Speech and Audio Technology for Enhanced Understanding of Cognitive Radio Users and Environments

Scott M. Lewandowski, Joseph P. Campbell, William M. Campbell, Clifford J. Weinstein {scl, jpc, wcampbell, cjw}@ll.mit.edu MIT Lincoln Laboratory Lexington, MA

Software Defined Radio Forum Technical Conference Phoenix, AZ 15-18 November 2004

This work was sponsored by the Defense Advanced Research Projects Agency under Air Force contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the US Government.

- Introduction & Motivation: Cognitive Radio
- Speech Technologies:
 - Speaker Recognition
 - Language Identification
 - Text-to-Speech
 - Speech-to-Text
 - Machine Translation
 - Background Noise Suppression
 - Adaptive Speech Coding
 - Speaker Characterization
 - Noise Characterization
- Conclusions

Cognitive Radio and the Mobile Land Warrior

Sense & understand the user's state and needs

- Personalization, adaptation, authentication (PAA)
- Health state, stress

Sense & understand the situation •Friends, resources •Foes, threats

Provide plan & decision assistance

- Team plan including rendezvous
- Continuous planning of actions/alternatives

"If you know the enemy and know yourself, you need not fear the result of a hundred battles." Sun Tzu

MIT Lincoln Laboratory

Features & benefits

- Automated learning & reasoning about user & environment
- User focus on mission
- Enhanced mission effectiveness

Today and Tomorrow: Example Scenarios

Without Cognitive Radio

User Aware:

Speech technologies provide state, identity, and interface to the user.

RF Aware: Links are established automatically by reasoning. The radio is aware of other networks and radios.

Environment

Aware: Situationally aware radio assists the user and understands rendezvous, location, and enemy & friendly forces.

With Cognitive Radio

MIT Lincoln Laboratory

Cognitive Radio Technologies

Speaker Recognition Phases of a Speaker Verification System

Two distinct phases to any speaker verification system

Cognitive Radio applications:

- Personalization (e.g., recalling user preferences or accomodating a user's unique workflow)
- Adaptation (e.g., simplifying the user interface based on the current task, or modifying radio parameters according to environmental factors)
- Authentication (e.g., detecting captured/stolen/lost devices, or providing "hands-free" biometric authentication)

References:

- Campbell, J. P., Campbell, W. M., Jones, D. A., Lewandowski, S. M., Reynolds, D. A., and Weinstein, C. J., "Biometrically Enhanced Software-Defined Radios," in Proc. Software Defined Radio Technical Conference in Orlando, Florida, SDR Forum, 17-19 November 2003.
- D.A. Reynolds, T.F. Quatieri, R.B. Dunn. "Speaker Verification using Adapted Gaussian Mixture Models," Digital Signal Processing, 10(1--3), January/April/July 2000.
- Campbell, W. M., Campbell, J. P., Reynolds, D. A., Jones, D. A., and Leek, T. R., "High-Level Speaker Verification with Support Vector Machines," in Proc. International Conference on Acoustics, Speech, and Signal Processing in Montréal, Québec, Canada, IEEE, pp. I: 73-76, 17-21 May 2004.

MIT Lincoln Laboratory

T. J. Hazen, D. Jones, A. Park, L. Kukolich, D. Reynolds, "Integration of Speaker Recognition into Conversational Spoken Dialogue Systems," *Eurospeech*, 2003.

Speaker Recognition Core Technologies

• Basic decision statistic in core detectors is the likelihood-ratio

Speaker Recognition Performance

NIST 2004 Speaker Recognition Evaluation

- Miss and false alarm rates for a large corpora
- 8 conversation enrollment
- 1 conversation test
- Results show the use of high-level features, different classifier types, and fusion

MIT Lincoln Laboratory

Language Recognition Applications: Front-end Routing for Human Operators

 Language recognition system routes call to operator fluent in the speaker's language

Spanish-Speaking Operator

Language Recognition Applications: Front-end for Automatic Speech Recognition

 Language recognition system selects models to be loaded into speech recognition system

Language Recognition Evaluation Metric Detection Error Tradeoff

- For all language hypotheses
 - Sort scores
 - Label scores based on truth
 - Compute false accept and false reject error rates at every score threshold

Score	Truth
0.252	Target
0.208	Target
0.203	Non-target
-0.221	Target
-0.226	Non-target

NIST 2003 LRE Results

- NIST 2003 Language **Recognition Evaluation** (LRE)
- Six sites submitted results to NIST 2003 LRE
- **Testing duration: 30s**
- Languages:
 - Arabic, English, Farsi, French, Japanese, Korean, Mandarin, Spanish, Tamil, and Vietnamese

Singer, E., Torres-Carrasquillo, P.A., Gleason, T.P., Campbell, W.M. and Reynolds, D.A., "Acoustic, Phonetic, and Discriminative Approaches to Automatic Language Recognition," in Proc. Eurospeech, pp. 1345-1348, 1-4 September 2003.

