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ABSTRACT 
 
Game theory is a promising approach for analyzing the 
interactions of adaptive and cognitive radios. This paper 
describes how the components of the cognition cycle map 
into normal form game model and describes standard 
game theory techniques for investigating four important 
issues that game theory should address: steady state 
existence, steady state identification, convergence and 
steady state optimality. This paper then describes three 
game models that can aid the analyst in addressing these 
issues and concludes with a discussion of additional ways 
in which the use of game models aids the analysis and 
development of cognitive and adaptive radios. 
 
 

1. INTRODUCTION 
 
Cognitive radio is frequently extolled as a platform for 
implementing dynamic distributed radio resource 
management algorithms. In the envisioned scenarios, 
radios will react to measurements of the network state and 
change their operation according to some goal driven 
algorithm. However, when the adaptations of the radios 
also change the network state, an interactive decision 
process is realized.  
 In light of this interactive decision process, before 
fielding any distributed algorithm, it would be valuable to 
determine the following: steady state existence and 
characterization, steady state efficiency, and algorithm 
convergence properties. These properties can be 
established through extensive simulation and field testing, 
or they could be established analytically with game theory.  
 Several authors have previously commented on the 
suitability of game theory for analyzing networks with 
interactive decision processes,  [1][2]. Game theory has 
been used to establish the existence of steady states [3] 
[4], characterize the steady-states [5], predict steady-state 
efficiency [6], and establish convergence properties [7]. 
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However, except for a handful of papers, e.g., [7] and [8], 
these results have been established on an ad-hoc basis so 
the results of their game theoretic analysis cannot be 
readily extended to different networks and algorithms. 
Thus, analysis must start fresh each time, significantly 
increasing the amount of time and effort required to 
establish new results, diminishing many of the advantages 
that analysis provides with respect to simulation.  
 Instead of effectively reinventing the wheel for each 
new network and algorithm, this paper proposes the 
application of game models to the analysis of cognitive 
radio algorithms. By adopting a model-based approach, 
analytical effort can be more efficiently spent on 
establishing results for the game models and game model 
identification criteria. This paper identifies several 
attractive game models, notably potential games, 
supermodular games, and repeated games. Properties 
related to steady-state existence, characterization, 
efficiency, and convergence are described and methods for 
model identification are given. Example applications of 
each model are cited and drawn from various aspects of 
radio resource management. As part of this discussion, this 
paper identifies and describes broader game theoretic 
concepts applicable to these models that will be important 
to establishing the suitability of distributed algorithms.  
 

2. COGNITIVE RADIO AND GAME THEORY 
 
This section provides a brief review of cognitive radio, 
game theory and the application of game theory to 
cognitive radio. 
 
2.1 Cognitive radio 
 
Cognitive radios are adaptive radios that are aware of their 
capabilities, aware of their environment, aware of their 
intended use, and able to learn from experience new 
waveforms, new models, and new operational scenarios. 
The operation of a cognitive radio is frequently envisioned 
as being defined by the cognition cycle shown in Figure 1.  
 In the cognition cycle, a radio receives information 
about its operating environment (Outside world) through 
direct observation or through signaling. This information 
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is then evaluated (Orient) to determine its importance. 
Based on this valuation, the radio determines its 
alternatives (Plan) and chooses an alternative (Decide) in 
a way that presumably would improve the valuation. 
Assuming a waveform change was deemed necessary, the 
radio then implements the alternative (Act) by adjusting its 
resources and performing the appropriate signaling. These 
changes are then reflected in the interference profile 
presented by the cognitive radio in the Outside world. 
Throughout the process, the radio is using these 
observations and decisions to improve the operation of the 
radio (Learn), perhaps by creating new modeling states, 
generating new alternatives, or creating new valuations. 
To a large extent, the primary difference between a 
cognitive radio and an adaptive radio is the cognitive 
radio’s ability to learn. 

 
Figure 1 Cognition Cycle [9] 

 
While much research is required to implement a cognitive 
radio, this paper is particularly concerned with the 
interaction of decisions in the outside world. Loosely, 
whenever one cognitive radio changes its interference 
profile, the remaining cognitive radios in the network may 
be prompted to change their interference profiles as well. 
This interactive decision problem is one that game theory 
handles well.  
 
2.2 Game theory 
 
Game theory is a set of mathematical tools used to analyze 
interactive decision processes. The fundamental 
component of game theory is the notion of a game. When 
expressed in normal form, a game, { }, , iG N A u= , has the 
following three primary components. 
1. A finite set of players (decision makers) typically 

denoted  N = {1,2,…,n}. 
2. An action space, A, formed from the Cartesian 

product of each player’s action set, 
1 2 nA A A A= × × ×! . 

