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ABSTRACT radio to new parameter settings efficiently to peva user
with the required QoS.
We can think of a cognitive radio as having thrasib parts This paper concentrates solely on the adaptation

that make it cognitive: the ability to sense, imlthg at a mechanism, which is a method to adjust the radio
minimum sensing the RF spectrum, geographicaparameters. The method uses a genetic algorithn) (GA
surroundings, and the user's needs; the capacitgam, optimize the radio parameters on the physical (Playgr,
ideally in both supervised and unsupervised modest and we are moving forward to include the link (0A®),
finally, the capability to adapt within any layef the radio  network, transport, and application layers. The egen
communication system. At the Virginia Tech (VT) @an algorithm approach, called the Wireless System Gene
for Wireless Telecommunications (CWT), we haveAlgorithm (WSGA), is a powerful method to realizeoss-
developed a cognitive radio engine to perform &lthese layer optimization and a method of adaptive wavafor
tasks. This paper presents the adaptive compomdmth  control. This paper addresses the formulation efWSGA
uses genetic algorithms (GAs) to evolve a radiingefby a  and presents some experimental results.
chromosome. The chromosome’s genes represent the In this paper, Section 2 covers the basic backgtain
adjustable parameters in a given radio, and bytmatlg  genetic algorithms and provides an overview of mult
manipulating the chromosomes, the GA can find aofet objective genetic algorithms and their pertinercéhe radio
parameters that optimize the radio for the usetgemt configuration problem. Section 3 describes the WSGA
needs. At the end of this paper, we present exgetah implementation. Section 4 presents experimentallies
results on both a hardware platform and softwaneilsition.  using both a hardware platform and a simulatiorctiSe 5
concludes the paper with some discussion of therdubf
1. INTRODUCTION cognitive radios.

To take advantage of the flexibility afforded thgbu 2. MULTI-OBJECTIVE GENETIC ALGORITHMS
adaptable radios, and in particular, software @efiradios

(SDR), we are developing a cognitive engine to f@i®v 2. 1. Genetic Algorithms — A Brief Review

intelligent control over an adaptable radio. Anelligent

radio allows autonomous adaptation that can improven their original and most basic form, genetic aitjons

performance, enhance spectrum usage, and furtheneel (GAs) were designed as single-objective search and

wireless ubiquity. Instead of forcing a radio us&r  optimization algorithms. Common to all GAs is the

determine how the radio communicates, a cognita@ior  chromosome definition—how the data are represerites;

will provide the user with a quality of service (owithout  genetic operators of crossover and mutation; thecten

putting the burden directly upon the user. mechanism for choosing the chromosomes that williga
The cognitive radio being developed at the CWT[Z]]  from generation to generation; and the evaluatiorction

uses a sensing algorithm to read in informatiore lik ysed to determine the fitness of a chromosomeofAthese

propagation effects and presence of other radicsU8¢[4]  operators are well described in [5]. Without repraidg the

from the radio environment, learn the behaviorhef tadio  standard body of knowledge on GAs, we will preseniv

in the different environments, and intelligentlyapdl the  we use these GA techniques in Section 3.

U Christian Rieser is currently employed at the daHopkins University Applied Physics Laboratoryisitvork was performed as part of
his Ph.D. research at Virginia Tech.
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combine the evaluations along the different dimamsiinto
2.2. The Generic Multi-Objective Genetic Algorithm a single metric [9]; this method breaks down inesawhere

the values of the dimensions can vary greatly igmitade
Multi-objective problems analyze a number of, often (BER of 10° versus data rate of 90 and normalizing each
competing, objectives for optimization and decisioaking  dimension requires a great deal of domain knowleddpéch
[6] — [10]. Zitzler [11] gives a brief but comprei@ve might be difficult to get [11] or may be changin@ther
overview of the concepts and literature of multjemtive = methods involve competition between population mersib
problems and presents the basic formula for defiren and incrementing the fitness function of the winfeereach

multi-objective decision maker (MODM) as shown 1).( objective dominated by the winning member [8] [1dbrn
[14] extends this idea to oppose two individualgiast a

min/maxy} = f (x) =[f,(x), f,(x)...., f,(x)] (1) larger pool of chromosomes from the population; the
subjectto: X =(x,X,,....x JOX individual who wins the most competitions is deerbetter

¥ =(y,, Y,y )OY fit and survives to the next generation.

