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ABSTRACT 
 

We can think of a cognitive radio as having three basic parts 
that make it cognitive: the ability to sense, including at a 
minimum sensing the RF spectrum, geographical 
surroundings, and the user’s needs; the capacity to learn, 
ideally in both supervised and unsupervised modes; and 
finally, the capability to adapt within any layer of the radio 
communication system. At the Virginia Tech (VT) Center 
for Wireless Telecommunications (CWT), we have 
developed a cognitive radio engine to perform all of these 
tasks. This paper presents the adaptive component, which 
uses genetic algorithms (GAs) to evolve a radio defined by a 
chromosome. The chromosome’s genes represent the 
adjustable parameters in a given radio, and by genetically 
manipulating the chromosomes, the GA can find a set of 
parameters that optimize the radio for the user’s current 
needs. At the end of this paper, we present experimental 
results on both a hardware platform and software simulation. 

 
1. INTRODUCTION 

 
To take advantage of the flexibility afforded through 
adaptable radios, and in particular, software defined radios 
(SDR), we are developing a cognitive engine to provide 
intelligent control over an adaptable radio. An intelligent 
radio allows autonomous adaptation that can improve 
performance, enhance spectrum usage, and further advance 
wireless ubiquity. Instead of forcing a radio user to 
determine how the radio communicates, a cognitive radio 
will provide the user with a quality of service (QoS) without 
putting the burden directly upon the user. 

The cognitive radio being developed at the CWT [1] [2] 
uses a sensing algorithm to read in information like 
propagation effects and presence of other radio users [3] [4] 
from the radio environment, learn the behavior of the radio 
in the different environments, and intelligently adapt the 

radio to new parameter settings efficiently to provide a user 
with the required QoS. 

This paper concentrates solely on the adaptation 
mechanism, which is a method to adjust the radio 
parameters. The method uses a genetic algorithm (GA) to 
optimize the radio parameters on the physical (PHY) layer, 
and we are moving forward to include the link (or MAC), 
network, transport, and application layers. The genetic 
algorithm approach, called the Wireless System Genetic 
Algorithm (WSGA), is a powerful method to realize cross-
layer optimization and a method of adaptive waveform 
control. This paper addresses the formulation of the WSGA 
and presents some experimental results. 

In this paper, Section 2 covers the basic background of 
genetic algorithms and provides an overview of multi-
objective genetic algorithms and their pertinence to the radio 
configuration problem. Section 3 describes the WSGA 
implementation. Section 4 presents experimental results 
using both a hardware platform and a simulation. Section 5 
concludes the paper with some discussion of the future of 
cognitive radios. 

 
2. MULTI-OBJECTIVE GENETIC ALGORITHMS 

 
2.1. Genetic Algorithms – A Brief Review 

 
In their original and most basic form, genetic algorithms 
(GAs) were designed as single-objective search and 
optimization algorithms. Common to all GAs is the 
chromosome definition—how the data are represented; the 
genetic operators of crossover and mutation; the selection 
mechanism for choosing the chromosomes that will survive 
from generation to generation; and the evaluation function 
used to determine the fitness of a chromosome. All of these 
operators are well described in [5]. Without reproducing the 
standard body of knowledge on GAs, we will present how 
we use these GA techniques in Section 3. 
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2.2. The Generic Multi-Objective Genetic Algorithm 

 
Multi-objective problems analyze a number of, often-
competing, objectives for optimization and decision making 
[6] – [10]. Zitzler [11] gives a brief but comprehensive 
overview of the concepts and literature of multi-objective 
problems and presents the basic formula for defining a 
multi-objective decision maker (MODM) as shown in (1). 
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Where there are n dimensions to consider in the search 

space and )(xnf
 defines the mathematical function to 

evaluate dimension n. Both x, the set of input parameters, 
and y, the set of dimensions, may be constrained to some 
space, X and Y. The optimal solutions to MODMs lie on the 
Pareto front, which is the set of input parameters, x, that is 
non-dominated in any dimension, which is often a trade-off 
of goals [6] [10] [11]. 

GAs are well suited to multi-dimensional decision 
problems due to the parallel evaluation in many dimensions 
to find global optima as well as the ability to include 
constraints about the problem [6] [8] [11] [12]. A GA used 
in MODM problems is a multi-objective genetic algorithm 
(MOGA). 

