

SMART STRATEGIES FOR INTEGRATING

FPGAs AND IP CORES IN SDR SYSTEMS

Rodger H. Hosking
(Pentek, Inc., One Park Way, Upper Saddle River,
New Jersey, 07458, USA, rodger@pentek.com)

ABSTRACT

FPGAs (field programmable gate arrays) are now enjoying
recognition and adoption by a wide range of software
defined radio system designers and waveform developers.
While FPGAs promise dramatic increases in the achievable
performance levels, delivering on this promise requires
careful analysis of hardware architectures, FPGA
development tools, commercial FPGA IP (intellectual
property) core offerings, skill levels of engineering
personnel, and techniques for waveform portability and field
reconfigurability.
This paper addresses perspectives on these critical issues
derived through experience gained from actual FPGA
hardware implementations, development of FPGA IP for
open architecture boards, and high-performance DSP
algorithms.

1. INTRODUCTION

Each customer must approach acquisition of FPGA
technology with his own unique perspective. Developers
must not only determine whether FPGAs are right for an
application, they must then also choose the best strategy for
incorporating them. Since these two decisions are tightly
coupled, in some cases, even though an FPGA may be ideal
for an application, there may be no viable strategy for
implementing the design.
Because FPGAs impose such a significant impact on system
or product architecture, it is essential to establish the design
strategy early in the development cycle to ensure a

successful implementation from hardware selection through
the development cycle and finally into deployment.
We will start with a look at a typical software defined radio
architecture and then discuss methods for custom FPGA
development.

2. SOFTWARE DEFINED RADIO HARDWARE

FPGAs are now being incorporated in many open-
architecture software radio board level products, often
referred to as COTS (commercial off the shelf). One of most
successful strategies for a software radio receiver is shown
in Figure 1. In the front end module, the RF input signal is
digitized by an A/D converter and then delivered to a digital
down converter (DDC) ASIC (application specific
integrated circuit).
The A/D output and the digital down converter output both
feed the FPGA. In this way, the FPGA can process the
wideband output from the A/D directly, or process the
narrowband outputs from the DDC. Including the DDC in
the design eliminates the considerable FPGA resources that
would otherwise be consumed to implement this popular
DDC function.
Processed data from the FPGA is then sent to the processor
board through the system interface, often a mezzanine or
daughter card interface or else a backplane bus.
The inclusion of a FIFO (first in first out memory) in the
data stream helps the processor aggregate blocks of data to
take advantage of efficient DMA (direct memory access)
transfers.

FIFO DSP
or

PROCControl & Status

Streaming Data

PROCESSOR BOARD

A/D
CONV

ANALOG
RF

INPUT
FPGA

SOFTWARE RADIO MODULE SYSTEM
INTERFACE

BYPASS

Figure 1. Typical FPGA-based Software Radio Hardware Architecture

DIGITAL
DOWN

CONVERTER

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

While this architecture has proven extremely powerful,
simply incorporating FPGAs in the hardware circuitry falls
far short of satisfying the needs of the end user who may
need to add custom features or IP cores to the FPGA. COTS
board designers must carefully architect the FPGA resources
so that customers can either add, delete or modify functions
easily, with a minimum risk of "breaking" the basic
operation of the product.
This requires significant planning during the FPGA design
and development phase to carefully segment the standard
factory functions so that subsequent enhancements by the
customer are successful. In addition, the board vendor must
create a comprehensive FPGA design and documentation
package to support the customer's FPGA design
environment and skill level.

3. FPGA CONFIGURATION STRATEGIES

One commercial offering to facilitate custom FPGA code
development for COTS products is the Pentek GateFlow
FPGA Design Kit, tailored specifically for each product and
developed during the product design phase to ensure
modularity of the FPGA structures.
Figure 2 shows a simplified block diagram of a generic
FPGA-based software radio module showing the hardware
connections to the FPGA. Each external device requires a
specialized hardware interface structure (not shown) for the
A/D converter, digital down converter, clock and trigger
section, and the system interface.
The FPGA also includes functional blocks that implement
the standard factory functions for the COTS product such as
data selection and formatting, interrupt control and DDC
control and status. Each of these interfaces and functional
blocks is implemented as an individual VHDL configuration
code module.