Where there ara dimensions to consider in the search 3. WIRELESS SYSTEM GENETIC ALGORITHM

space andf,(x) defines the mathematical function 10, , yer 1o communicate successfully, the radiotrfitst be

evaluate dimension. Both x, the set of input parameters, configured to fit the specific channel conditionick as a
andy, the set of dimensions, may be constrained to someellular fading channel or an interference-pronéicensed
spaceX andY. The optimal solutions to MODMs lie on the channel; second, the radio must support user mdjuir
Pareto fronf which is the set of input parameters, X, that isservice types like voice or data; third, sitting top of
non-dominated in any dimension, which is oftenaméroff  everything the radio does are the regulatory regquénts the
of goals [6] [10] [11]. radio must obey to operate legally in any band and
GAs are well suited to multi-dimensional decision geographic location. To combine all these issufecfely
problems due to the parallel evaluation in manyesfisions  and provide the best performance trade-off, théoradeds
to find global optima as well as the ability to lide to be aware of its environment; in other words, tadio
constraints about the problem [6] [8] [11] [12]. @A used needs a cognitive engine to analyze the physiodl liser
in MODM problems is a multi-objective genetic algom  demands, and regulatory regimes, and it must balanc
(MOGA). multiple objectives and constraints. As stated abgenetic
In effective wireless communications, the choiceh#f  algorithms are well suited to solving multi-objeeti
radio parameters on all layers affects the radielsavior in  optimization and decision problems, which is why have
many dimensions such as bit error rate (BER), baittiw  chosen to work with a MOGA in order to control tiaelio’s
power consumption, and network latency, to name §us adaptive process.
few. Each of these dimensions has some relatiortshipe The wireless system genetic algorithm (WSGA) is a
QoS, and these relationships change in their velati MOGA designed for the control of a radio by modglihe
importance depending on the application being us&d. physical radio system as a biological organism and
example, a user transferring a large file wouldecarost  optimizing its performance through genetic and etiohary
about BER and data rate, but a user holding a videprocesses. In the WSGA, radiehavioris interpreted as a
conference would care more about network latenay anset of PHY and MAC layer operation parameters @efiby
jitter. Since these goals often compete with edaberoas in  traits encapsulated in thgenesof a chromosome Other
minimizing a BER and minimizing power at the sarimeet  general radio functional parameters (such as pedykize,
the radio design problem is a MODM, which makes aantenna  configuration, voice coding, encryption,
MOGA a powerful algorithmic approach to autonomgusl| equalization, retransmission requests, and sprgadin
adapting a radio. technique/code) are also identified as possiblegém the
With a radio, the user has some desirable operdtimn  chromosome definition to allow for future growthrdhgh
values certain goals more than others, such amimienum  each layer of the radio communication's stack. The
latency requirement of a video conference. Althouginy  chromosome shown in Fig. 1 represents the PHY-lagés
different methods haven been proposed in the liisgd11], currently of consequence to the WSGA due to current
we associate each optimization dimension in thoraith a  hardware limitations and the current state of theukation.
weight to delineate the relative importance of gjuals in
the decision-making process. As the MOGA analyzehe | Power | frequency Pulse Shage Symbol Rate Modulafion
dimension, optimization in the higher-weighted dirsiens Fig. 1. Representation of a chromosome for GA malaton.
leads to a solution tailored to the user’s prefeesn The WSGA analyzes the chromosome’s fitness through
Different selection and evaluation methods havenbeeg set of fitness functions defined by performanaduations
proposed for MOGAs [8] [10] [13]. Many methods iy  of the current radio channel. Each fitness functisn
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weighted to represent the relative importance ther tnas
associated with each objective. The Pareto froatefiore

moves so that the optimal solution provides the tmos

efficient performance for the user’'s QoS requiretmemder
combinatorial constraints. Here, efficiency andimjation
mean providing a QoS without over-maximizing, whinhy

comparisons. This becomes computationally intenanais
undesirable in a real-time optimization system.

Crossover and mutation are simple implementatidns o
these mechanisms. Crossover is performed on aesiaght
chosen as a uniform random number with a statibadibity
of crossover occurring. Mutation is also a singl@np

waste radio resources such as spectrum and power. Foperation chosen from a uniform random number \aith

example, a user sending email does not need a 1fjis M
link with a 30 dB carrier to noise ratio.