In effective wireless communications, the choice of the 
radio parameters on all layers affects the radio’s behavior in 
many dimensions such as bit error rate (BER), bandwidth, 
power consumption, and network latency, to name just a 
few. Each of these dimensions has some relationship to the 
QoS, and these relationships change in their relative 
importance depending on the application being used. For 
example, a user transferring a large file would care most 
about BER and data rate, but a user holding a video 
conference would care more about network latency and 
jitter. Since these goals often compete with each other, as in 
minimizing a BER and minimizing power at the same time, 
the radio design problem is a MODM, which makes a 
MOGA a powerful algorithmic approach to autonomously 
adapting a radio. 

With a radio, the user has some desirable operation that 
values certain goals more than others, such as the minimum 
latency requirement of a video conference. Although many 
different methods haven been proposed in the literature [11], 
we associate each optimization dimension in the radio with a 
weight to delineate the relative importance of the goals in 
the decision-making process. As the MOGA analyzes each 
dimension, optimization in the higher-weighted dimensions 
leads to a solution tailored to the user’s preferences. 

Different selection and evaluation methods have been 
proposed for MOGAs [8] [10] [13]. Many methods try to 

combine the evaluations along the different dimensions into 
a single metric [9]; this method breaks down in cases where 
the values of the dimensions can vary greatly in magnitude 
(BER of 10-6 versus data rate of 106), and normalizing each 
dimension requires a great deal of domain knowledge, which 
might be difficult to get [11] or may be changing. Other 
methods involve competition between population members 
and incrementing the fitness function of the winner for each 
objective dominated by the winning member [8] [13]. Horn 
[14] extends this idea to oppose two individuals against a 
larger pool of chromosomes from the population; the 
individual who wins the most competitions is deemed better 
fit and survives to the next generation. 

 
3. WIRELESS SYSTEM GENETIC ALGORITHM  

 
In order to communicate successfully, the radio must first be 
configured to fit the specific channel condition, such as a 
cellular fading channel or an interference-prone unlicensed 
channel; second, the radio must support user required 
service types like voice or data; third, sitting on top of 
everything the radio does are the regulatory requirements the 
radio must obey to operate legally in any band and 
geographic location. To combine all these issues effectively 
and provide the best performance trade-off, the radio needs 
to be aware of its environment; in other words, the radio 
needs a cognitive engine to analyze the physical link, user 
demands, and regulatory regimes, and it must balance 
multiple objectives and constraints. As stated above, genetic 
algorithms are well suited to solving multi-objective 
optimization and decision problems, which is why we have 
chosen to work with a MOGA in order to control the radio’s 
adaptive process. 

The wireless system genetic algorithm (WSGA) is a 
MOGA designed for the control of a radio by modeling the 
physical radio system as a biological organism and 
optimizing its performance through genetic and evolutionary 
processes. In the WSGA, radio behavior is interpreted as a 
set of PHY and MAC layer operation parameters defined by 
traits encapsulated in the genes of a chromosome. Other 
general radio functional parameters (such as payload size, 
antenna configuration, voice coding, encryption, 
equalization, retransmission requests, and spreading 
technique/code) are also identified as possible genes in the 
chromosome definition to allow for future growth through 
each layer of the radio communication’s stack. The 
chromosome shown in Fig. 1 represents the PHY-layer traits 
currently of consequence to the WSGA due to current 
hardware limitations and the current state of the simulation. 

The WSGA analyzes the chromosome’s fitness through 
a set of fitness functions defined by performance evaluations 
of the current radio channel. Each fitness function is 

Power frequency Pulse Shape Symbol Rate Modulation 
Fig. 1. Representation of a chromosome for GA manipulation. 
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weighted to represent the relative importance the user has 
associated with each objective. The Pareto front therefore 
moves so that the optimal solution provides the most 
efficient performance for the user’s QoS requirements under 
combinatorial constraints. Here, efficiency and optimization 
mean providing a QoS without over-maximizing, which may 
waste radio resources such as spectrum and power. For 
example, a user sending email does not need a 100 Mbps 
link with a 30 dB carrier to noise ratio. 

The fitness evaluation functions are designed to reflect 
the current link quality of both PHY and MAC layers, which 
currently include the mean transmitting power, data rate, 
BER, packet error rate (PER), spectral efficiency, 
bandwidth, interference avoidance, packet latency and 
packet jitter. One of the most powerful attributes of the 
WSGA is the dynamic fitness definition and evaluation, 
where not only is the weighting of each function adjustable, 
but any fitness function may or may not be used as required 
by the current link conditions and user requirements. All 
functions are dynamically linked from a database so that 
they can be dynamically added and weighted into the fitness 
evaluation for a specific link condition and performance 
objectives. Such dynamic adjustment of the fitness 
evaluation is directed by some higher-layer intelligence such 
as the learning machine in the cognitive engine which 
conducts the evaluation of the overall radio system and 
network performance.  