After all of these factory features have been implemented, a
significant percentage of FPGA resources remain unused
and available for customer-installed signal processing and
control functions.
The Pentek GateFlow FPGA Design kit includes complete
VHDL source code for all VHDL modules in the standard
factory product, along with all project files, pin definition
files, signal flow charts, JTAG chain definition files, and bit
stream images used to create the end product.
A special VHDL module called the User Block sits directly
in the data path between the Data Select and Data Formatter
blocks. In the VHDL code for the standard factory FPGA
configuration, the User Block implements a "straight wire"
between input and output, with predefined logical pin
definitions for data, clock and control signals.
This User Block was designed specifically for customers
who wish to add a signal processing function to the data
stream on its way through the module, such as a filter,
demodulator or decoder.
In this case, the customer develops, tests and qualifies his
algorithm as a stand-alone VHDL module using the FPGA
design tool suite. He then drops this algorithm into the User
Block, complying with the pin definitions, data flow
connections and timing constraints. He then recompiles the
project with all of the other unaltered VHDL modules and
project files from the design kit. This approach assures a
high probability of success with very little risk of disturbing
critical peripheral functions.
For customers with more extensive requirements that require
modification of functions outside of the User Block, full
VHDL source code is provided for every other module in
the FPGA. This two-tiered approach provides an easy
implementation for simple applications and yet full support
for major enhancements.

EXT
CLK

XTAL
OSC

LVDS
CLK &
SYNC

CLOCK
CONTROL

SYNC / GATE /
TRIGGER

GENERATOR

INTERRUPT
GENERATORSTATUS &

CONTROL

A/D

DIGITAL
DOWN

CONVERTER

ANALOG
INPUT DATA

SELECT
DATA

FORMATTER

CLOCK
& SYNC

DRIVERS

SYSTEM
INTERFACE

DIGITAL
INPUT

DMA CONTROL
& COUNTERS

FPGA

USER BLOCK

INPUT OUTPUT

STATUSCONTROL

DEFAULT
BYPASS

Figure 2. Typical FPGA-based Software Radio Hardware Architecture

FPGA FUNCTIONAL BLOCKS

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

4. FPGA CONFIGURATION CODE LOADER

For COTS FPGA-based products, the standard factory
configuration code for the FPGA (often called a bit stream)
is usually stored in a non-volatile serial EEPROM. When
power is applied to the unit, this bit stream is copied into the
volatile RAM-based cells of the FPGA to implement the
desired functions.
Newly created, custom versions of the configuration code
can be loaded into the EEPROM, replacing the original
factory code. This usually involves disassembling the
hardware and attaching a programming cable.
A more flexible alternative puts the system processor in
charge of reconfiguring the FPGA. The GateFlow Design
Kit includes a software module called a Loader Utility that
executes on the DSP or system processor under program
control. The new configuration code is encapsulated as a
code module that accompanies the executable program for
the system.
When invoked, the Loader Utility reads the code module
and sends it across the system interface directly into the
FPGA on the software radio module as shown in Figure 3. In
operation, the standard factory code that had been originally
loaded into the FPGA when power was applied is simply
overwritten. The contents of the EEPROM remain
unchanged and are available as a default configuration.
This allows easy upgrades to fielded hardware such as a
JTRS radio set that needs a new waveform installed. It also
allows the FPGA to be reconfigured as required by the
changing operational needs of a mission.

5. INTELLECTUAL PROPERTY (IP) CORES

One of the most important resources for both hardware and
software designers is the vast collection of IP core library
offerings for FPGAs. Targeted for specialized functions,
each represents a highly optimized structure of FPGA
resources usually supplied without source code in object
form. When installed in a compatible FPGA development
tool environment, they appear as objects that can be dropped

