Rapid SDR Waveform Development in FPGAs Using DSP Builder

Joel A. Seely – Altera
Steven W. Cox – General Dynamics C4 Systems
Agenda

- Introduction
- Traditional Waveform Design
- Waveform Design Using Higher-Level Tools (DSP Builder)
- Example Design & Steps
- Efficiency Analysis
- Conclusion
Introduction

- Software-Defined Radios Are Becoming Ubiquitous
- Three Major Programmable Components
 - GPP, DSP, FPGA
- FPGA is Taking on More “Heavy Lifting” Computationally
 - Lowering Burden of DSP & GPP
- As FPGA Designs Become More Complex, New Tools Are Required
- DSP Builder Is an Example of One of These Tools
 - The MathWorks’ Simulink Capabilities
 - Fixed Point Blockset
 - Interfaces to Third-Party Tools to Generate Synthesizable FPGA HDL
 - Allows for Design, Simulation & Verification Prior to Hardware Implementation
Traditional FPGA Waveform Design

- Start with System-Level Specifications & Simulations
- Use These to Hand-Code HDL
- Typically System Designer Had No Insight Into FPGA’s Implementation Details
- Designer Needed to be an Expert in HDL—Not the sort of Expertise an Engineer Would Pick Up Overnight
- Manual HDL Coding is Inefficient as Waveforms Become More Complex
 - Tedious
 - Time-Consuming
 - Potential for Lots of Bugs
 - Increased Development Time & Cost
Traditional Waveform Design Flow

Waveform Requirements

Waveform MATLAB/Simulink Floating Point Model

Waveform Detailed Design Documents

Waveform FPGA Design/Docs

Timing Verified?

Simulate to Validate

Verify VHDL Timing using ModelSim

Verify Against Floating Point Model using ModelSim/Quartus® II Software

Hand Code in VHDL, Verilog, or Schematic Capture

Yes

Test Waveform Modem in Lab

No

Compile VHDL Using Quartus II Software

Verify Against Floating Point Model using ModelSim/Quartus® II Software

Compile VHDL Using Quartus II Software

© 2004 Altera Corporation - Confidential
DSP Builder – Higher-Level Design Tool

- Developed to Address Issues in Complex System Development
- New Design Flow Needed
 - Define Architecture
 - Implement / Design / Re-Use Modules
 - Integrate of Modules
 - Translate Design in FPGA
 - Verify FPGA Design in the Lab
Waveform Design Flow Using DSP Builder

- **Protocol Definition**
 - Start with Existing Floating Point Simulink Model

- **Sub Blocks**
 - Design in DSP Builder Blocks, Get Data From Simulink Model
 - Timing/Detail Design Uses ModelSim
 - Run DSP Builder in Simulink when Verifying Data

- **All Blocks**
 - Divide Simulation in Fast & Slow Clocks Rates if Possible
 - Use Sims to Examine Boundary Conditions in Design & Timing Issues in ModelSim
 - Use DSP Builder to Run Sims & Verify Data & for Initial Sizing & Synthesize

- **FPGA Design**
 - Remove Stimulus from Design for Synthesis
 - Generate Quartus Symbol with DSP Builder Script, Insert Into Total Design & Compile
 - Check Timing

- **Lab Verification**
 - Check Data with Logic Analyzer
 - Store Data from Logic Analyzer to file
 - Analyze Final Data from Logic Analyzer in Simulink

© 2004 Altera Corporation - Confidential
Example Design – MIL-STD 110A

- Starting Point for the SDR Architecture
- Used the 1,200 Bits/Second Transmit Mode of the Specification
- Floating-Point Model Was Used For
 - Guideline & Comparison
 - Initial Sizing
 - Architecture Mapping Estimates
Example Design – MIL-STD 110A

