

CODE PORTABILITY FOR FPGA-BASED SIGNAL PROCESSING

SUBSYSTEMS IN SOFTWARE-DEFINED RADIOS

Jim Hwang (Xilinx, Inc., San Jose, CA, 95124, USA, jim.hwang@xilinx.com)

ABSTRACT

 Code portability for FPGA-based signal processing is a
significant aspect of recent efforts to define a hardware
abstraction layer (HAL) for the signal processing subsystems of
software-defined radios. In this paper, we show how a platform-
based approach to FPGA design can provide an ability to target
multiple FPGA families or an ASIC from a single source model.
The approach combines direct mapping of a Simulink model
with code generation of register-transfer level HDL. We
demonstrate that it is possible to generate portable code for DSP
systems from Simulink without having to compromise
performance of the FPGA realization. This work complements
HAL recommendations for portability and (executable)
specification by focusing on mechanisms, guidelines, and
methodologies for constructing signal processing functions in
FPGAs.

1. INTRODUCTION

 Field-programmable gate arrays (FPGAs) are widely
used to implement physical layer signal processing
functions for software-defined radios (SDRs [1] [2]).
FPGAs provide very high performance custom hardware
solutions, and can be reconfigured in system, and when
bringing up a new waveform in the modem. Despite their
reprogrammability, they have historically been considered
part of the “hardware” within a modem, rather than part of
the “software”. Consequently, the SDR software control
layer, or Software Communications Architecture
(SCA[3]), has largely ignored issues related to the
specification, configuration, signal transport, or inter-
component interfaces that are important to the platform
provider of an SDR that exploits FPGAs.
 The U.S. government has been a primary driver for
SDRs, with significant investment in the technologies and
products, e.g., as part of the Joint Tactical Radio System
(JTRS) program run by the Joint Program Office (JPO) of
the U.S. Department of Defense. Whereas such
government programs have lifetimes on the order of ten or
more years, FPGA vendors continue to provide new
devices roughly every 12-18 months. The increased
signal processing capability of new families of FPGAs has
remained sufficiently compelling that most platforms

require retooling to incorporate new devices as they
become available.
 Recognizing that the current SCA standard does not
sufficiently address the design and deployment of the
FPGA portion of the modem, the JPO has recently
embarked upon a concentrated effort to extend the SCA to
provide guidance and ideally, standardization, for the use
of FPGA technologies within SDRs [4]. At roughly the
same time, the Software Defined Radio Forum formed a
working group devoted to providing recommendations for
a hardware abstraction layer to assist in the development,
maintenance, and cost management of SDRs [5].
 Many viewpoints have been brought forth by design
tool, component, and platform vendors, as well as by
system integrators and subcontractors for the JTRS
program. However, there is general agreement that FPGA
code portability is an important, but to date, largely
neglected aspect of design methodologies for SDRs.
 In this paper, we describe a platform-based approach
for obtaining portable FPGA source code, whilst
simultaneously providing executable specifications, test
harnesses, and “golden” test vectors (i.e., providing
accurate input/output relations for establishing
conformance to specification through simulation). Our
approach treats a high-level system model specified in
Simulink [6] as the source code for an FPGA
implementation. A block in the model may map onto a set
of intellectual property blocks provided by the vendor that
exploit vendor-specific device resources to implement the
block’s function efficiently in a number of FPGA
families. Alternatively, a block may map onto a
behavioral description in a hardware description language
that is inherently portable. It is on the latter case that we
focus in this paper. The approach extends widely used
FPGA design techniques, using industry standard design
tools. Although described in terms of proprietary (though
commercially available) tools for Xilinx FPGAs, out
approach is equally applicable to other devices.
 In Section 2, we present several definitions of code
portability, and comment on their feasibility with current
device technologies and design tools. Section 3 provides
a brief introduction to a platform-based design
methodology for implementing DSP systems in FPGAs
that underlies our approach to code portability. Section 4

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

describes a case study of the approach, building a
fractionally spaced equalizer (FSE) for a QAM system
that is relatively simple, but a representative example of a
modem function well-suited to an FPGA.