3. A set of utility functions, { } { }1 2, , ,i nu u u u= … , that 
quantify the players’ preferences over the game’s 

possible outcomes. Outcomes are determined by the 
particular action chosen by player i, ai, and the 
particular actions chosen by all of the other players in 
the game, a-i. 

In the game, players are assumed to act in their own self-
interest, that is to say, each player chooses its actions in 
such a way that increases the number returned from its 
utility function. Other games may include additional 
components, such as the information available to each 
player and communication mechanisms.   
 
2.3 Applying game theory to cognitive radio 
 
Examining again the cognition cycle shown in Figure 1, it 
is readily seen how the interactions of a network of 
cognitive (or adaptive) radios maps into a game. 
 Each node in the network that implements the 
decision step (making it a decision maker) of the cognition 
cycle is a player in the game. The various alternatives 
available to a node forms the node’s action set, and the 
action space is formed from the Cartesian product of the 
radios’ alternatives. A cognitive radio’s observation and 
orientation steps combine to form a player’s utility 
function. Loosely, the observation step provides the player 
with the arguments to evaluate the utility function, and the 
orientation step determines the valuation of the utility 
function.  
 Note that we have ignored the learning step of the 
cognition cycle. This is not an oversight nor indicative of a 
limitation of game theory. Rather, it is a limitation of the 
normal form game model. While the normal form game 
model is appropriate for any adaptive radio algorithm or 
for any cognitive radio adaptations that do not require 
learning, it is not appropriate for analyzing algorithms that 
learn. In this case, more advanced game models that 
incorporate learning processes, such as Bayesian games 
should be used. It should also be noted that game theory is 
not well suited to games where actions and objectives are 
well defined as may be the case when cognitive radios 
learn over time. 
 

3. ANALYZING COGNITIVE RADIO  
 

There are four questions that game theory should answer 
when analyzing an adaptive algorithm: 

1. Does the algorithm have a steady state? 
2. What are those steady states?  
3. Is the steady state(s) desirable? 
4. What restrictions need to be placed on the decision 

update algorithm to ensure convergence? 
Most game theory application analyses focus on the first 
three questions and rarely address the fourth question. 
However, all four questions should be answered before 
implementing any cognitive radio algorithm.  
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3.1 Demonstrating that an algorithm has a steady state 
 

For most game models, the game theoretic equivalent of a 
distributed algorithm’s steady state is a Nash equilibrium 
(NE). An action vector (or alternative vector) a is said to 
be a NE iff (1) is satisfied.  

( ) ( ), ,i i i i i iu a u b a i N b A−≥ ∀ ∈ ∈  (1) 
Restated, a NE is an action vector from which no player 
can improve its payoff when acting by itself. Without 
applying more complex game models, a game can be 
shown to have a NE by applying relevant fixed point 
theorems. While these fixed point theorems may appear to 
be quite complex to an unexperienced analyst, the most 
common application boils down to demonstrating that the 
following conditions are satisfied. 

1. The player set is finite. 
2. The action sets are closed, bounded, and convex. 

Note that intervals and Cartesian products of 
intervals satisfy this condition. 

3. The utility functions are continuous in the action 
space and quasi-concave. Note that demonstrating 
that the utility functions are concave, perhaps 
through a second derivative test, is sufficient to 
establish quasi-concavity. 

In reality, a very large number of algorithms satisfy these 
conditions, so demonstrating NE existence is not very 
insightful as there’s almost a default assumption that there 
will be a steady state for a cognitive radio algorithm and 
there may be numerous NE in a single game. However, not 
all games and not all algorithms will satisfy these 
conditions so there remains some value in showing that the 
algorithm will have a steady-state. 
 If the radios are permitted to mix their strategies, i.e., 
if a radio is permitted randomly alternate between playing 
actions ai and bi, then condition 3 is completely removed, 
and the convexity requirement of condition 2 can be 
relaxed. Note that a finite action space would satisfy this 
relaxed condition. These relaxed conditions are known as 
Nash’s fixed point theorem.  
 
