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ABSTRACT 
 
A software defined radio (SDR) terminal needs to support 
several different air interface standards. These standards 
often define their own unique symbol or chip frequencies. 
Therefore a sample rater converter (SRC) is an essential 
part in such SDR terminal. This paper presents a novel 
architecture for sample rate converter and its 
implementation techniques for modulator or transmitter 
applications.  
 

1. INTRODUCTION 
 
Today’s wireless communication market presents many 
different standards. This situation has drawn interest to 
software defined radio (SDR), which can offer seamless, 
any time and anywhere communication services [1]. An 
SDR advocates that physical layer signal processing tasks 
to be implemented using software as much as possible. 
With the advancement of integration circuit (IC) 
technology, the future SDR platform may consist of a 
digital signal processor (DSP) with several accelerators 
for computing intensive tasks, and the necessary analog to 
digital (ADC) and digital to analog (DAC) interfaces [1]. 

The abovementioned ADCs and DACs require high 
quality, low jitter clock sources to guarantee 
performances. A traditional approach is to provide a clock 
with a frequency that is integer multiples of the desired 
symbol or chip frequency. Different air interfaces define 
their own unique symbol or chip frequencies. When 
multiple air interfaces need to be supported, it is much 
more cost effective to use only one common clock source 
instead. Therefore it is essential to include sample rate 
converter (SRC) in the SDR platform. An SRC translates 
a digital signal sampled at one rate to another sample rate, 
while the essential information of the original signal 
should be preserved. 

SRCs can take place in both the receiver (ADC) side 
and transmitter (DAC) side. This paper focuses on the 
transmitter side, or often referred to as a digital modulator. 
The SRCs used in digital modulators have been presented 
in GSM/EDGE/WCDMA modulator [2] and single chip 
QAM modulator [3]. The SRC presented in this paper 

allows most of the modulator’s interpolation filtering to 
be implemented using DSP software, which can be 
decoupled from the final DAC clock. This feature offers 
more suitability from SDR’s point of view. 

This paper will be organized as follows. Section 2 
provides a brief introduction to SRC. The emphasis of this 
paper, polynomial based SRC is described in Section 3. In 
section 4, the architecture and the proposed 
implementation techniques are described in detail. Finally, 
a design example of a digital QAM modulator and its 
measured results are presented in Section 5; these are 
followed by a few concluding comments. 
 

2. SAMPLE RATE CONVERTER 
 
The underlying theory of sample rate converter is the 
well-studied interpolation filter. Interpolation, as its name 
suggests, is used to calculate new samples at arbitrary 
time instants in between existing discrete-time samples 
[4]. As shown in Figure 1, the original series of samples 
are denoted as x[nTs]; while the interpolation results are 
denoted as x[(n+µ)Ts]. The µ values are often referred to 
as fractional intervals, representing the sampling time 
offsets between the new sampling instant and the original 
sampling instant defined by 
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where Ts and Tout are the old and new sampling intervals 
respectively.  

The interpolation is essentially a reconstruction 
problem that can be analyzed using the hybrid 
analog/digital conceptual model shown in Figure 2. In this 
model the interpolation outputs are obtained by sampling 
the analog signal constructed from original discrete-time 
signal by digital to analog conversion (DAC). Therefore 
the output of the interpolation is 
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where ha(t) is the impulse response of the analog 
reconstruction filter. The parameter nk denotes the 
basepoint index that identifies the set of original samples 
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(basepoints) to be used for the kth interpolation. This 
model is only used for analysis purpose since almost all 
sample rate converters (SRC) are implemented via an all-
digital fashion. 

One possible implementation for SRC is to use 
traditional FIR filter to calculate the interpolation filter 
output x[(n+µ)Ts]. As shown in Equation (2), the 
coefficients for this FIR filter vary with the fractional 
interval µk. Therefore the filter coefficients need to be pre-
computed and stored in a memory for each possible µk. 
This technique may impose large memory requirement 
when the number of µk becomes very large to meet fine 
timing resolution requirement of the interpolation.  

An alternative method, known as the polynomial 
based interpolation, will be described in the next section. 
This method doesn’t require any memory storage for the 
filter coefficients, since the coefficients can be computed 
based on the fractional interval value µk. 
 