2. CODE PORTABILITY

 All major FPGA vendors have multiple device
product lines, each of which is further divided into
families that are further divided into part types that differ
in available resources, speed grade, and packaging. For
example, Xilinx has two primary FPGA product lines:
Virtex, which targets highest performance and gate
density, and Spartan, which targets high volume and
lower cost applications. The most recent families are
Virtex-4 and Spartan-3, respectively [7][8].
 Because a new FPGA family is introduced roughly
every 12-18 months, and the design cycle for a major
SDR design can be a significant fraction of this period,
the implications of code portability (or more accurately,
non-portability) are clear. Often a system must be built to
target a family in advance of broadly available silicon.
 Bitstream portability means that a bitstream for
FPGA family v(i) will run directly, possibly via an
intermediate run-time software layer, on a v(i+1) part. In
terms of cost reduction, it is also desirable that a bitstream
for FPGA family v(i) run directly on a different family
device s(j). However, at the current time no FPGA
vendor supports bitstream portability.
 Source-level portability implies that source code
written for device v(i) will run after recompilation (but
otherwise without change) in device v(i+1). It is desirable
to have source level portability between families v(i) and
s(i). Many FPGA users adopt internal coding guidelines
to facilitate full or near source-level portability. In this
paper, we describe one way in which source level
portability can be achieved using existing devices and
design tools.

2.1. Register Transfer Level HDL

 The prevailing abstraction in hardware description
languages for FPGA design is register transfer level
(RTL), which can be synthesized into device-specific
logic resources [9]. At this level of abstraction, a design
is a network of combinational circuits separated by
registers. Registers and other circuit elements are
represented behaviorally through idioms inferable by
commercial synthesis tools. This style of coding allows
the user to specify for example an addition operation with
the operator ‘+’, with the synthesis tool mapping this
appropriately to device specific architecture primitives.
 Considerable progress has been made over recent
years in commercial synthesis tools to efficiently target

FPGAs. In addition to technology mapping, synthesis
tools also apply optimization algorithms to a circuit that
preserve behavior, while improving the circuit quality
under well-defined criteria (typically logic area or
performance). Of particular interest is retiming, which is
the reallocation of unit delays (e.g. registers) throughout a
circuit, in order to reduce the number of combinational
logic levels [9]. There is a close correlation between the
largest number of logic levels and the frequency with
which bounding registers can be clocked without setup or
hold time violations, so retiming is a particularly effective
synthesis optimization.

3. A PLATFORM-BASED APPROACH TO
FPGA DESIGN

 Design methodologies for FPGAs historically lagged
those for application specific integrated circuits (ASICs)
by roughly a decade, in large part because until recently,
the design complexity lagged by roughly the same time.
However, as device geometries have continued to shrink,
the relative complexity of FPGA designs has increased
more rapidly than that of ASICs. Ideas relating to
platform-based design, originally motivated by systems-
on-chip ASICs [10] have been increasingly adopted for
FPGA design [11].
 We interpret a platform as an intermediary between
abstract behavior and realizable function. Viewed from
above, the platform is a restriction on the space of all
realizable systems, but one that can be usefully employed
to capture the behavior of end applications. Viewed from
below, the platform is a restriction on the space of all
possible applications, but one that can be readily realized.
 More specifically, the platform is a set of arithmetic,
logic, memory, and other functional abstractions that
allow a user to specify an FPGA-based signal processing
subsystem in a natural way. Functions in the platform are
chosen so that they can be implemented efficiently,
possibly in a number of distinct ways according to
additional constraints. As “platform provider”, we
implement a library of operators, functions, and objects
that can be composed within a high-level framework to
implement DSP systems. To the application programmer,
the library can be used (and extended) to specify a rich set
of DSP systems.
 In this paper, we address one aspect of platform-
based design, namely, how this approach can be used in a
commercially available framework to obtain portable, yet
highly efficient FPGA code.

