nodes to interoperate, i.e.,
understand other nodes and modify the processing of
packets during a communication session both at the source
and the destination. This mechanism uses an ontology to
specify not only the structure of communication packets but
also the processing of those packets according to the
communication protocol. Nodes have the ability to query
both their own capabilities and the capabilities of other
nodes. The use of ontologies adds flexibility, inferencing
and reasoning features that are not available with ad hoc
data structures or database schemas.

In this paper we demonstrate the concept of OBR using
a prototype in which two-way communication between two
nodes is implemented using a bi-directional acoustic link.
The query mechanism is based on the Web Ontology
Language (OWL) [1]. However, OBR presents a number of
challenges not faced by other ontology-based applications.
(1) Real-time processing demands higher performance for

inference and reasoning than an interactive application. (2)
The "knowledge base" of a node includes state information
that is continually varying, in contrast with the static
knowledge bases required by most ontology-based
reasoning systems. (3) The "facts" are not stored in a
knowledge base but rather are embedded in the software that
implements the communication protocol.

We solve the first two problems by using a Prolog-
based OWL reasoner which provides not only very fast
reasoning, but also considerably smaller memory
requirements than other OWL based theorem provers.
Furthermore, it allows the radio to update intermediate
derivations dynamically in sync with an incoming stream of
facts, as required by the second problem above. The third
problem is solved by using a feature of programming
languages called reflection. This feature is built into
languages such as Java and C++, and it can be added to
languages such as C. Reflection provides a powerful
mechanism whereby a running program can observe its own
data structure types and the values of particular variables.
The advantage of reflection over an ad hoc approach is that
the code implementing the communication protocol need
not have any monitoring or retrieval code for providing this
feature.

In our prototype we show how the communication
between two OBR nodes can be controlled to improve
communication performance. In the example presented in
this paper, two OBR nodes tailor the training sequence
length in each packet, according to the channel dynamics
and noise level. In static conditions, this permits a 60%
reduction in the packet overhead (training sequence length),
while equalizer training is still improved in situations of
high noise or channel dynamics. Most importantly, these
examples demonstrate how ontology based reasoning can be
used to achieve these performance gains. We also
demonstrate a chain of interactions between two OBR nodes
in the process of negotiating the protocol parameters. The
real goal of these experiments was to show that
opportunities for negotiating communication protocols do
exist and can be achieved using the OBR concept.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

This paper presents an update on our progress in the
efforts to fully implement the concept of Ontology-Based
Radios as discussed in [2]. We have implemented a number
of features that put us closer to the ultimate goal – radios
that have sufficient self-awareness for them to negotiate
their communication protocols. In particular, we extended
our ontology by adding a number of rules that specify the
behavior of the OBR nodes. The behaviors are controlled by
a reasoner that derives behavior that satisfies a top-level
goal. The goal is specified in terms of communication
performance, and behavior is derived by means of rules.

The architecture of our OBR consists of a collection of
producer-consumer queues that are used for particular
functions, such as sending and receiving packets, checking
communication performance and logical inference. This
architecture is presented in Section 2.

To implement such a concurrent architecture we needed
a reasoner that is appropriate for this kind of architecture.
The JTP theorem prover [3] that we used to demonstrate the
proof-of-concept, worked very well for offline reasoning,
but was not suitable for our requirements. A discussion of
our inference engine is provided in Section 3.

The reasoning process makes use of both the ontology
and a set of rules. The ontology defines the basic terms in
which the nodes communicate – classes and properties. The
rules specify, in declarative form, how to react to particular
situations. Rules used in our demonstration are discussed in
Section 4. Rules use both other rules and ground facts to
derive conclusions. In the context of SDR, static facts that
are known a priori are stored in a fact base. But some of the
ground facts are only available as the radio is operating.
These ground facts change over time, sometimes at a very
high rate. These values are accessed through the
mechanism called reflection, described in Section 5.