Data from Simulink

- PROM
 - Data
 - clk

FEC

- Interleaver
 - clk
 - Rate 1/2
 - Output Clock Doubles

- Interleaver
 - clk

Grey Encode/Symbol Formatter

- Constellation Mapper
 - Format Symbol to 1, 2, 3 Bits

- Preamble Generator
 - Mode Dependent Parameters
 - Long/Short Formats

Packet Formatter

- Scrambler
 - Randomize Data According to Sequence
 - Data/Sync Random Sequence

- Modulator
 - LUT for Modulation
 - 8 PSK

- Modulator
 - 16I, 16Q

- Modulator

© 2004 Altera Corporation - Confidential
Implementation/Simulation

- Used Altera DSP Builder & Simulink Toolbox Blocksets
- Uses Schematic Entry
- Ties to Third-Party Simulators (ModelSim) for Timing Verification & Control
- Automated Creation of
 - HDL
 - Stimulus for Sub-Blocks
 - Scripts to Load & Compile the Updated Design
- Streamlines the Iterative Process of Simulating a Design
Implementation/Simulation

- Floating Point & DSP Builder Models are Compared & Verified
- DSP Builder Model & Floating-Point Models Are Run Separately in Simulink
- Commands in Simulink Manipulate the DSP Builder Fixed-Point Data to Compare to the Floating-Point Model
- To Correct Errors, Update the Models in Simulink & Rerun the Simulations to Verify

© 2004 Altera Corporation - Confidential
Integration

- Data Validation Done in Simulink
 - DSP Builder Models are C Code
 - C-Code Simulators Run Faster than HDL Interpretative Simulators

- After Validation Preliminary Sizing & Synthesis Estimates Made
 - Provides an Early Alert for Sizing & Timing Constraints
 - Allows for Fixing Problems in the Early Stages of the Design Cycle

- Optimizations for Simulation During the Integration Phase
 - Changed Input Data Clock to 0.66 MHz (Instead of 1,200 Hz)
 - Faster Simulation
 - Decreased Bits/Frame to 1,440 to 120
Integration (Cont.)

- Separated Slow & Fast Clock Dependencies
 - Slow Clock Dependences Run From Beginning of Waveform Chain to Input of Scrambler
 - Fast Clock Dependencies Run From Scrambler to Output of Modulator
 - Only Valid Data at Output of Data Formatter Was Captured to Workspace
 - Fast Dependencies Were Run As Separate Simulation With Only Valid Data Output From Formatter

- This Integration/Simulation Methodology Significantly Reduced Simulation Time For High-Speed Portion of Circuit & Allowed Efficient Design Validation
Synthesis

- First Replace Simulink Stimulus with Input Pins
- DSP Builder Generates Quartus II Script for Loading
 DSP Builder Design & Create Symbol
- Anticipate Test Points Needed for Debugging New Design
 - If Additional Test Points Needed, Must Update the DSP Builder Model
- Synthesis & Compilation Done in Quartus II Software
 - Other Synthesis Tools Also Available
- Timing Results Analyzed
- Raw Binary File Created
Lab Verification

- Loaded RBF Onto FPGA on Software Radio
 - Altera EP20K1000 Device
- Each Sub-Block Was Checked With Logic Analyzer
- Design Yielded an 8psk Constellation
 - See Graph
- Logic Analyzer Captured the Final Data (I & Q)
 - Used to Verify Against the Data in the Floating Point Simulink Environment
 - Only Took a Few Days
Efficiency Analysis

- Major Improvements in Several Design Areas
 - Design
 - Integration
 - Translation (HDL Coding)
 - Verification

- Nearly 50% Improvement
 - 26 Days vs. 49 Days Through Traditional Method
Efficiency Analysis (Cont.)

Days to Implement SDR

- Document
- Verify in Lab
- Translate to FPGA
- Integrate Modules
- Design Modules
- Define Architecture

Green bars represent DSP Builder.
Blue bars represent Traditional Method.
Conclusion

- DSP Builder is a powerful tool for rapidly developing SDR waveforms on FPGAs.
- DSP Builder flow allows you to allocate time in an appropriate manner for developing waveforms.
- DSP Builder/Simulink/ModelSim flow allows you to rapidly identify problems & troubleshoot, reducing risk, time & resources in the lab.
- DSP Builder tool allows the hardware to be abstracted to a higher level, enabling FPGA & system waveform developers to operate in a common environment.