3.1 System Generator for DSP

 System Generator for DSP is a software framework
for modeling and implementing systems in FPGAs using

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Simulink [11]. Simulink provides a powerful component-
based computing model that is well suited for specifying
the concurrency in a custom signal processing
architecture. System Generator provides libraries of
functions and hardware-related abstractions that can be
used to model a signal processing system suitable for
FPGAs. Such models are bit and cycle accurate to FPGA
hardware. System Generator ensures this by providing
automatic code generation from Simulink to a
combination of synthesizeable HDL and intellectual
property (IP) cores. In addition, System Generator
extends Simulink to include event-driven HDL semantics,
hardware co-simulation, and rich customization interfaces
traditionally associated with modern programming
languages [2][13].
 In this paper, we focus on an aspect of System
Generator that is not widely appreciated: it has the ability
to create generic RTL that is extremely efficient, and is
portable.
 There are three ways to obtain RTL code with System
Generator:

• Importing an HDL module using the System
Generator Black Box interface. Although a
trivial “mapping”, this capability is powerful and
should not be ignored;

• Using blocks that have RTL implementations,
such as the Expression block, Register, Delay, up
and down samplers;

• Using the MCode block, which maps MATLAB
.m code to synthesizeable VHDL.

Because of its importance and utility, we concentrate on
the MCode block and its application.

3.2 System Generator M-Code Block

 The System Generator MCode block provides an
interface for interpreting a MATLAB .m function in the
context of a Simulink simulation. The block is a
convenient and flexible way to realize arithmetic
functions as well as finite state machines and control logic
in the context of System Generator. In contrast with the
Simulink S-function API [6], the MCode block simply
interprets m-code as its input-output relation.
 The block accepts an m-code function as a mask
parameter, and adapts its interface to that of the function.
A function argument can be treated either as an input port
or as a parameter internal to the function (i.e. run-time
constant), under the control of a block mask parameter.
Return values are interpreted as output ports on the block.
The m-code is translated in a straightforward way into
equivalent behavioral VHDL during code generation.
 In the System Generator v6.3 release, the MCode
block supports combinational functions and functions
with internal state. Language constructs include nested

branches (switch, if/then/else), assignment, arithmetic
operators (+, *), bit wise logical, and a number of other
operators [12]. System Generator provides MATLAB and
Simulink-based fixed-point data types (prior to the
MATLAB R14 release, there was no fixed-point type
available in MATLAB).
 The MCode block automatically infers a lossless type
for internal variables and return types, based on the input
types. In addition, the block performs dead code
elimination and other optimizations during code
generation. By specifying m-code function arguments as
internal parameters, it is straightforward to create
parametric blocks that map very efficiently onto
hardware.
 The mapping from m-code into hardware uses well-
established rules (e.g., [14]). As a simple example, a 2-to-
1 multiplexer is realized with the following m-function.

function [c] = mux2to1(a, b sel)
if (sel == 0), c = a;
else, c = b, end

 The output type is the smallest container necessary to
represent inputs a and b after binary point alignment. If
the select signal is known at compile time, then declaring
the sel input an internal parameter within the block mask
directs System Generator to realize the function in
hardware as a wire tied from the appropriate input port.
This of course is a particularly simple example of dead-
code elimination.

4. CASE STUDY: ADAPTIVE EQUALIZER

 Often the flexibility attained by using high-level
abstractions comes at a cost of efficiency in the resulting
hardware realization. In this section, we demonstrate that
this is not always the case. We employ the MCode block
to convert a System Generator model that implements a
fractionally spaced equalizer (FSE), originally designed to
map onto Xilinx IP cores, into an equivalent model that is
implemented entirely as RTL VHDL, automatically
generated by System Generator. What is perhaps most
interesting, is that when the RTL design is mapped using
the most recent (as of this writing) version of synthesis
tools that incorporate retiming, it achieves a nearly 20%
increase in achievable clock rate over the original design.

4.1 FSE Model

 The T/2 adaptive FSE has been designed for a 16-
QAM modulation system, sampling an input data stream
twice per symbol [15]. The equalizer consists of three
modules: an 8-tap complex LMS filter implemented with
a two-way polyphase decomposition, a symbol demapper

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

 (also used to generate the “desired” signal for the LMS
update), and the LMS update [3].

