
RECONFIGURABLE RADIO WITH
FPGA-BASED APPLICATION-SPECIFIC PROCESSORS

Rob Jackson (Altera European Technology Centre; High Wycombe; UK;

rjackson@altera.com) Sambuddhi Hettiaratchi (European Technology Centre; High
Wycombe; UK: shettiar@altera.com); Mike Fitton (European Technology Centre; High
Wycombe; UK; mfitton@altera.com); Steven Perry (European Technology Centre; High

Wycombe; UK; sperry@altera.com)

ABSTRACT

FPGAs are a viable solution for the computationally
intensive signal processing requirements in software-
defined radio (SDR). The conventional approach to partially
or fully reconfigure the device to meet different
requirements results in an associated delay and/or over-
provision of resources required. We demonstrate a new
approach based on application-specific integrated
processors (ASIPs) where the FPGA is configured to
provide a number of functional units controlled by a simple
processor and associated program. Reconfiguration then
merely requires modification of the program and may be
performed quickly and simply.

1. INTRODUCTION

FPGAs are widely used for computationally intensive signal
processing applications. We describe a novel approach to
implementing algorithms on FPGAs based on ASIPs.
 An ASIP combines the flexibility of a software
approach with the efficiency and performance of dedicated
hardware. It is a processor that has been specialised to
perform certain tasks or classes of tasks efficiently and with
a required level of performance. An ASIP may be derived
from a general purpose processor by varying the number
and type of function units (arithmetic, logical, load/store,
register-file), introducing new types of application-specific
function unit (multiply-add, permute, address generation),
and by changing the internal topology of processor—i.e.,
the pattern of interconnection between function units.
 Digital signal processors and network processors can be
viewed as ASIPs targeting specific classes of application. In
general, the more specialised the processor, the greater the
efficiency and less the applicability.
 There are a number of advantages to implementing an
ASIP using an FPGA. While a processor implemented on a
FPGA may be larger and slower than one implemented as
an ASIC, they use the same process technology. FPGAs are
typically fabricated using a more advanced process than is
available to the majority of ASIC applications. An FPGA

processor implementation is also able to benefit from
improvements in process technology as they are introduced
with new generations of FPGA devices. FPGAs have
become large enough to contain a complete system on a
single device, hence the name “system on a programmable
chip” (SOPC). The single-chip design allows tight
integration between multiple processors, memories, and
other system components [1].
 We believe building ASIPs using FPGAs has further
advantages. Modern FPGAs have all the building blocks
necessary to build a processor: digital signal processing
(DSP) blocks (multiply-accumulators), small and large
RAMs, and fast arithmetic and logic. The FPGA fabric
supports variation of the number, type, and topology of the
function units and creation of new types of function unit.
Highly specialised FPGA-based ASIPs can be quickly and
cheaply produced and offer very high levels of efficiency.
 Furthermore, for computationally intensive tasks that
require a hardware solution to meet performance
requirements, the ASIP-on-FPGA model has a number of
benefits over traditional design flows using hardware
description languages like VHDL and Verilog.
 In contrast to the traditional hardware design flows, the
ASIP approach naturally separates behaviour (algorithm)
from implementation (architecture). For example, sharing
(or reuse) of hardware blocks is much more naturally
expressed in terms of a processor. In a hardware description
language, multiplexers and control signals must be written
explicitly, whereas they are implicit in a given ASIP
architecture.
 The assembler and compiler tools available for an ASIP
manage pipeline delays, schedule operations, and
automatically generate a control program. These tasks are
performed manually when writing a hardware description.
 The ASIP program is explicitly stated using a
sequential programming model with instruction-level
parallelism. A hardware description implicitly encodes the
program in the behaviour of a number of parallel processes.
 Control flow is expressed as a series of arithmetic and
logical operations applied to a set of variables. In an ASIP
this may be implemented using a register file and an
arithmetic logic unit (ALU) with each compare-and-branch

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

operation performed sequentially. A hardware
implementation may include a finite state machine, multiple
registers, and comparators, and perform multiple
comparisons in a single step (an N-way branch). However,
in many computationally intensive applications, control
flow represents a small fraction of the total number of
operations and is not performance critical. The smaller,
denser ASIP may require more cycles but may also operate
faster. The ASIP may also be quickly and easily
reprogrammed by changing the contents of the program
memory. A hardware approach will require the FPGA to be
reconfigured to make even trivial changes to its behaviour.
 As a result of a higher degree of algorithm-
implementation separation, the ASIP approach is more
amenable to design automation and design space
exploration than traditional hardware design flows.
Moreover, this technique permits an easier migration from
programmable logic to ASICs without compromising its
ability to be reconfigured.