In general, fitness functions associate to specific 
channel conditions. For example, the fitness function for 
determining a BER is channel specific. Likewise, the 
function weights associate to a specific user’s desire for 
network performance, e.g. a desire to improve the BER 
while sacrificing the data rate. Although these associations 
hold for a general-purpose analysis of the WSGA, the user 
can influence the functions, such as the data rate objective, 
and the channel can also influence the weights for each 
function, such as increasing the BER weighting to 
compensate for a particularly poor channel. 

We use a relative tournament selection method similar 
to [8], except that the fitness of the winner from a single 
comparison is scaled by the weight associated with that 
fitness function. After all the single comparisons in all 
dimensions, the winning member is the one with the highest 
fitness, and that one survives to the next population. While 
this does not guarantee that all winners are the best, or non-
dominated, members of the population (only better relative 
to its combatant), it maintains species diversity within the 
population while still pushing towards the Pareto front. 
Diversity in the population allows different solutions to be 
tried and helps prevent the algorithm from getting stuck in a 
local optimum. We did not apply Horn’s [14] method of 
fighting two individuals against a subset of the population 
because his method, while he claims it produces better 
results, calls for a larger population and more fitness 

comparisons. This becomes computationally intensive and is 
undesirable in a real-time optimization system.  

Crossover and mutation are simple implementations of 
these mechanisms. Crossover is performed on a single point 
chosen as a uniform random number with a static probability 
of crossover occurring. Mutation is also a single point 
operation chosen from a uniform random number with a 
static probability of crossover occurring. Future 
enhancements to the WSGA call for an adaptive adjustment 
of crossover and mutation probabilities as well as the 
population size during the optimization process for higher 
convergence efficiency and accuracy. 

The ability to apply constraints to the optimization 
problem as shown in (1) gives us the opportunity to 
incorporate regulatory and physical restrictions during 
chromosome evolution. If a trait determined by the 
chromosome exceeds the limits of the radio’s capabilities, 
like finding a center frequency outside the tunable range of 
the radio, or breaks the law, like transmitting too much 
power in a specific band, then the WSGA penalizes those 
chromosomes. We have chosen to use a penalty approach 
similar to that outlined in [7] by setting the fitness evaluation 
of that chromosome to zero, basically nullifying its chance 
to survive to the next generation. 

The final issue to realize the operation of the WSGA is 
the exchange of optimized chromosomes between radios 
wishing to communicate such that all networked radios 
evolve to have better traits. Provided a communications link 
already exists, all radios on the network running the WSGA 
will share the chromosomes and the most fit chromosome is 
elected as the winner (as though this were the last generation 
of the genetic algorithm). The radios will then all switch 
their parameters together. If no communications path is 
present, a control channel can be set up to allow temporary 
communication between the radios in order to exchange 
chromosomes and reconfigure themselves. We recognize 
that this is not the most complete or satisfactory solution for 
all situations, and we will need to adopt some protocol to 
establish the connections and exchange the adaptation 
information between all radios on the network. 
 

4. EXPERIMENTAL RESULTS 
 

4.1. Hardware Experiments 
 
The experiments are done in both simulation and on a real 
hardware platform. For all experiments, both hardware and 
simulation, the GA parameters were set as listed in Table 1. 

 

Table 1. WSGA Genetic Parameters 
Parameter Value 

Crossover Rate 90 % 
Mutation Rate 5 % 
Population Size 30 

Replacement Size 20 
Max Generations 50 
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The radios we used were Proxim Tsunami radios, which 
have limited adaptability as shown in Table 2. 

 
These values are further restricted in that there are only 

up to six discrete 20.75 MHz wide channels, and the coding 
is only adjustable for QPSK modulation between rates 1/2 
and 3/4. Because of the limited number of adaptable 
parameters in the Proxim radios, we limited the fitness 
evaluation to BER minimization, data rate maximization, 
and power minimization. 

Even with this severely limited adaptable radio, we are 
able to see the benefits of the WSGA and hints of the power 
of the GA adaptation mechanism. The tests we ran were to 
see how well the radios could adapt to a user’s needs and a 
known co-channel interferer by running a packet error rate 
(PER) test. To determine the ideal performance of the 
radios, we ran the PER test in a line of sight (LOS) path with 
no interference for each modulation (experiments LOS-1 – 
LOS-4).  

