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ABSTRACT 
 
FPGAs are a viable solution for the computationally 
intensive signal processing requirements in software-
defined radio (SDR). The conventional approach to partially 
or fully reconfigure the device to meet different 
requirements results in an associated delay and/or over-
provision of resources required. We demonstrate a new 
approach based on application-specific integrated 
processors (ASIPs) where the FPGA is configured to 
provide a number of functional units controlled by a simple 
processor and associated program. Reconfiguration then 
merely requires modification of the program and may be 
performed quickly and simply. 
 
 

1. INTRODUCTION 
 
FPGAs are widely used for computationally intensive signal 
processing applications. We describe a novel approach to 
implementing algorithms on FPGAs based on ASIPs.  
 An ASIP combines the flexibility of a software 
approach with the efficiency and performance of dedicated 
hardware. It is a processor that has been specialised to 
perform certain tasks or classes of tasks efficiently and with 
a required level of performance. An ASIP may be derived 
from a general purpose processor by varying the number 
and type of function units (arithmetic, logical, load/store, 
register-file), introducing new types of application-specific 
function unit (multiply-add, permute, address generation), 
and by changing the internal topology of processor—i.e., 
the pattern of interconnection between function units.  
 Digital signal processors and network processors can be 
viewed as ASIPs targeting specific classes of application. In 
general, the more specialised the processor, the greater the 
efficiency and less the applicability. 
 There are a number of advantages to implementing an 
ASIP using an FPGA. While a processor implemented on a 
FPGA may be larger and slower than one implemented as 
an ASIC, they use the same process technology. FPGAs are 
typically fabricated using a more advanced process than is 
available to the majority of ASIC applications. An FPGA 

processor implementation is also able to benefit from 
improvements in process technology as they are introduced 
with new generations of FPGA devices. FPGAs have 
become large enough to contain a complete system on a 
single device, hence the name “system on a programmable 
chip” (SOPC). The single-chip design allows tight 
integration between multiple processors, memories, and 
other system components [1]. 
 We believe building ASIPs using FPGAs has further 
advantages. Modern FPGAs have all the building blocks 
necessary to build a processor: digital signal processing 
(DSP) blocks (multiply-accumulators), small and large 
RAMs, and fast arithmetic and logic. The FPGA fabric 
supports variation of the number, type, and topology of the 
function units and creation of new types of function unit. 
Highly specialised FPGA-based ASIPs can be quickly and 
cheaply produced and offer very high levels of efficiency. 
 Furthermore, for computationally intensive tasks that 
require a hardware solution to meet performance 
requirements, the ASIP-on-FPGA model has a number of 
benefits over traditional design flows using hardware 
description languages like VHDL and Verilog. 
 In contrast to the traditional hardware design flows, the 
ASIP approach naturally separates behaviour (algorithm) 
from implementation (architecture). For example, sharing 
(or reuse) of hardware blocks is much more naturally 
expressed in terms of a processor. In a hardware description 
language, multiplexers and control signals must be written 
explicitly, whereas they are implicit in a given ASIP 
architecture. 
 The assembler and compiler tools available for an ASIP 
manage pipeline delays, schedule operations, and 
automatically generate a control program. These tasks are 
performed manually when writing a hardware description. 
 The ASIP program is explicitly stated using a 
sequential programming model with instruction-level 
parallelism. A hardware description implicitly encodes the 
program in the behaviour of a number of parallel processes.  
 Control flow is expressed as a series of arithmetic and 
logical operations applied to a set of variables. In an ASIP 
this may be implemented using a register file and an 
arithmetic logic unit (ALU) with each compare-and-branch 

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved



operation performed sequentially. A hardware 
implementation may include a finite state machine, multiple 
registers, and comparators, and perform multiple 
comparisons in a single step (an N-way branch). However, 
in many computationally intensive applications, control 
flow represents a small fraction of the total number of 
operations and is not performance critical. The smaller, 
denser ASIP may require more cycles but may also operate 
faster. The ASIP may also be quickly and easily 
reprogrammed by changing the contents of the program 
memory. A hardware approach will require the FPGA to be 
reconfigured to make even trivial changes to its behaviour. 
 As a result of a higher degree of algorithm-
implementation separation, the ASIP approach is more 
amenable to design automation and design space 
exploration than traditional hardware design flows. 
Moreover, this technique permits an easier migration from 
programmable logic to ASICs without compromising its 
ability to be reconfigured. 
 