3.2 Identifying steady states 
 
In and of itself, demonstrating that a game has a steady-
state is not that useful as it provides no insight into the 
expected behavior of the algorithm. This is why steady-
states need to be identified. However, without introducing 
a more advanced game model, such as the potential game 
model, the normal game model does not provide any tools 
for identifying NE.  
 Indeed to identify that action vector, a*, is a NE, an 
analyst has to apply (1) and verify that all possible 
unilateral deviations from a* does not improve the 
deviating player’s payoff – a polynomial time problem. 
Then to identify all possible steady-states in a game, this 

process must be repeated over all possible action vectors 
tuples in the game, making the problem NP-complete [10].  
 Indeed when attempting to identify all NE in a game, 
analysts are forced to turn to simulations – the very step 
we’re intent on minimizing. For example, to show that the 
modeled GPRS network employing joint rate-power 
adaptations had four NE, [5] relied on an exhaustive 
simulation that took days to complete even though the 
modeled system included only 7 players. 
 
3.3 Determining steady-state desirability 
 
While there are many different ways of identifying 
whether or not an action vector is a “good” steady-state, 
the most typically encountered technique is to demonstrate 
that the action vector is Pareto optimal as was done in [11] 
[2][13]. An action vector, a*, is said to be Pareto optimal if 
there exists no other action vector, a A∈ such that 

( ) ( )*
i iu a u a i N≥ ∀ ∈ with at least one player strictly 

greater. While demonstrating that a steady-state is Pareto 
optimal seems like a good result, in reality, Pareto 
optimality is a very weak concept and tells the analyst very 
little about the desirability of the steady state. This point 
will be illustrated through two brief analyses, one looking 
at a distributed power control example and the other 
examining a call admission problem. 
 
3.3.1 SINR maximizing power control 
Consider a single cluster DS-SS network with a 
centralized receiver where all nodes other than the 
centralized receiver are adjusting their transmitted power 
levels in an attempt to maximize their signal-to-
interference-plus-noise ratio (SINR) as measured at the 
receiver. Here our set of players are the nodes in the 
cluster (other than the centralized receiver); the action sets 
are the available power levels (presumably a finite number 
of power levels); and all players’ utility functions are 
given by (2) where pi is the transmitted power of node i, K 
is the statistical estimate of the spreading factor, hi is the 
gain (presumably less than 1) from a node to the receiver, 
and σ is the noise at the receiver. 

( ) ( )
\

/ 1/i i i k k
k N i

u h p K h p σ
∈

 = + 
 

∑p  (2) 

As would be indicated by intuition, the unique Nash 
equilibrium for this game is the power vector where all 
nodes transmit at maximum power.  Clearly this is an un-
desirable outcome as (1) capacity is greatly diminished 
due to near-far problems (unless the nodes are all at the 
same radius from the receiver), (2) the resulting SINRs are 
unfairly distributed (the closest node will have a far 
superior SINR to the furthest node), and (3) battery life 
would be greatly shortened. However, this outcome is 
Pareto optimal as any more equitable power allocation will 
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reduce the utility of the closest node, and any less 
equitable allocation will reduce the utility of the 
disadvantaged nodes. In this scenario Pareto optimality 
actually misleads the analyst with respect to the 
desirability of the outcome. 

 
3.3.2 Call admission 
Now suppose a number of nodes are requesting data 
bandwidth from a network with the network allocating 
bandwidth on a first-come first-serve basis. Here our set of 
players is the bandwidth requesting nodes; the actions are 
the amount of bandwidth that each node can request; and 
we’ll assume that the utility function is some monotonic 
function of received data bandwidth (more bandwidth is 
always better). We’ll introduce a little extra structure to 
the game in that not all requests are made at the same time. 
Without going into details, this time dependent scenario is 
best modeled with an extensive form game model though 
an understanding of the intricacies of this model is not 
important for understanding the Pareto optimality 
implications of the result. 
 In the steady-state, each early arriving node will 
receive as much bandwidth as it can handle and, assuming 
a reasonable cap on available bandwidth, late arriving 
nodes will be blocked from the network. Generally, 
blocking a potentially large number nodes is not 
considered to be a good result. However, it is Pareto 
optimal as any other allocation of bandwidth will decrease 
the utilities of the early arriving nodes. Further, the 
traditional call admission scheme by which a small amount 
of bandwidth is reserved to queue blocked calls is not 
Pareto optimal as utility functions are expressed solely in 
terms of received data bandwidth so reassigning this 
queuing bandwidth to data bandwidth will increase some 
players’ utilities without decreasing any players’ utilities. 
 A far better technique for demonstrating steady-state 
desirability is to evaluate how the identified steady states 
perform with respect to some network objective function 
as was done in [5]. For example the SINR scenario in 
Section 3.3.1 could be better evaluated through an 
objective function that measured capacity or total system 
throughput perhaps augmented by a measure of expected 
battery life. Rather than evaluating Pareto optimality, the 
steady state from the call admission scenario in Section 
3.3.2 would be better evaluated in terms of Erlang B or 
Erlang C capacity. 
 Pareto optimality is a weak concept because it 
provides little insight into whether or not a steady state is 
desirable and virtually no insight into whether or not the 
network designer’s objective is being maximized. It is 
preferable to evaluate any identified steady states using a 
network objective function that reflects the desires of the 
algorithm designer. 
 