The first test was to maximize the data rate for the user 
at the base station (experiment Data-5), which started with 
the radio set to its lowest data rate and ran the WSGA to 
find the maximum data rate with minimum power. The 
second test (experiment Int-6) used a bounce path off a 
building between the test base station unit (BSU) and 
subscriber unit (SU), where we used a second Proxim 
Tsunami BSU as an interferer on an overlapping channel as 
shown in Fig. 2. During the tests, we forced the radios 
always to use the same channels so that the interference 
avoidance could not be accomplished by simply switching 
channels (the easy solution). The radio configurations before 
the WSGA are summarized in Table 3 and all experiments 
used the test network RF channel in Fig. 2. 

 

 

 
The PER tests for experiments LOS-1 through LOS-4 

and Int-6 are shown in Table 4. The PER tests were not 

applicable to experiment Data-5 where the WSGA was just 
optimizing the data rate and power because the same 
channel conditions and radio placements as in experiments 
LOS-1 through LOS-4. During experiment Data-5, we 
initialized the radio to the slowest bit rate, which is 10 Mbps 
for both up and down links, and the power was set to the 
maximum level, 17 dBm. When running the WSGA, both 
minimizing power and maximizing data rate were weighted 
with equal weights of 255, the maximum. The WSGA’s 
solution to this problem is to set the modulation to QAM16 
with a coding of 3/4 (there is no other choice), the TDD to 
91%, and the power to 6 dBm. The WSGA successfully 
found the minimum possible power and the maximum 
possible data rate of the radios, 55 Mbps for the downlink 
and 5 Mbps for the uplink. 

For experiment Int-6 with the interferer, we initially set 
the BER minimization fitness weight to 200, the power 
minimization function weight to 210, and the data rate 
maximization rate to 0. The results of the WSGA was a 
configuration of 7 dBm transmit power, QPSK with 1/2 rate 
coding, and a TDD scheme of 75%. Table 4 summarizes the 
data collected for experiment Int-6 along next to the results 
of experiments LOS-1 through LOS-4. As this table shows, 
the results after we ran the WSGA are better than before, but 
are still not that great. We then reset the radios to the 
previous configuration and re-ran the WSGA with different 
weights. This time, the BER minimization was set to 255 
while the other fitness functions were set to 0. The WSGA 
produced a radio configuration of QPSK with coding rate ¾, 
17 dBm of power, and 50% TDD. Table 4 shows greatly 
improved PER performance. 

These experiments show that the WSGA works with 
real hardware to accomplish real goals. However, it is also 
obvious from these experiments and results that the 
hardware platform of the Proxim Tsunamis does not allow 
the WSGA’s power to really show through because of the 
limited adaptability of the radios. 
 
4.2. Simulation of an SDR PHY Layer 
 
To test the full power of the WSGA in cognitive radio, we 
developed a simulation in MatLab. In this software radio 
testing bed, we can adjust the power, center frequency, 
modulation (type and order), pulse shape filtering 
characteristics (PSF roll-off factor and filter order), and 
symbol rate. These adjustable parameters and their ranges 
are shown in Table 5. WSGA uses them as the primary 
PHY-layer parameters from which a set of secondary PHY-
layer parameters can be directly derived, such as channel 
bandwidth, bit rate and bit energy. We set them to mid-range 
values for illustration, but as an SDR platform model, these 
parameters can be set to any values according to specific 
radio environments. 

Table 2. Proxim Tsunami Adaptable Parameters 
Parameter Range 

Frequency 5730 – 5820 MHz 
Power 6 – 17 dBm 
Modulation QPSK, QAM8, QAM16 
Coding Rate 1/2, 2/3, 3/4  
Time division duplex (TDD) 29.2% - 91% BSU to SU 

 

5740.40 5754.23 5764.61 
5743.85 5750.78 

5730.02 
 

Fig. 2. Spectrum of test network (light gray) and interfering 
radio (dark gray). Frequency is in MHz. 

Table 3. Experimental Configurations 
Experiment Radio 

Settings LOS-1 LOS-2 LOS-3 LOS-4 Data-5 Int-6 
Modulation QAM16 QAM8 QPSK QPSK QPSK QAM16 
Power (dBm) 6 6 6 6 17 17 
Coding 3/4 2/3 3/4 1/2 1/2 3/4 
TDD (%) 50 50 50 50 50 50 
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The simulation’s enhanced function flexibility enables a 
much larger set of applicable fitness evaluations leading to 
more creative solutions so that the radio can achieve more 
complicated objectives such as minimize BER, minimize 
bandwidth, maximize spectral efficiency, minimize power, 
maximize data rate, and minimize interference (taken and 
given), individually or collectively.  