3. POLYNOMIAL BASED SRC 
 
Polynomial based SRC is derived from the classic 
interpolation problem in numerical analysis. The 
interpolation filter used for the polynomial based SRC, 
has an impulse response that can be represented using a 
polynomial, or piecewise polynomial of µk. Therefore, the 
underlying low pass filter ha(t) in Equation (2) can be 
expressed in each interval Ts by means of polynomial [5]: 
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where bl(n) denotes the polynomial coefficients in the nth 
interval. 

A special class of such polynomial is Lagrange 
interpolation polynomial. Lagrange polynomial 
interpolation is a classical numerical technique to fit 
original N samples via a polynomial of degree N-1. 
Reference [4] described in detail how to construct linear 
phase interpolation filter by using Lagrange polynomial 
for a set of basepoints consisting of either even number or 
odd number of original samples. It is essential to ensure 
the linear phase property of the reconstruction filter to 
avoid delay distortion, especially when digital modulator 
is the target application. The impulse responses of the 
underlying analog reconstruction filter constructed using 
Lagrange polynomial using odd number of basepoints 
(N=3) and even number of basepoints (N=4) are shown in 
Figure 3. Although for the example consisting of odd 
number (N=3) of basepoints, the impulse response is not 
time-continuous; the interpolation output is time-
continuous if the interpolation approximation error is 
neglected [4]. The significance of extending such 
interpolation to be feasible by using odd number of 
basepoints is that it allows the flexibility to choose the 

lowest degree polynomial that can meet the system 
requirements. 

The polynomial based interpolation has some 
advantages in handling the filter coefficients varying with 
the fractional interval µk. Substitute (3) into (2) and 
assume that the ha(t) only have non-zero response in the 
duration of [-M1Ts, +M2Ts], the interpolation results can 
be computed from [5] 
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The polynomial coefficients are determined by the 
order and type of the polynomial selected for the 
interpolation, independent of µk. Equation (4) also 
describes a method to compute the interpolation result 
without explicitly calculating the filter coefficients. 
Equation (4) can be efficiently evaluated using the nested 
approach. For example, when N = 3: 
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A hardware block diagram implementing Equation 
(5) is shown in Figure 4. In each column, the value of v(l) 
is evaluated. The multiplications and additions at the 
bottom of the diagram perform the polynomial calculation 
using the nested approach. This structure is often referred 
to as Farrow structure [5]. Farrow structure is only 
applicable to polynomial based SRC. The following 
sections will focus on the implementations of polynomial 
based SRC using Farrow structure. 
 

4. IMPLEMENTATIONS OF POLYNOMIAL 
BASED SRC 

 
In this section, the implementation techniques of 
polynomial based SRC will be discussed. The SRC 
mentioned in this section will refer to polynomial based 
SRC only for simplification purpose. The intent of this 
paper is to describe the SRC for a digital modulator; 
therefore the common architecture of a digital modulator 
is illustrated in Figure 5. A digital modulator usually 
consists of a square root raise cosine (SRRC) filter for 
pulse shaping purpose; several stages of FIR interpolation 
filters to increase the sample rate closer to the final output 
rate, or the rate the DAC is running at; and an optional 
sample rate converter that converts sample rate at the 
output from multistage interpolation filter, which is 
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usually an integer multiple of the input symbol rate 
(M×Fsym), to the arbitrary output sample rate (FDAC).  

This section is further divided into the following 
subsections: first the overall architecture of the 
polynomial based SRC is discussed; in the next two 
sections, the difference between SRCs using even number 
of basepoints and odd number of basepoints will be 
explained in detail. 

 
4.1. The architecture of SRC 
 
The major blocks consisting of the SRC can be divided 
into these portions according to their functionalities: 1) a 
control block which supplies the basepoint index nk and 
the fractional interval µk; 2) the computation structure, 
Farrow structure, to calculate the SRC output based on the 
fractional interval input. 

A numerically controlled oscillator (NCO) is often 
used to determine nk and µk for the SRC. The NCO is 
simply a digital accumulator with an external input 
referred to as frequency control word (FCW). In the SRC, 
FCW is determined by the ratio of the input sample rate 
(Fin) and the output sample rate (Fout): 
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where []N denotes N-bit quantization. The parameter N 
determines the frequency resolution in the SRC. In this 
paper, it is assumed that Fin is less than Fout and therefore 
an interpolation is performed in the SRC rather than 
decimation. In a digital modulator, it would be 
unnecessary to interpolate the signal to a sample rate 
higher than the final output sample rate. The value of the 
NCO register represents the sampling phase offset 
between the original sample instant and the output sample 
instant. Therefore it will be used to derive the fractional 
interval µk being used in the Farrow structure. 