In Section 6 we discuss how the capability of
interoperability can be used to improve communication. In
particular, we discuss how two OBR nodes negotiate
equalizer training sequences. Finally, in Section 7 we
provide our conclusions and future work. In particular, we
focus on providing interoperability of OBR nodes that use
different communication protocols (waveforms).

2. OBR Architecture

The OBR architecture includes five services which are
implemented using Java threads. Figure 1 shows these
services: DSS (Data Source Service, which generates data),
DO (Data Out Service, which sends out data), DI (Data In
Service, which receives data), MS (Monitor Service, which
monitors the received data and responses) and DS (Data
Sink Service, which consumes data).

The node labeled SDR in the architecture represents the

software defined radio. In the prototype system this is
represented by a Java class which sends and receives
messages. This class includes all the communication
functions, such as compressing, filtering, modulation and
equalization. The RC node is the reasoning component,
which is implemented using a version of Prolog called
Kernel Prolog. The Monitor Service uses RC to do
reasoning. The five services communicate with one another
by using producer-consumer queues.

Five types of message are used in communication: data,
confirm, query, answer and command. A “data message” is
a message whose content is a sequence of characters, which
was generated by the Data Source Service. A “confirm
message” is a message whose content is either “Continue”,
or “CommandReq.” The Continue message is used when
performance is acceptable, so that no changes are needed.
The CommandReq message is used when performance is
not adequate, so that the OBR should adjust its
communication protocol. A “query message” queries both
the channel condition and the structure of the
communication node. An “answer message” carries the
answer to a corresponding query. A “command message” is
used to control the communication node, such as a
command to change the communication protocol. Figure 2
shows the five types of message.

3. Inference in an OBR

OBR inference is provided by RC, the reasoning
component, which is a goal-driven system. The facts are
loaded into Prolog dynamically and used to achieve a goal,
such as to generate a command that changes the
communication protocol used by the communication nodes.

Figure 1: The Architecture of OBR

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

After reasoning, inferred facts are discarded. This prevents
the knowledge base from increasing in size over time.
 The RC was implemented using Kernel Prolog [4], a
lightweight Java based Prolog interpreter. The axioms of

OWL have been written in Prolog, and our ontology for
SDR, which was previously written in OWL, have also been
translated into Prolog facts. We have also developed a set
of rules to react to particular situations, all of which are
asserted into the knowledge base of Kernel Prolog when the
RC begins functioning.
 An example of an OWL rule is the subPropertyRule.
This rule states that if a property is a subproperty of another
one, then any fact using the subproperty implies that the
corresponding fact using the superproperty also holds. For
example, in the OBR ontology, the
hasTransmitterPacket and the
hasReceiverPacket properties are subproperties of
hasPacket. Consequently, a query for the packet for an
object will return the packet even though a packet is always
either a transmitted or a received packet. Although this is a
very simple example, it illustrates the general principle of
inference. Most uses of RC involve much deeper chains of
inference. All the queries are processed by a Prolog
interpreter so that all inferences will be properly performed.
OWL has many built-in rules such as subClass, subProperty,
disjointWith, unionOf. These rules represent the axioms of
the OWL language.

4. Rules

The set of rules for communication processing includes
rules to check performance of communication, and to

generate queries and commands according to different
channel conditions.
 When data is received, the Monitor Service uses the RC
to check performance. The rule to check performance
includes, among others, a query for the equalizer error and a
comparison between the equalizer error and predefined
upper and lower thresholds. If the equalizer error is
between the thresholds, performance is considered to be
acceptable and a “confirm” message with content
“continue” will be sent back. Otherwise, a confirm message
with content “CommandReq” will be sent back, which
requests a command to change the structure of the
communication protocol.
 The following is an example of one of the rules used for
checking performance:

checkPerformance(X) :-
equalizerError(E),
pv(obr8upperPerformanceThreshold,
object8MonitorServiceDispatch, UPt),
pv(obr8lowerPerformanceThreshold,
object8MonitorServiceDispatch, LPt),
compare('>', E, LPt),
compare('<', E, UPt),
assign('Continue ', X).