We ran three experiments to test the effectiveness and 
power of the WSGA in SDR: minimize spectral occupancy 
for applications like text messaging and email, maximize 
throughput for broadband video, and avoid interferers in a 
situation such as the ISM band where WiFi devices in 
channel 1, 6, and 11 are used as interferers. The fitness 
function weighting is shown in Table 6, which is 
representative of weightings that represent fairly standard 
requirements from a radio. 

The configuration results from the WSGA for each 
scenario are shown in Table 7. Fig. 3 shows the frequency 
domain representation of the signals for each scenario. 

 
As Fig. 3 and Table 7 show, the WSGA successfully 

created solutions of radio parameter sets by balancing the 
combinatorial objectives. The most interesting results were 
from the interference experiment, where the results of two 
runs are shown in Figs. 3c and d. The Pareto front is a tight 
balance of the weightings associated with different 
objectives, which is typically not stabile between different 
GA processes because it can be dominated by any one or 
more highly weighted objectives. Avoiding interference 
does dominate, but not always completely successfully, as in 

the case of Fig. 3d, which found a good center frequency, 
but too large of a bandwidth. These results show that the 
WSGA can now adjust a radio, but it might seem that we 
have just displaced the control burden from the radio knobs 
to the WSGA weights; however, this is desirable as the 
weights directly affect the radio performance, which an 
intelligent and learning machine can easily manipulate in the 
place of a human user. The learning machine can adjust the 
weights and learn about the success of those weightings 
through feedback from the radio as well as from higher 
layers, and even positive or negative stimuli from the user as 
corrective measures. 

 

 
 
 

Table 7. Simulation Test Results 
Radio Parameter Weights 

 Minimize spectral 
occupancy 

Maximize 
throughput 

Interference 
avoidance 

 (a) (b) (c)       (d) 
Power (dBm) 18 28 29 23 

Frequency (MHz) 2440 2430 2436 2436 
Symbol Rate (Msps) 1 18 3 8 

PSF roll-off  0.05 0.33 0.04 0.04 
PSF order 46 20 18 13 

Modulation, type PSK QAM PSK QAM 
Modulation, M 2 16 4 8 

BER 0 0 0 0.12 
Data Rate (Mbps) 1 72 6 24 

Table 6. Simulation Test Conditions 
Functions Weights 

 Minimize spectral 
occupancy 

Maximize 
throughput 

Interference 
avoidance  

BER 255 100 200 
BW 255 10 255 

Spectral Efficiency 100 200 200 
Power 225 10 200 

Data Rate 100 255 100 
Interference 0 0 255 

Table 5. Simulation Adaptable Parameters 
Parameter Range 

Power (dBm) 0 – 30 
Frequency (MHz) 2400 – 2480 
Modulation M-PSK, M-QAM 
Modulation, M 2 – 64 
PSF roll-off factor 0.01 – 1 
PSF order 5 – 50 
Symbol Rate (Msps) 1 – 20 

 

Table 4. Experimental Results 
Experiment Radio  

Settings LOS-1 LOS-2 LOS-3 LOS-4 Int-6: Pre GA Int-6: Post GA 1 Int-6: Post GA 2 
Packets 19991 10000 10000 20000 9999 10000 10000 
Lost Packets 14 0 18 8 209 2 10 

 
BSU–SU 

PER 7x10-4 0 1.8x10-3 8x10-4 2.09x10-2 2x10-4 1x10-3 

Packets 10000 10000 10000 20000 5526 7278 10000 
Lost Packets 17 0 98 0 4754 3459 1 

 
SU–BSU 

PER 1.7x10-3 0 9.8x10-3 0 0.8603 0.4752 1x10-4 
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Fig. 3. Spectrum Plots for scenarios of Table 6. 
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5. CONCLUSIONS 
 

While the results of the WSGA prove its success and 
usefulness in controlling radio parameters to provide a user 
with different QoS’s, much work remains. The current GA 
itself works, but many other techniques could greatly 
improve its effectiveness and convergence speed such as 
adaptive GAs [15], migration and niching techniques along 
the Pareto front [5] [6] [8], and analyzing the tournament 
selection proposed by [14].  

Another benefit of the GA is the ability to distribute the 
work across many processors [12]. We wish to distribute the 
WSGA among many different radios within the same 
network so each can parallel process to find a better solution 
faster. 

With the cognitive radio, we plan to incorporate a 
learning machine to automatically adjust the weights and 
determine the fitness functions that the WSGA should use to 
optimize the radio given feedback from all layers of the 
system and the user. As we then tie this work into sensing 
techniques, we will have a fully-realized cognitive radio. 
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