It can be seen that the value of NCO register will 
overflow at an effective rate of Fin.  Reference [2] and [3] 
described a method to use the most significant bit (MSB) 
of the NCO register value as a clock with a frequency of 
Fin to clock the delay lines in the Farrow structure. Since 
Fin is the output sample rate of the multistage interpolation 
filter, it should be an integer multiple of the input symbol 
rate. Therefore this clock can be further divided to clock 
the different stages in the multistage interpolation filter 
according to their interpolation ratio with respect to the 
original symbol rate. 

This technique implicitly assumes that the MSB of 
the NCO register value should toggle when the NCO 
register value overflows. This toggling only happens 
when Fout is at least twice higher than Fin. Therefore the 
DAC has to be running at the sample rate at least twice 
higher than the output sample rate from the multistage 

interpolation filters. Two examples are given in Figure 6, 
the first NCO has its Fin set at 12.5MHz, and the second 
NCO has its Fin set at 87.5 MHz. The Fout is 100 MHz in 
both NCOs. It can easily be seen that the MSB of the 
NCO register value toggles only in the first example, and 
can therefore be used as the clock of frequency Fin. In 
addition, using different clocks for different stages of the 
interpolation filter chain makes it very difficult for 
software implementation. 

As mentioned before in this section, the NCO register 
value shall overflow at an equivalent rate of Fin, therefore 
this overflow signal can be used to “clock” the delay line 
for the Farrow structure. This signal can be further 
divided by M (the aggregate interpolation ratio of the 
upsampling filters) in frequency, generating a “request for 
symbol” trigger signal for the interpolation filter chain. A 
sample buffer is introduced between the interpolation 
filter chain and the SRC, in order to accommodate the 
jitter introduced by the NCO [6]. Since the upsampling 
filters will write M samples to the buffer for every M 
samples being fetched from the buffer by the SRC, the 
buffer’s fill level stays at a balanced state without 
experiencing overrun or underrun. The described SRC 
architecture is illustrated in Figure 7. This architecture 
essentially decouples the upsampling operations from the 
final output sample rate: the upsampling filter block shall 
provide M samples to the SRC upon every “request for 
symbol” received from the SRC’s NCO. Therefore the 
upsampling operations can be implemented by software 
without providing sample clock for different filter stages. 
The control logic is divided into two subblocks: the 
“buffer read control” is used to generate the basepoint 
index nk; the “fractional interval extraction” is used to 
calculate the fractional interval µk. 

In the next 2 subsections, the “buffer read control” 
and “fractional interval extraction” will be discussed for 
two cases: one uses even number of basepoints; the other 
uses odd number of basepoints. The Farrow structure is 
common for both cases as Section 3 described. 

 
4.2. Control for SRC using even number of basepoints 
 
The SRC using even number of basepoints for its 
interpolation has its basepoint index nk derived from [6]: 

]/int[ inoutk TkTn = ,    (7) 

where int[z] denotes the largest integer not exceeding z. 
Also its fractional interval µk is defined as [6]: 

kinoutk nTkT −= /µ ,    (8) 

Since nk is always less than kTout/Tin, it can be seen 
that 0≤µk<1 in this case. When the implementation of the 
SRC is considered, the NCO register value can be written 
as: 
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where NCO’k represents the NCO register value at the kth 
output sample instant without modulo operation. Define 
NCOk as the NCO register value at the kth output sample 
instant after modulo operation, or NCOk equals to NCO’k 
modulo 1. Therefore the basepoint index can be derived 
by: 

]int[ 11 FCWNCOnn kkk ++= −− .  (10) 

It can be seen that int[NCOk-1+FCW] equals to the 
carry out signal from the accumulator, and thus denoted as 
COk. In Figure 7, this signal is named as “increase nk”. 
Equation (8) can be rewritten as: 
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Therefore the fractional interval µk is simply the NCO 
register value NCOk. According to Equation (10) and 
(11), the “buffer read control “ and “fractional interval 
extraction” can be easily implemented as shown in Figure 
8. As this figure suggests, only the L MSBs from the 
NCO register value is often used as the fractional interval 
µk for the SRC calculation. 
 
4.3. Control for SRC using odd number of basepoints 
 
According to reference [4], the SRC using odd number of 
basepoints for its interpolation can derive their basepoint 
index nk from: 

]/[ inoutk TkTroundn = ,   (12) 

where round[z] performs the common rounding operation 
on z. The fractional interval for this case can also be 
derived from Equation (8). Due to the rounding operation, 
the fractional interval ranges between –0.5 and +0.5 
instead. 