3.4 Establishing conditions for convergence 
 
Every bit as important as identifying steady states and 
establishing steady state desirability is establishing under 
what conditions the algorithm will actually reach the 
steady state. Consider the game illustrated by the game 
table shown in Figure 2 that models an abstract interaction 
of two cognitive radios. 

a

b

A B

1,-1 -1,1

1,-1-1,1

C

0,2

1,2
c 2,12,0 2,2

 
Figure 2 Game Table for a Game with Weak FIP 

This game table models a network with two cognitive 
radios where one cognitive radio has alternatives a, b, and 
c, and the other has alternatives A, B, and C. The 
implementation of choices by each radio yields different 
realizations of the outside world, e.g., (A,c) or (B,a), 
which the radios are capable of observing and valuating. 
The value that the first radio assigns to an outcome is 
given by the first entry in each cell of the table, and the 
value that the second radio assigns to an outcome is given 
by the second entry. 
 Now notice that this game has a unique NE, (c,C), 
which is Pareto optimal and in all likelihood desirable 
from the perspective of the network planner’s objective 
function (we’ll assume a sum of all radio’s utilities). 
However, if the radios adapt their decisions by 
individually taking the smallest possible steps that improve 
the adapting radio’s payoff, then play can proceed in a 
cycle. However, if at any point, a radio is permitted to take 
the largest step, then play will converge to the unique NE. 
This particular game has what is known as weak FIP 
(finite improvement path), a property of supermodular 
games. Without implementing the requirement that the 
radios must at some point take the larger step, the network 
will not converge and the steady state information will be 
meaningless. 
 Unfortunately, the normal form game model provides 
no insights into convergence criteria so convergence 
analysis, if performed (for example convergence is not 
considered in [11] or [12]), would have to be performed 
separately (as in [13]) or through simulation (as in [5]). 
Fortunately, more powerful game models exist for 
establishing convergence and some of these are discussed 
in the following section.  
 

4. RELEVANT GAME MODELS 
 

This section reviews the repeated game model, the 
supermodular game model, and the potential game model 
and examines how each of these game models address 
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questions 1,2, and 4 considered in Section 3. For all 
models, it is preferable address the third question by 
substituting the predicted network steady state(s) into a 
network objective function. 
 
4.1 Repeated games 
 
A repeated game is sequence of “stage games” where each 
stage game is the same normal form game. Based on their 
knowledge of the game – past actions, future expectations, 
and current observations - players choose strategies – a 
choice of actions at each stage. These strategies can be 
fixed, contingent on the actions of other players, or 
adaptive. Further, these strategies can be designed to 
punish players who deviate from agreed upon behavior. 
When punishment occurs, players choose their actions to 
minimize the payoff of the offending player  
 NE Existence: In general, a repeated game is guaranteed 
to have a NE only if the stage game has a NE. However, if 
the players are permitted to “punish” each other, then 
convergence to virtually any action vector can be assured 
with the properly designed “punishment” regimen [14].  
 NE Identification: If the game does permit punishment, 
then NE identification is solely dependent on the 
properties of the stage game. However, assuming that the 
game permits punishment, then the game can be designed 
to have the desired NE. 
 Convergence: Assuming a punishment strategy is 
properly designed, convergence is guaranteed. 
 Examples: Repeated games are applied to the problem 
of distributed power control in [1] and to the problem of 
resource sharing in [12]. 
 
4.2 Potential game model 
 
A potential game is a special normal form game where 
there is a function, :V A → # , such that when a unilateral 
deviation occurs, the change in V, V∆ , is reflected in the 
change in value seen by the unilaterally deviating player, 

iu∆ . If for all unilateral deviations, iV u∆ = ∆ the game is 
called an exact potential game; likewise if 

( ) ( )sgn sgn iV u∆ = ∆  the game is an ordinal potential game.  
 Model Identification: A game can be shown to be an 
exact potential game if the action space is compact and the 
utility functions satisfy (3). 