The rule begins with the conclusion or goal, in this case
whether to check performance. The “:-” symbol separates
the goal from the hypothesis required to satisfy the goal. In
this case, if the extracted equalizer error is larger than the
predefined lowerPerformanceThreshold (LPt) and it is
smaller than the predefined upperPerformanceThreshold
(UPt), then a “Continue” message will be returned.
 The command generation rules will generate commands
according to the channel condition and the protocol
currently being used. So a query for the channel condition
and information about the current protocol will be issued
first. The answers to those queries are facts which will be
loaded into Prolog temporarily. After the commands are
generated, the facts are discarded.
 The following are examples of some command
generation rules:

command(C) :- prevPacketExist,
queryNode(Answer), first(Answer,
VPrevEL), rest(Answer, Left1),
first(Left1, VRmsDelay), rest(Left1,
Left2), first(Left2, VER),
rest(Left2, Left3), first(Left3,
VPrevTL), dif(VRmsDelay, VPrevEL,
Dis), halfValue(VPrevEL, Half),
compare('<', Dis, Half), pv(obr8pf,

Figure 2. Message types

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

object8MonitorServiceDispatch, PF),
compare('<', VER, PF), pv(obr8value,
object8MonitorServiceDispatch,
Value), decrease(VPrevTL, Value,
Ltemp), compute(':', Ltemp, 1, TL),
trainingDataCommand(TL, C).

queryNode(Answer) :-
queryOtherNode([[VPrevEL, VRmsDelay,
VER, VPrevTL], [pv, rdf8type, VSDR,
obr8SDR], [pv, obr8hasPrevPacketInfo,
VSDR, VPPI], [pv, obr8hasPrevEL,
VPPI, VPrevEL], [pv, obr8hasPackets,
VSDR, VPacket], [pv,
obr8hasLastMultipath, VPacket,
VLastMultipath], [pv, obr8rmsdelay,
VLastMultipath, VRmsDelay], [pv,
obr8hasEqualizer, VPacket,
VEqualizer], [pv, obr8equalizerError,
VEqualizer, VER], [pv, obr8hasPrevTL,
VPPI, VPrevTL]], Answer).

trainingDataCommand(TL, Command) :-
initPath(InitPath),
pvexeString(obr8newTrainingData,
variable8SDRObject, TL,
TrainingDataCommand),
concat(InitPath, TrainingDataCommand,
Command).

These rules say that if the difference between the
rmsDelay and the previous equalizer coefficient vector
length is not very large (smaller than half of the previous
equalizer length), and if the equalizer error is smaller than a
predefined performance threshold, then the length of the
training data can be decreased by a predefined value.
 The rules to check performance and generate
commands are written in advance and loaded into Prolog
interpreter when the communication node starts functioning.

5. Reflection

When a query or a command is received, the Monitor
Service asks the RC to answer the query or execute the
command. Information about the current communication
parameters are obtained by using reflection.

Java reflection is a built-in feature of Java. It allows a
Java program to examine itself introspectively during run
time. In order to use Java reflection with Kernel Prolog, a
new built-in class called “pvref” was written and added to
Kernel Prolog’s built-in collection.

The following shows how to link Java reflection with
rule engine queries. First we define patterns and link them

with Jave reflection. A pattern is an expression having the
form: (property slot1 slot2 ...), where a slot can be filled
with either an object or a variable. As a result of our
modification to Kernel Prolog, certain patterns are
recognized by the Prolog interpreter as being reflective. For
example, a pattern of the form (function object
Variable), where function is Java method name,
object is a Java object and Variable is a variable, is
evaluated by reflectively computing the value of the Java
expression object.function() and setting
Variable to the result.
 In our experiment, a query is composed with a sequence
of patterns with variables. When each pattern in the query
is satisfied by Prolog, all the variables in the query will be
assigned to values. In those variables, some of them are
specified as “must bind” variables. Similarly, a command is
composed of a sequence of patterns with variables, just like
a query, except that at least one pattern is an executable
pattern. For example, a pattern of the form (function,
object, value) is evaluated by reflectively executing
the Java expression object.function(value).
Commands are distinguished from queries by using a
different built-in function. Queries use pvref, while
commands use pvexe.