into the block diagram and connected into other design
elements using sophisticated graphical editors. Major FPGA
vendors like Xilinx and Altera offer a long list of free and
licensed IP cores, but even more impressive is the
emergence of a thriving new industry of third party IP core
vendors. Each vendor crafts IP core offerings using the
company's expertise in specific niche technologies.
Care should be taken when evaluating benchmarks for
FPGA devices and the associated IP cores. Often they
assume that data has already been loaded into internal block
memory and that the operation is finished when the result is
written back into internal memory. Getting the data into and
out of these memories takes extra time and it must be taken
into account.
Algorithms run faster when exception handling resources are
omitted, and this can make benchmarks look deceptively
fast. Designers may be able to guarantee through system
architecture that certain exceptions simply cannot occur, but
mysterious problems can appear in deployed systems if this
aspect of the design is overlooked.
To help validate new designs, take full advantage of
simulation tools. Many of the advanced simulators are now
bit-true, meaning they perform the operations with exactly
the same number of bits used in the FPGA hardware.
Be sure to allow enough time to thoroughly test a new FPGA
design under all modes of operation to make sure it will act
as reliably as the high-volume standard ASIC being
replaced.
Many IP cores are parameterizable, so that designers can
specify the number of bits of calculation to tradeoff space
for accuracy, if necessary. Be sure that the IP cores have
enough precision to meet the system requirements.
Many commercial IP cores as sold as object files without
source code, so even though they may have parameterizable
features, they may need to be adjusted somewhat to operate
as required and to interface with other FPGA features, such
as conforming to the User Block described earlier. Be
prepared to modify the source code of off-the-shelf IP cores
when source code is available, or else contract with the IP
core vendor to make these necessary changes for you.

FIFO

DSP
or

PROC
Control & Status

Streaming Data

PROCESSOR BOARD

A/D
CONV

ANALOG
RF

INPUT

FPGA

SOFTWARE RADIO MODULE SYSTEM
INTERFACE

BYPASS

Figure 3. Configuration Code Loader Utility Simplifies FPGA Upgrades

CONFIGURATION
EEPROM

DIGITAL
DOWN

CONVERTER

BIT STREAM

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

6. NEW FPGA DEVOLPMENT TOOLS

To facilitate custom FPGA configuration code and
incorporation of IP cores, the latest class of FPGA design
entry tools allows functional definition at very high levels.
They include schematic capture and generator tools, HDL
editors, state diagram editors, logic synthesizers, plus SPICE
and IBIS modelers. Since engineers need to guarantee
critical timing parameters unique to each peripheral device,
specialized auxiliary tools now provide strict management of
clocks, control signals, and data streams.
Recent FPGA innovations include user-configurable I/O pin
drivers for multi-gigabit serial interfaces to support the
myriad new classes of switched serial fabrics. Tools like
Xilinx ISE Architecture Wizards manage these features for
both single-ended and differential interface standards
spanning a wide range of voltage, current and clock speeds.
Verification and optimization tools include propagation
delay profilers, speed-driven placers and routers, power
profilers, virtual scopes and waveform analyzers, pin out
and area constraint editors, and bit-true simulators.
DSP programmers often create and validate algorithms and
even entire signal processing systems on popular
workstation tools like MATLAB. A comprehensive library
of DSP, math, vector and matrix functions coupled with

electronic models of popular hardware resources like
mixers, oscillators and filters enable quick implementation
of even the most complex applications.
During development, powerful signal generation and
analysis tools allow designers to verify correct operation,
validate dynamic range performance, and check for
exception handling. Especially useful for signal processing,
these tools operate equally well in the time or frequency
domains with flexible presentation formats for easy viewing.
After successfully creating a DSP system, HDL code
generation tools like SIMULINK can interface directly with
the FPGA design tools.
Once in the FPGA development and verification
environment, SIMULINK continues its role by providing
hooks for stimulus test vectors and return paths for analysis
of output signals. In this case, the signals are operating on
simulation models of actual FPGA structures. MATLAB and
SIMULINK are both products of MathWorks, and are well
integrated through compatible links to Xilinx and Altera
FPGA design environments.
This allows a broad class of FPGA users to take advantage
of the extensive testing, documentation, standards
compliance, speed and efficiency that might otherwise be
unattainable with reasonable effort. The use of IP cores is a
very cost-effective strategy to significantly slash FPGA
development cycles for new technology products.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works
related to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce
their work, and to reuse material in whole or in part from their work; for derivative works, however, such authors
may not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