2. CONSTRUCTING AN ASIP 
 
2.1 Analysis and Design 
 
The first step in constructing an ASIP is to analyse the 
application that is to be executed. A simple analysis can 
yield characteristics such as the amount of memory required 
and the number and type of operations. Given a real-time 
constraint such as throughput or latency, we can translate 
algorithm requirements into resource requirements: i.e., a 
simple implementation of a 15-tap finite impulse response 
(FIR) filter requires 15 multiply-add operations, so if given 
a throughput of 1,000,000 samples per second, we require 
resources to provide 15 MMACS (million multiply-
accumulated operations per second). 
 By comparing the algorithmic resource requirements 
against the features and performance of various function  

 
Figure 1. Architecture of an ASIP 

Notes: 
1. FU = function unit 
2. Mux – multiplexer 
 

units, we can begin to define an ASIP architecture. 
 The availability, classes, and performance of function 
units depend on the FPGA device targeted. For instance, 
using the DSP blocks on Altera’s largest Stratix® II device, 
we could construct 384 18-bit multiply-accumulate function 
units with appropriate rounding and saturation, and each 
performing 370 MMACS [2]. A straightforward 32-bit 
add/subtract unit implemented using logic cells can perform 
350 million add/subs per second.  
 Memory requirements are often more important than 
computational requirements. The ASIP architecture must 
include sufficient memory units to satisfy the bandwidth 
requirements of the algorithm. Modern high-density FPGAs 
typically contain a range of memory resources which can be 
combined or configured to provide different sized 
memories.  
 Designing the ASIP architecture is an iterative process 
whereby the processor architecture and the algorithm are 
progressively refined. The cost of candidate processor 
architecture may be estimated relatively easily by counting 
the resources used. The performance of the algorithm can be 
assessed by a more detailed analysis of implementation of 
the key sections of the application (such as innermost loop 
bodies). 
 Reaching the optimal implementation using this 
approach may, in general, require a number of iterations. 
However, we find in practise that an acceptable architecture 
can be designed for many applications relatively quickly.  
 For applications that have been implemented in 
software or in previous hardware generations, modern 
FPGAs often provide vastly more computational power than 
is required. We can, therefore, apply standard architectural 
templates to generate ASIP architectures: for DSP-like 
algorithms, an architecture template with N memories 
feeding M multipliers and accumulators, and for control 
applications, a register file feeding an ALU. 
 
2.2 Architecture Definition 
 
Typically a microprocessor is defined in terms of a non-
application-specific instruction set. This instruction set is 
somewhat abstract, often relying on a set of logical register 
names. An instruction-set-based processor will require logic 
to: 
• Detect hazards: for example, when a register is read but 

its value has not been completely computed 
• Forward results: either by directly moving a computed 

value from the output of one function unit to the input 
of another while bypassing the register file, or by 
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detecting which physical location contains the current 
value of a logical register name 

In an FPGA, many function units are pipelined and so the 
number of hazard conditions and the number of forwarding 
paths will be large. 
 When a function unit can receive its arguments from a 
number of sources, a multiplexer must be included to select 
between them. The multiplexer must be constructed out of 
logic cells, thereby adding to the resources needed for the 
processor and potentially slowing its execution. A four-to-
one multiplexer implemented in an Altera® Stratix FPGA 
will consume twice as many resources as an add/sub unit. 
 When constructing an ASIP, we include no hazard 
detection hardware. We require the assembler/compiler to 
statically schedule instructions so that no hazards occur. 
Moving this analysis to compile time means the processors 
generated are smaller and can run faster.  
 However, this form of static scheduling may lead to 
inefficient programs. Some hazards are data dependent 
either due to control flow or through address generation and 
cannot be determined until the program executes. A static 
schedule must be pessimistic to ensure correctness. For 
most applications, fortunately, the inefficiency we 
encounter in the program is more than compensated by 
obtaining a faster and smaller processor. In DSP algorithms, 
there is often little data-dependent execution, and memory 
accesses are regular and analyzable, so the potential benefits 
of run-time hazard detection are minimal. 
 When constructing an FPGA-targeted ASIP, we only 
include those routing paths which are required by the 
application. The need for multiplexers is removed or 
reduced, resulting in a smaller and faster processor. The 
resulting ASIP architecture has much in common with a 
transport-triggered architecture (TTA) and the finite state 
machine plus datapath (FSM-D) architecture generated by 
many high-level behavioural synthesis tools [3][4]. 
  Figure 1 shows the general form of an FPGA-based 
ASIP. Pipelined memory and counter programs supply the 
machine with an encoded instruction word. The memory 
program is typically included within the processor and 
exploits the dual-port facilities of the memories to allow 
external sources to load program code. 
 The encoded instruction word feeds a decode block that 
decodes the data to provide a set of control signals for the 
processor. Control signals include immediate values such as 
literals, register file read and write addresses, function unit 
enable and operation select signals, and multiplexer 
operand-select codes. 
 The processing core includes a set of function units and 
the multiplexers that route data between them. The function 
units include memories, registers, basic arithmetic and logic 
units, and multiply-add blocks. These blocks may exploit 
specific features of the FPGA device or may rely on 
standard libraries such as the library of parameterized 

modules (LPM) [5]. In addition, custom application-specific 
units may be included. 
 Function units implementing bus-masters, slaves, 
general purpose I/O (GPIOs), and streaming point-to-point 
protocols provide I/O functionality. 