For this type of SRC, the derivation of basepoint 
index nk is more complex than replacing the int[] 
operation in Equation (10) with round[] operation. This 
can be explained more clearly with the help of two 
following examples. Without losing generality, it is 
assumed that the SRC is performed in the interval of [0.5, 
1.5). Assume NCO register value equals to 0.7 at the 
current output instant; therefore the current basepoint 
index should equal to 1 by rounding 0.7. In one example, 
FCW is assumed to be 0.2, which means the output 
sample rate is 5 times of the input sample rate. At the next 
output sample instant, the NCO register value equals to 

0.9, therefore the next basepoint index nk should be 1 as 
well. In the other example, FCW is assumed to be 0.4. 
Follow the same procedure; the next basepoint index nk 
should stay at 1 as well. On the contrary, using “revised” 
Equation (10) for both examples will give us erroneous 
result: the basepoint index will be incremented to 2 in 
both examples. 

After close investigation of the problem, it can be 
concluded the increment of the basepoint index used in 
this type of SRC is dependent on: 1) if the previous NCO 
register value (NCOk-1) is greater than or equal to 0.5; 2) 
if the current carry out value (COk) is equal to 1; 3) if the 
current NCO register value (NCOk) is greater than or 
equal to 0.5. Table 1 summarizes all the possibilities of 
these three factors and whether the basepoint index nk 
should be incremented. The aforementioned examples (a) 
and (b) are corresponding to case 3 and case 1 
respectively. It is worth mentioning that there are only 6 
cases summarized in Table 1 instead of 8, which is the 
number of all the possibilities for 3 input variables. The 
reason is that the frequency control word is assumed to be 
between 0 and 1 for the interpolation purpose. Therefore 
in case 3, NCOk can only be greater than 0.5; while in 
case 4, NCOk can only be less than 0.5. 
 

Case 
# 

NCOk-1 
>0.5 

COk NCOk>
0.5 

Increase nk 

1 Y 1 N 0 
2 Y 1 Y 1 
3 Y 0 Y 0 
4 N 1 N 1 
5 N 0 Y 1 
6 N 0 N 0 

Table 1 Buffer control logic for SRC using odd 
number of basepoints 

Since the value of NCO register ranges between 0 
and 1, the MSB of this value indicates whether it is 
greater or less than 0.5. Thus the logic equation can be 
written as:  

)(!
!_
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kkk

kkk
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−

− , (13) 

where ! denotes the logic negate operation. Besides the 
basepoint index nk, another control parameter for SRC is 
the fractional interval µk. Based on Equation (8) and (12), 
it’s easy to derive that 

]/[/ inoutinoutk TkTroundTkT −=µ .  (14) 

It can be seen that µk is positive when NCOk<0.5, and µk 
is negative when NCOk ≥0.5. If the normal two’s 
complement numbering system is used, it can be verified 
that Equation (14) can be realized by prepending the MSB 
to the extracted L MSBs of the NCO register value. 
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Figure 1 Interpolation in time domain 6. CONCLUSION 
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This paper presented a sample rate converter (SRC) for 
digital modulator applications. Despite many other 
possible filter choices, polynomial based SRC is discussed 
in detail. This is due to the existence of a hardware 
efficient implementation of polynomial based SRC, 
namely the Farrow structure. Besides the Farrow structure 
used for calculating SRC output, the SRC needs to be 
provided the basepoint index nk and fractional interval µk 
for proper control of the sample rate conversion. The 
architecture presented in this paper decouples the SRC 
from the previous interpolation filter stages, therefore 
allowing these interpolations to be implemented using 
software based approaches. In addition, this paper 
described in detail how the SRC is controlled when they 
involve either even number of basepoints or odd number 
of basepoints. In the end, a QAM modulator example 
using the proposed SRC is given and the measure 
performance is presented as well.  

Figure 2 Analysis model for SRC 
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7. REFERENCES Figure 3 Impulse response examples of Lagrange 

polynomial interpolation filter (N=4 and N=3)  
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Figure 8 Control for SRC (using even number of 
basepoints) 

Figure 4 Farrow structure for Equation (5) 
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Figure 5 Digital modulator architecture 
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Figure 9 Control for SRC (using odd number of 

basepoints) 
 
 
  
  
  
  
  
  
  
  

 Figure 6 NCO examples with different FCW 
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 Figure 7 Sample rate converter architecture 
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