 The original System Generator model for the T/2
adaptive FSE has been included as a demonstration design
since the System Generator v3.1 release. In the v6.3
release, both the original and fully synthesizeable models
are provided. It was not necessary to modify the
structure of the design in any fundamental way to derive a
fully synthesizeable model. The hierarchy was preserved,
and for the most part, only leaf nodes needed replacement
by equivalent MCode blocks. Figure 1. QAM Symbol Demapper

 The LMS filter is constructed of low level blocks,
including adder/subtractors, accumulators, counters,
multiplexers, multipliers, up- and down-samplers, and
simple memory elements. Delay blocks in the original
model that employed SRL16 resources (shift register logic
unique to Xilinx FPGAs) were replaced by generic
register-based delay lines. M-functions defining
adder/subtractor, multiplexer, and multipliers were simply
instrumented. Counters and accumulators were
constructed using the adder, delay, and constant blocks as
Simulink subsystems.

4.2 Implementation Results

 The original and synthesizeable designs were built
using System Generator v6.2 software, and each
synthesized for a V-II Pro (-7 speed grade) and Spartan-3
(-5 speed grade) FPGA using Synplify Pro 7.6, with
retiming and pipelining options enabled. The designs
were run through mapping, placement, and routing using
the Xilinx ISE 6.2.02i software, with highest placer and
router effort levels. This process was run repeatedly with
different clock frequency constraints in order to determine
the highest frequency obtainable. The results,
summarized in the following Table are somewhat
surprising.

 Several subsystems in the original model were
realized as straightforward transcriptions into m-code.
For example, the symbol demapper shown in Fig. 1 was
replaced by a MCode block with the MATLAB function
shown below.
 Part

Type
MHz
Cores

MHz
Synth

LUTs
Cores

LUTs
Synth

DFFs
Cores

DFF
Synth

xc2vp20 88.9 104.1 1636 1595 1868 2195

xc3s150
0

79.3 85.5 1636 1531 1868 2193

function [v] = QAM4map(i)

% type declarations
utype = {xlUnsigned,8,8,xlRound, xlSaturate};
stype = {xlSigned,8, 8, xlRound, xlSaturate};
rtype = {xlSigned,10,8, xlRound, xlSaturate};

 %symbolic constants
 two3rds = xfix(utype, 2/3);

one3rd = xfix(stype, 1/3); Although one might expect the generic RTL
implementation to run at a lower clock frequency than the
original that employed IP cores, in fact the reverse was
true. For both Virtex-II Pro and Spartan-3 devices, the
RTL version ran at an appreciably higher clock frequency.
The RTL implementations used more DFF registers than
the core-based implementations (recall the MCode did not
specify SRL16 resources, although the synthesis tool was
free to map onto them when it could infer them correctly).

neg3rd = xfix(stype, -1/3);
% state variables (pipeline latency = 2)
persistent r0, r0 = xl_state(0, rtype);
persistent r1, r1 = xl_state(0, rtype);

v = r1, r1 = r0;
msb= xl_slice(i,xl_nbits(i)-1,xl_nbits(i)-1);
if (msb == 1)
 if (two3rds < -i), r0 = -1; Current synthesis tools treat IP cores as black boxes,

and no optimizations are available that cross module
boundaries. The RTL design in contrast allowed the
synthesis tool to freely move registers and optimize logic
across module boundaries. It should be noted however,
that in all prior versions of the Synplify Pro (as well as all
versions of the Xilinx XST tool), retiming did not provide
significant speed-up for this design. One concludes that

 else, r0 = neg3rd;
 end
else
 if (two3rds < i), r0 = 1;
 else, r0 = one3rd;
 end
end

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

logic synthesis optimizations necessary for high-
performance, portable design are still in an early stage of
development.

5. CONCLUSIONS

 With the increased adoption of FPGAs as signal
processors comes an increased expectation for design
flows and methodologies that support programming
models similar to those for general purpose and DSP
processors. Code portability, at least at the source level
(i.e., admitting recompilation) is of fundamental
importance. Although FPGA source code is not as widely
portable as code for general-purpose microprocessors, we
have demonstrated how System Generator and similar
design tools provide considerable progress towards this
end. Using an adaptive FSE as an example, we have
shown how a single System Generator model can be used
to specify both behavior and implementation, producing a
generic RTL implementation suitable for an FPGA. The
design exploits retiming and logic synthesis optimizations
in order to achieve high performance.