( ) ( )22

, ,ji

i j j i

u au a
i j N a A

a a a a
∂∂

= ∀ ∈ ∈
∂ ∂ ∂ ∂

 (3
) 

Other than applying the definition, there is no well-defined 
condition for verifying that a game is an ordinal potential 
game. However, [14] shows that if a sequence of ordinal 
(monotonic) transformations of the utility functions result 
in an exact potential game, then the original game is an 
ordinal potential game.  

 NE Existence Potential games always have at least one 
NE [15].  

NE Identification: All maximizers of V (local and 
global) are NE [15]. Note this need not be all of the NE in 
the game, but the only stable NE in the game are 
maximizers of V [16].  

Convergence: Potential games have the finite 
improvement path (FIP) property, so when nodes act in a 
selfish manner play converges to a NE. 

Examples: In [17] potential games are applied to the 
analysis of adaptive interference avoidance problems. In 
[8] and [14] potential games are applied to distributed 
power control. 
 
4.3 Supermodular game model 
 
A game is termed supermodular if the action space forms a 
lattice and the utility functions are supermodular. A 
partially ordered set, X, is termed a lattice if for all 

,a b X∈ , a b X∧ ∈ and a b X∨ ∈ where { }sup ,a b a b∨ =  

and { }inf ,a b a b∧ = . A function, :f X → # where X is a 
lattice, is termed supermodular if for all ,a b X∈ ,  

( ) ( ) ( ) ( )f a f b f a b f a b+ ≤ ∧ + ∨  
Model Identification: While the definition may seem 

complicated, a game can be identified as a supermodular 
game if all players’ utility functions satisfy the relationship 
given in (4) and the action space is compact.  

( )2

0i

i j

u a
j i N

a a
∂

≥ ∀ ≠ ∈
∂ ∂

   (4) 

NE Existence: By Topkis’s fixed point theorem [18], all 
supermodular games have at least one NE. 

NE Identification: By [18], all NE for a game form a 
lattice. While this does not particularly aid in the process 
of initially identifying NE, from every pair of identified 
NE, e.g., a* and b*, additional NE can be found by 
evaluating * *a b∧ and * *a b∨ . 

Convergence: By [20], supermodular games have weak 
FIP, i.e., from any initial action vector, there exists a 
sequence of selfish adaptations that lead to a NE. 
Specifically for supermodular games, a sequence of best 
responses will converge to a NE [20]. Further, if the radios 
make a limited number of errors or if the radios are instead 
playing a best response to a weighted average of 
observations from the recent past, play will converge 
[19][20]. These same convergence results also hold for 
potential games as FIP implies weak FIP. 

Examples: Altman [7] demonstrated that the distributed 
power control scenarios considered by Yates [21] can be 
modeled using a supermodular game. Other supermodular 
power control algorithms are discussed in [14]. 
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5. CONCLUSIONS 
 
We have shown how the cognition cycle maps into a 
normal form game model and identified four issues that 
any application of game theory to cognitive or adaptive 
radio should address: steady state existence, steady state 
identification, steady-state optimality, and convergence. 
We have made the case that demonstrating Pareto 
optimality is insufficient for demonstrating the desirability 
of a steady-state and that evaluation of a network objective 
function is preferable for determining steady-state 
desirability. We then described three game models that can 
be used to address the remaining three issues.  
 However, the value of using game models extends 
beyond this limited discussion. In analysis, potential 
games appear to be less susceptible to the introduction of 
noise [16] thus steady state stability is implied.  
 Game models can provide insight into the design and 
implementation of cognitive radios. For instance, suppose 
a designer wishes to implement an algorithm that 
maximizes a network function, f. Then the utility functions 
of the players (the observation and orientation steps of the 
cognition cycle), can be implemented as ( )i if d a−+ where 
di(a-i) is a “dummy” function that only depends on the 
actions of other radios. Alternatively, if an existing 
algorithm can be shown to be a potential game and a 
different network steady state is desired, then this can be 
accomplished by introducing an additive cost function as 
described in [8]. Game models can also be used to 
estimate an algorithm’s complexity. As discussed in [14], 
the game model that best models a cognitive radio 
algorithm can be used as an indicator of algorithm 
complexity. 
 When implementing a cognitive radio, a key research 
task is the development of an ontology for representing the 
information the radio needs about itself, its waveform, and 
its network. An ontology that includes mechanisms for 
describing game models will provide a compact way of 
representing information about the expected behavior of 
the network and improve a cognitive radio’s ability to 
predict and plan its performance.  
 Because of these numerous benefits, adopting an 
analytic approach that emphasizes the use of game models 
over a more ad-hoc approach is preferable for analyzing 
the algorithms of adaptive and cognitive radios. 
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