Cognitive Radio

Enable eyes-free use of systems

Effectively use modalities according to the environment

Choose speaking style and voice according to the situation

Integration with speech-to-text (STT) and machine translation (MT)

Speech-to-Text (STT) Architecture

- Gisting: rather than having a user listen to the complete conversation, a summarized version of the output could be produced
- Routing: STT can be used to route certain conversations to appropriate users
- Data Mining: radio communication can processed by STT and stored, then text-retrieval techniques (such as those used to search documents on the internet) can be a quick and efficient way of searching content
- Command-and-Control (C2): a speech interface can free up tactile and visual modalities so that the user can more effectively multitask; the speech interface can be used to control various aspects of the cognitive radio (e.g., radio modes, sensor interfaces, sensor analysis, etc.)

Machine Translation Statistical MT Architecture

Using Government Standards of Foreign Language Proficiency for MT Evaluation

Defense Language Proficiency Test (DLPT)

- "High Stakes" test for DOD linguists
- We are proposing an MT-DLPT
 - Replace Arabic passages with English MT
 - Enable monolingual to analyze texts

Sponsors / Collaborators :

- Defense Language Institute
- DARPA TIDES Program

<u>Proficiency</u> measures the ability to perform <u>tasks</u>, such as:

- Level 1: Extract Named Entities
- Level 2: Translate Newswire Texts
- Level 3: Analyze Argumentation (Goal is Level 3)

Sample Arabic Level 1 Test Item

From a society section in a newspaper

في حفل بهيج ضم الأهل والأصدقاء تم حفل زفاف الشاب إبراهيم رشيد أحمد على أسرة المجلة تتقدم للعروسين بأسمى آيات التهنئة وتتمنى لهما السعادة والهناء. مبروك للعروسين

Questions:

- 1. What is the purpose of this article?
- 2. What message does the magazine's staff add?

"Smoke Test" suggests current MT Passes Level 1

19 See: Ray Clifford, Neil Granoien, Douglas Jones, Wade Shen, Clifford Weinstein. 2004. The Effect of Text Difficulty on Machine Translation Performance -- A Pilot Study with ILR-Rated texts in Spanish, Farsi, Arabic, Russian and Korean. LREC 2004, Lisbon, Portugal.

Background Noise Suppression

Multisensor Noise Suppression

<u>Objective</u>: Use non-acoustic sensors to improve performance of speech encoding algorithms with speech that is degraded by severe additive noise backgrounds

#21 Quatieri, T. F., Messing, D. P., Brady, K., Campbell, W. M., Campbell, J. P., Brandstein, M. S., Weinstein, C. J., Tardelli, J. D., and Gatewood, P. D., "Exploiting Nonacoustic Sensors for Speech Enhancement," in Proc. Workshop on Multimodal User Authentication, pp. 66-73, December 2003.

- Adaptive Speech Coding
 - Required to fully exploit varying, limited channel capacity while achieving the goals of speech coding
 - Enhances radio performance by balancing between quality, intelligibility, LPI, LPD, etc.
- Speaker Characterization
 - Allows the "state" of a user to be determined by using voice processing techniques
 - Determines stress level, provides "reinforcement" feedback to cognitive radio, and improves user experience
- Noise Characterization
 - Allows the noise environment to be understood and interpreted
 - Provides situational awareness to radio operators

Conclusions and Implications for Cognitive Radio

- Speech technology is a critical part of cognitive radio
 - Speech is the primary input modality for radios
 - Provides natural user interaction
 - Provides situational awareness (e.g., intelligent analysis of communications)
- Many exciting speech technologies are available
 - Speaker recognition
 - Language recognition
 - Noise suppression
 - Etc.
- These technologies continue to improve in performance and are available now for prototyping in Cognitive Radios