6. An Example: Negotiation of Equalizer Training
Sequences

In the following example, we will show how the interaction
between two OBR nodes can be controlled to improve
communication performance.

6.1. Packet Structure

We first describe the structure of packets transmitted by the
SDR radio component. In our experiment, each transmitted
packet includes a header, training data and ordinary data.
We use DSSS as the alphabet for the header and for the
training data. For example, DSSS(2, 7) is an instance of
class DSSS, the “2” meaning that each chip is a BPSK chip,
and the “7” meaning that the length of the bit vector is 27-1
= 127. The bit vector is generated as an m-sequence. So
using alphabet DSSS(2, 7), each header or training symbol
will be mapped into 127 chips, where each chip is a BPSK
chip.

In summary, each transmitted packet includes: a header
symbol (127 chips); several training data symbols (the
number of training data symbols depending on the channel
characteristics, with each symbol represented by 127 chips
if we use the DSSS(2, 7) alphabet, or 31 chips if we use the

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

DSSS(2, 5) alphabet); and a sequence of data symbols, each
being a BPSK symbol.

The RLS algorithm is used to calculate the multipath
structure of the fading channel, and an equalizer based on
the RLS algorithm is used by the receiver to process the
received data [5]. The equalizer coefficient vector is divided
into a feedback coefficient vector and a feed forward
coefficient vector. The length of the feedback coefficient
vector of our equalizer is one third of the length of the
equalizer.

6.2. Establishing the communication channel

In this example, negotiation of the length of the training data
was accomplished by six transmissions. Suppose we
initialize one transmission node (call it node A) as the
transmitter, another node (node B) as the receiver. Then
after node A sends data to node B, node B will check
performance. If performance is satisfactory, then node B
return a “confirm” message with content “Continue”, and
node A will continue to send data to B. If the performance is
not satisfactory, a “confirm” message with content
“CommandReq” (request a command from the other node)
will be returned. Node A will then generate a command to
change the communication protocol. The command

generation rules first send a query from node A to node B
requesting the channel condition and the current protocol

parameters. When node B receives this query, it will infer
the answer and send the answer back to node A. When node
A receives the answer, it will generate the command. After
the command is generated, it is sent to node B, and
executed on node A, thus changing the protocol at node A.
When node B receives the command, it will execute the
command, thus changing the protocol at node B. A
“confirm” message with content “Continue” is then sent to
node A.

6.3. Example: Negotiation of equalizer training length

In this example, we will show that by negotiating the
length of the training data according to the channel
dynamics and noise level, we can reduce the packet
overhead, while equalizer training is improved in situations
of high noise or channel dynamics.

To initialize the experiment, we set the transmitted
packet to use a DSSS(2, 7) symbol (mapped to 127 chips) as
the header, and a sequence of 12 DSSS(2, 5) symbols (31
chips for each symbol) as the training data.

The predefined upperPerformanceThreshold
and lowerPerformanceThreshold of the
performance checking rules are set to the same value to
make sure a command request will be issued each time that

the performance is checked. The command rules are defined
in the following way:

Figure 3. Some example data

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

 1). If the difference between the rmsDelay and the
previous equalizer feedback coefficient vector length is
large (larger than half of the previous equalizer feedback
coefficient vector length), then a new equalizer must be
constructed, the length of equalizer being 3*(integer part of
rmsDelay + 1). A new training data is also constructed,
with the length of (3*rmsDelay*20) mod (symbol length),
which is about 20 times the length of the equalizer.
 2). If the difference between the rmsDelay and the
previous equalizer feedback coefficient vector length is not
very large (smaller than half of the previous equalizer
feedback coefficient vector length), and if the equalizer
error is smaller than a predefined performance threshold,
then the length of the training data can be decreased by a
predefined value. The old equalizer will be used.
 3). If the difference between the rmsDelay and the
previous equalizer feedback coefficient vector length is not
very large (smaller than half of the previous equalizer
feedback coefficient vector length), and if the equalizer
error is larger than a predefined performance threshold, then
the length of the training data can be increased by a
predefined value. The old equalizer will be used.
 The predefined performance threshold was set to 0.122.
The increase or decrease value was set to 1, which means
that one symbol will be added or removed from training
data sequence each time.
 Figure 3 shows the results of experiments using two
acoustic nodes. The four plots in Figure 3 show the average
rmsDelay, the length of the equalizer coefficient vector, the
length of the training data sequence and the length of the
ordinary data sequence. We tried three inter-node ranges:
1m, 2m and 3m. Some objects were placed around the
speaker and microphone so that there would be some
multipath effects.

From Figure 3 we can see that for the worst condition
(in our case, 3 meters distance with reflection), about twenty
symbols were selected according to the negotiation rules,
while in other cases, fewer symbols were needed. From
these figures we see this approach can result in a 60%
reduction in packet overhead.

The last plot shows the change of the equalizer error
when the communication nodes change their equalizer and
training data. In this experiment, the distance between two
nodes was 3 meters, and since we initially used only twelve
symbols as training data, the first three transmissions had
high equalizer errors. In fact, this situation requires at least
twenty training symbols. The equalizer size of the two
nodes was increased to twenty in the third packet, and
consequently, the equalizer error was reduced greatly.

7. Conclusions and future work

We have presented a mechanism for software defined
communication nodes to interoperate, i.e., understand other
nodes and modify the processing of packets during a
communication session both at the source and the
destination. A negotiation of two OBR nodes to tailor the
training sequence length according to the channel dynamics
and noise level was used as an example, and the result
shows that this negotiation results in a 60% reduction in the
packet overhead, and equalizer training is improved in
situations of high noise or channel dynamics. The main goal
for these experiments was to show that opportunities for
negotiation of protocol parameters do exist and can be
achieved using the OBR concept presented in this paper. In
the future we will continue to investigate the interoperability
of the communication nodes, in particular, we will focus on
using different communication protocols (waveforms).
 At this time we are not aware of any other
implementation of an ontology-based radio. The closest to
our approach is the concept of the XG program [6] in which
ontologies and negotiation are supposed to be used for
dynamic spectrum management. This concept is described
in [7, 8]. It is our belief that our approach is appropriate for
the implementation of this concept.

8. REFERENCES

[1] DAML. DARPA Agent Markup Language web site, 2001.
www.daml.org.
[2] J. Wang, D. Brady, K. Baclawski, M. M. Kokar and L.
Lechowicz. “The Use of Ontologies for the Self-Awareness of the
Communication Nodes.” In Proceedings of the Software Defined
Radio Technical Conference, SDR’03, Orlando, FL, 2003.
[3] R. Fikes, J. Jessica, and F. Gleb, "JTP: A System Architecture
and Component Library for Hybrid Reasoning.", Proceedings of
the Seventh World Multiconference on Systemics, Cybernetics,
and Informatics. Orlando, Florida, USA. July 27 - 30, 2003.
[4] Paul Tarau, “Kernel Prolog: a Lightweight Prolog-in-Java
Interpreter with Fluent based Built-ins USER GUIDE”, 1999.
http://www.binnetcorp.com/kprolog/KernelPrologUserGuide.html
[5] John G. Proakis, Digital Communications. McGraw-Hill, New
York, 1995.
[6] Request for Comments Documents. DARPA.
http://www.darpa.mil/ato/programs/xg/rfcs.htm. 2003.
[7] The XG Vision. Request for Comments. Version 2.0. BBN.
http://www.darpa.mil/ato/programs/xg/rfc_vision.pdf. 2003.
[8] XG Policy Language Framework. Request for Comments.
http://www.darpa.mil/ato/programs/xg/rfc_policylang.pdf. BBN.
Version 1.0. April 16, 2004.

Acknowledgments

This research has been partially supported by the NSF grant
0225442.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