2. CONSTRUCTING AN ASIP

2.1 Analysis and Design

The first step in constructing an ASIP is to analyse the
application that is to be executed. A simple analysis can
yield characteristics such as the amount of memory required
and the number and type of operations. Given a real-time
constraint such as throughput or latency, we can translate
algorithm requirements into resource requirements: i.e., a
simple implementation of a 15-tap finite impulse response
(FIR) filter requires 15 multiply-add operations, so if given
a throughput of 1,000,000 samples per second, we require
resources to provide 15 MMACS (million multiply-
accumulated operations per second).
 By comparing the algorithmic resource requirements
against the features and performance of various function

Figure 1. Architecture of an ASIP

Notes:
1. FU = function unit
2. Mux – multiplexer

units, we can begin to define an ASIP architecture.
 The availability, classes, and performance of function
units depend on the FPGA device targeted. For instance,
using the DSP blocks on Altera’s largest Stratix® II device,
we could construct 384 18-bit multiply-accumulate function
units with appropriate rounding and saturation, and each
performing 370 MMACS [2]. A straightforward 32-bit
add/subtract unit implemented using logic cells can perform
350 million add/subs per second.
 Memory requirements are often more important than
computational requirements. The ASIP architecture must
include sufficient memory units to satisfy the bandwidth
requirements of the algorithm. Modern high-density FPGAs
typically contain a range of memory resources which can be
combined or configured to provide different sized
memories.
 Designing the ASIP architecture is an iterative process
whereby the processor architecture and the algorithm are
progressively refined. The cost of candidate processor
architecture may be estimated relatively easily by counting
the resources used. The performance of the algorithm can be
assessed by a more detailed analysis of implementation of
the key sections of the application (such as innermost loop
bodies).
 Reaching the optimal implementation using this
approach may, in general, require a number of iterations.
However, we find in practise that an acceptable architecture
can be designed for many applications relatively quickly.
 For applications that have been implemented in
software or in previous hardware generations, modern
FPGAs often provide vastly more computational power than
is required. We can, therefore, apply standard architectural
templates to generate ASIP architectures: for DSP-like
algorithms, an architecture template with N memories
feeding M multipliers and accumulators, and for control
applications, a register file feeding an ALU.

2.2 Architecture Definition

Typically a microprocessor is defined in terms of a non-
application-specific instruction set. This instruction set is
somewhat abstract, often relying on a set of logical register
names. An instruction-set-based processor will require logic
to:
• Detect hazards: for example, when a register is read but

its value has not been completely computed
• Forward results: either by directly moving a computed

value from the output of one function unit to the input
of another while bypassing the register file, or by

MEM1

RF1

FU2

Program
Memory

Decoder

Program
Counter

IO

Mux

FU1

Mux

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

detecting which physical location contains the current
value of a logical register name

In an FPGA, many function units are pipelined and so the
number of hazard conditions and the number of forwarding
paths will be large.
 When a function unit can receive its arguments from a
number of sources, a multiplexer must be included to select
between them. The multiplexer must be constructed out of
logic cells, thereby adding to the resources needed for the
processor and potentially slowing its execution. A four-to-
one multiplexer implemented in an Altera® Stratix FPGA
will consume twice as many resources as an add/sub unit.
 When constructing an ASIP, we include no hazard
detection hardware. We require the assembler/compiler to
statically schedule instructions so that no hazards occur.
Moving this analysis to compile time means the processors
generated are smaller and can run faster.
 However, this form of static scheduling may lead to
inefficient programs. Some hazards are data dependent
either due to control flow or through address generation and
cannot be determined until the program executes. A static
schedule must be pessimistic to ensure correctness. For
most applications, fortunately, the inefficiency we
encounter in the program is more than compensated by
obtaining a faster and smaller processor. In DSP algorithms,
there is often little data-dependent execution, and memory
accesses are regular and analyzable, so the potential benefits
of run-time hazard detection are minimal.
 When constructing an FPGA-targeted ASIP, we only
include those routing paths which are required by the
application. The need for multiplexers is removed or
reduced, resulting in a smaller and faster processor. The
resulting ASIP architecture has much in common with a
transport-triggered architecture (TTA) and the finite state
machine plus datapath (FSM-D) architecture generated by
many high-level behavioural synthesis tools [3][4].
 Figure 1 shows the general form of an FPGA-based
ASIP. Pipelined memory and counter programs supply the
machine with an encoded instruction word. The memory
program is typically included within the processor and
exploits the dual-port facilities of the memories to allow
external sources to load program code.
 The encoded instruction word feeds a decode block that
decodes the data to provide a set of control signals for the
processor. Control signals include immediate values such as
literals, register file read and write addresses, function unit
enable and operation select signals, and multiplexer
operand-select codes.
 The processing core includes a set of function units and
the multiplexers that route data between them. The function
units include memories, registers, basic arithmetic and logic
units, and multiply-add blocks. These blocks may exploit
specific features of the FPGA device or may rely on
standard libraries such as the library of parameterized

modules (LPM) [5]. In addition, custom application-specific
units may be included.
 Function units implementing bus-masters, slaves,
general purpose I/O (GPIOs), and streaming point-to-point
protocols provide I/O functionality.

Figure 2. Combined FFT/FIR ASIP Architecture

2.3 Program

Each ASIP defines its own custom assembly language. For
each processor we also construct a custom assembler which
translates an executable specification of the algorithm into
the correct control signals. The assembler schedules
operations and loops to avoid hazards and minimise
execution time.