 
Figure 2. Combined FFT/FIR ASIP Architecture 

 
2.3 Program 

 
Each ASIP defines its own custom assembly language. For 
each processor we also construct a custom assembler which 
translates an executable specification of the algorithm into 
the correct control signals. The assembler schedules 
operations and loops to avoid hazards and minimise 
execution time. 

 
3. RECONFIGURABLE RADIO 

 
SDR implements algorithms in a software form to improve 
portability, lifetime costs, and retargetability. However, 
achieving cost and performance requirements necessitates 
the use of application-specific hardware. Fast Fourier 
transform (FFT) and FIR filters are representative of the 
typical algorithms used in SDR. Therefore, we use FFT and 
FIR implementations to demonstrate the effectiveness of the 
ASIP on FPGA methodology. 
  
3.1 Fast Fourier Transform 
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The details of the FFT algorithm and its implementation are 
well understood and widely known [6][7], so we will not 
describe them in detail here. The N-point FFT can be 
implemented as a series of log2(N) passes across the source 
data set. Each pass requires N/2 multiplies. Therefore, a 
1024-point FFT requires 5120 multiply operations. 
 Our FFT ASIP is primarily composed of a dual-ported 
data memory and a single-ported coefficient memory with 
associated address generation units. A single 16 x 16 
multiplier and a 16-bit arithmetic block are included. We 
include an accumulator and single-ported register file 
(memory) to act as a simple general purpose controller. 
 
3.2 Finite Impulse Response 
 
The FIR filter is the building block of many DSP 
applications. We chose the simplest FIR structure that 
requires a single ported data and coefficient, a multiplier, 
along with an accumulator. 
 
3.3 Combined FFT/FIR  
 
The architecture of the processor we have specified is 
shown in Figure 2. In effect, we have built a simple digital 
signal processor capable of performing FIR and FFT. The 
instruction set exposes all the registers and potential 
hazards. The FFT and FIR algorithms are expressed in 
terms of the operations the machine performs and the tools 
automatically schedule each operation to avoid pipelined 
hazards. 
 The final ASIP can be considered as either an 
application-specific VLIW digital signal processor or a 
hardware block implementing the FFT algorithm using a 
microcoded FSM. 
 The hardware is simple and small (322 Logic Elements 
(LEs), one 16 x 16 multiplier) and fast (230 MHz in a 
Stratix -5 part). A 1024-point radix-2 complex FFT takes 
21850 cycles and executes in approximately 95 µs. 
Moreover, the FFT/FIR ASIP takes less than 5 percent of 
the available LEs and DSP blocks on the smallest Altera 
Stratix device. 
 In comparison, a complex radix-2 FFT implemented on 
a C62x DSP device from Texas Instruments would take 
20840 cycles at 300 MHz (69.5 µs) to compute a 1024 point 
FFT [8]. Although the DSP solution is faster than the 
specific ASIP implementation reported here, a DSP solution 
requires an entire digital signal processor, while the ASIP 

on FPGA solution requires less than five percent of a Stratix 
device. 
 Another alternative solution would be to use an IP Core 
optimised for a particular family of FPGAs. The Radix-4 
FFT IP core from Xilinx, for example, takes 1869 logic 
slices (a Xilinx logic slice contains four 4-input look-up 
tables (LUTs) compared to an Altera LE containing one 4-
input LUT) and takes 4145 clock cycles at 100 MHz (41.45 
µs) [9]. A radix-4 FFT implemented using our ASIP on 
FPGA methodology takes about 6368 cycles at 256Hz 
(under 25 µs) and 600 LEs. 
 

4. CONCLUSION  
 
We have described a methodology for constructing 
customised application-specific processors targeting an 
FPGA. We believe that this architectural style leads to 
efficient algorithm implementations in modern FPGA 
devices, with a FFT/FIR processor as an example. FPGA-
implemented ASIPs are a good target for SDR as they give 
the performance of an FPGA but can be re-programmed 
without having to complete a hardware change cycle with 
its associated risks. They also remain reprogrammable if the 
FPGA design is converted to a structured ASIC like 
Hardcopy®. 
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