6. ACKNOWLEDGEMENTS

The author gratefully acknowledges the contributions of,
and numerous fruitful discussions with colleagues Brent
Milne, Haibing Ma, and Brad Taylor.

7. REFERENCES

[1] Berkeley Design Technology, Inc. “FPGAs for DSP,”

Focus Report, July 2002,
http://www.bdti.com/products/reports_focus.html

[2] C. Dick and J. Hwang, “FPGAs: A Platform-Based
Approach to Software Radios,” in Software Defined Radio:
Baseband Technologies for 3G Handsets and Basestations,
(W.H.W. Tuttlebee, Editor), Wiley, 2004.

[3] U.S. Department of Defense, Joint Tactical Radio System,
Software Communication Architecture, Technical
Overview.
http://jtrs.army.mil/sections/technicalinformation/fset_techn
ical_sca.html

[4] U.S. Department of Defense JTRS Joint Program Office,
SCA Extensions Workshop, Arlington, Va., April 2004,
http://jtrs.army.mil/sections/programinfo/fset_programinfo.
html?programinfo_industry.

[5] Software Defined Radio Forum, Hardware Abstraction
Working Group,
http://www.sdrforum.org/tech_comm/halwg.html.

[6] The Mathworks, Inc., Using Simulink, 2002.

[7] Xilinx, Inc., Virtex-4 Handbook,
http://www.xilinx.com/products/virtex4/download.htm

[8] Xilinx, Inc., Spartan-3 Data Sheet,
http://direct.xilinx.com/bvdocs/publications/ds099.pdf.

[9] G. DiMicheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, 1994.

[10] K. Keutzer, A.R. Newton, J.M Rabaey, and A.
Sangiovanni-Vincentelli, “System-Level Design:
orthogonalization of concerns and platform-based design”,
IEEE Trans. On Computer-Aided Design of Integrated
Circuits and Systems, vol. 19, pp.1523-43, 2000.

[11] J. Hwang, B. Milne, N. Shirazi, J. Stroomer, “System
Level Tools for FPGAs,” Proceedings FPL 2001. Springer-
Verlag 2001.

[12] Xilinx, Inc., System Generator for DSP User Guide,
http://www.support.xilinx.com/products/software/sysgen/ap
p_docs/user_guide.htm.

[13] V. Singh, A. Root, E. Hemphill, N. Shirazi, J. Hwang,
“Accelerating a Bit Error Rate Tester with a System Level
Tool,” Field-Programmable Custom Computing Machines,
FCCM 2003, Proceedings, IEEE 2003.

[14] I. Page and W. Luk, “Compiling occam into FPGAs”, in
FPGAs, W. Moore and W. Luk (editors), Abingdon EE&CS
Books, 1991, pp. 271-283.

[15] J.R. Treichler, I. Fijalkow, and C.R. Johnson, Jr.,
“Fractionally Spaced Equalizers", IEEE Signal Processing
Magazine, May 1996, pp. 65-81

[16] C.Dick, “Design and implementation of high-performance
FPGA signal processing datapaths for software-defined
radios”, VMEbus Systems, August 2001.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

http://www.bdti.com/products/reports_focus.html
http://jtrs.army.mil/sections/technicalinformation/fset_technical_sca.html
http://jtrs.army.mil/sections/technicalinformation/fset_technical_sca.html
http://jtrs.army.mil/sections/programinfo/fset_programinfo.html?programinfo_industry
http://jtrs.army.mil/sections/programinfo/fset_programinfo.html?programinfo_industry
http://www.sdrforum.org/tech_comm/halwg.html
http://www.xilinx.com/products/virtex4/download.htm
http://direct.xilinx.com/bvdocs/publications/ds099.pdf
http://www.support.xilinx.com/products/software/sysgen/app_docs/user_guide.htm
http://www.support.xilinx.com/products/software/sysgen/app_docs/user_guide.htm