3. RECONFIGURABLE RADIO

SDR implements algorithms in a software form to improve
portability, lifetime costs, and retargetability. However,
achieving cost and performance requirements necessitates
the use of application-specific hardware. Fast Fourier
transform (FFT) and FIR filters are representative of the
typical algorithms used in SDR. Therefore, we use FFT and
FIR implementations to demonstrate the effectiveness of the
ASIP on FPGA methodology.

3.1 Fast Fourier Transform

INDEX0 INDEX1 INDEX2 INDEX3 INDEX4

MOD 0 MOD 1 MOD 2

MEM1

ADD/SUB0 ADD/SUB1

ACCUMULATE 0 ACCUMULATE 1

MEM2

MULTIPLY

MEM1

REGISTER
FILE 0

REGISTER
FILE 0

REGISTER 0

ADD/SUB2

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

The details of the FFT algorithm and its implementation are
well understood and widely known [6][7], so we will not
describe them in detail here. The N-point FFT can be
implemented as a series of log2(N) passes across the source
data set. Each pass requires N/2 multiplies. Therefore, a
1024-point FFT requires 5120 multiply operations.
 Our FFT ASIP is primarily composed of a dual-ported
data memory and a single-ported coefficient memory with
associated address generation units. A single 16 x 16
multiplier and a 16-bit arithmetic block are included. We
include an accumulator and single-ported register file
(memory) to act as a simple general purpose controller.

3.2 Finite Impulse Response

The FIR filter is the building block of many DSP
applications. We chose the simplest FIR structure that
requires a single ported data and coefficient, a multiplier,
along with an accumulator.

3.3 Combined FFT/FIR

The architecture of the processor we have specified is
shown in Figure 2. In effect, we have built a simple digital
signal processor capable of performing FIR and FFT. The
instruction set exposes all the registers and potential
hazards. The FFT and FIR algorithms are expressed in
terms of the operations the machine performs and the tools
automatically schedule each operation to avoid pipelined
hazards.
 The final ASIP can be considered as either an
application-specific VLIW digital signal processor or a
hardware block implementing the FFT algorithm using a
microcoded FSM.
 The hardware is simple and small (322 Logic Elements
(LEs), one 16 x 16 multiplier) and fast (230 MHz in a
Stratix -5 part). A 1024-point radix-2 complex FFT takes
21850 cycles and executes in approximately 95 µs.
Moreover, the FFT/FIR ASIP takes less than 5 percent of
the available LEs and DSP blocks on the smallest Altera
Stratix device.
 In comparison, a complex radix-2 FFT implemented on
a C62x DSP device from Texas Instruments would take
20840 cycles at 300 MHz (69.5 µs) to compute a 1024 point
FFT [8]. Although the DSP solution is faster than the
specific ASIP implementation reported here, a DSP solution
requires an entire digital signal processor, while the ASIP

on FPGA solution requires less than five percent of a Stratix
device.
 Another alternative solution would be to use an IP Core
optimised for a particular family of FPGAs. The Radix-4
FFT IP core from Xilinx, for example, takes 1869 logic
slices (a Xilinx logic slice contains four 4-input look-up
tables (LUTs) compared to an Altera LE containing one 4-
input LUT) and takes 4145 clock cycles at 100 MHz (41.45
µs) [9]. A radix-4 FFT implemented using our ASIP on
FPGA methodology takes about 6368 cycles at 256Hz
(under 25 µs) and 600 LEs.

4. CONCLUSION

We have described a methodology for constructing
customised application-specific processors targeting an
FPGA. We believe that this architectural style leads to
efficient algorithm implementations in modern FPGA
devices, with a FFT/FIR processor as an example. FPGA-
implemented ASIPs are a good target for SDR as they give
the performance of an FPGA but can be re-programmed
without having to complete a hardware change cycle with
its associated risks. They also remain reprogrammable if the
FPGA design is converted to a structured ASIC like
Hardcopy®.

5. REFERENCES

[1] Altera Corporation, NIOS II Processor Reference Handbook,

http://www.altera.com/literature/lit-nio2.jsp, 2004.
[2] Altera Corporation, Stratix II Device Handbook,

http://www.altera.com/literature/lit-stx2.jsp, 2004.
[3] H. Corporaal, Microprocessor Architectures from VLIW to

TTA, Wiley, Chichster, 1998.
[4] D. Gajski, N. Dutt, and A. Wu, High-Level Synthesis, Kluwer,

Boston, 1992.
[5] Electronic Industry Alliance, “EIA/IS-103-A Library of
 Parameterized Modules.” http://www.ediforg/lpmweb, 1999.
[6] P. Duhamel and M. Vetterli. "Fast Fourier Transforms: A

Tutorial Review." Signal Processing, Vol. 19, pp 259-299,
1990.

[7] G.D. Gergkand "A Guided Tour of the Fast Fourier
Transform." IEEE Spectrum, Vol. 6, pp 41-52, July 1969.

[8] C62x DSP Benchmarks, Texas Instruments, Inc., latest
version.

[9] LogiCore High Performance 1024-Point Complex FFT/IFFT,
Xilinx, Inc., July 2000.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