The fitness evaluation functions are designed teae
the current link quality of both PHY and MAC layerghich
currently include the mean transmitting power, dedte,
BER, packet error rate (PER), spectral
bandwidth, interference avoidance, packet latencyl a
packet jitter. One of the most powerful attributafsthe
WSGA is the dynamic fitness definition and evaloati
where not only is the weighting of each functiofjuathble,
but any fitness function may or may not be useteqgsired
by the current link conditions and user requirermerntl
functions are dynamically linked from a databasettsat
they can be dynamically added and weighted intdithess
evaluation for a specific link condition and perfance
objectives.
evaluation is directed by some higher-layer ingeltice such
as the learning machine in the cognitive engineckwhi
conducts the evaluation of the overall radio systzmd
network performance.

efficiency,

static probability of crossover occurring. Future
enhancements to the WSGA call for an adaptive tdprst

of crossover and mutation probabilities as well the
population size during the optimization process Hagher
convergence efficiency and accuracy.

The ability to apply constraints to the optimizatio
problem as shown in (1) gives us the opportunity to
incorporate regulatory and physical restrictionsrirdy
chromosome evolution. If a trait determined by the
chromosome exceeds the limits of the radio’s cdipiabi
like finding a center frequency outside the tunaidlege of
the radio, or breaks the law, like transmitting tomch
power in a specific band, then the WSGA penalitesd
chromosomes. We have chosen to use a penalty abproa
similar to that outlined in [7] by setting the fitss evaluation

Such dynamic adjustment of the fitnesof that chromosome to zero, basically nullifying ¢hance

to survive to the next generation.

The final issue to realize the operation of the \AS&
the exchange of optimized chromosomes between gadio
wishing to communicate such that all networked oadi

In general, fithess functions associate to specifievolve to have better traits. Provided a commuiunatlink

channel conditions. For example, the fitness fuaamctior
determining a BER is channel specific. Likewiseg th
function weights associate to a specific user’'sirdefor
network performance, e.g. a desire to improve tERB
while sacrificing the data rate. Although theseoaggions
hold for a general-purpose analysis of the WSGA, uker
can influence the functions, such as the dataadhjective,
and the channel can also influence the weightsefch
function, such as
compensate for a particularly poor channel.

We use a relative tournament selection method aimil
to [8], except that the fitness of the winner fransingle
comparison is scaled by the weight associated witht
fithess function. After all the single comparisoims all
dimensions, the winning member is the one withHighest
fithness, and that one survives to the next poprativVhile
this does not guarantee that all winners are tisg be non-
dominated, members of the population (only bettative
to its combatant), it maintains species diversiithiv the
population while still pushing towards the Paretont.
Diversity in the population allows different solutis to be
tried and helps prevent the algorithm from getstgck in a
local optimum. We did not apply Horn's [14] method
fighting two individuals against a subset of thepplation
because his method, while he claims it producesetbet
results, calls for a larger population and morenefis
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already exists, all radios on the network runnimg WSGA

will share the chromosomes and the most fit chramesis
elected as the winner (as though this were thegkasération

of the genetic algorithm). The radios will then aWitch
their parameters together. If no communicationsh pat
present, a control channel can be set up to akwaporary
communication between the radios in order to exgban
chromosomes and reconfigure themselves. We reamgniz

increasing the BER weighting tothat this is not the most complete or satisfacsmiytion for

all situations, and we will need to adopt some grot to
establish the connections and exchange the adaptati
information between all radios on the network.

4. EXPERIMENTAL RESULTS
4.1. Hardware Experiments
The experiments are done in both simulation anc oeal

hardware platform. For all experiments, both hamwand
simulation, the GA parameters were set as listéchlle 1.

Table 1. WSGA Genetic Parameters

Parameter Value
Crossover Rate 90 %
Mutation Rate 5%
Population Size 30

Replacement Size 20
Max Generations 50
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The radios we used were Proxiraunamiradios, which
have limited adaptability as shown in Table 2.

Table 2. ProximTsunami Adaptable Parameters

Parameter Range
Frequency 5730 — 5820 MHz
Power 6—17 dBm
Modulation QPSK, QAMS8, QAM16
Coding Rate 1/2, 2/3, 3/4

Time division duplex (TDC 29.2%- 91% BSU to Sl

These values are further restricted in that theeeoaly
up to six discrete 20.75 MHz wide channels, andcthding
is only adjustable for QPSK modulation between g&té&
and 3/4. Because of the limited number of adaptabl
parameters in the Proxim radios, we limited theefis
evaluation to BER minimization, data rate maximicat
and power minimization.

Even with this severely limited adaptable radio, ave
able to see the benefits of the WSGA and hinthefpower
of the GA adaptation mechanism. The tests we ram e
see how well the radios could adapt to a user'sisead a
known co-channel interferer by running a packebrerate
(PER) test. To determine the ideal performance haf t
radios, we ran the PER test in a line of sight (L@&h with
no interference for each modulation (experimentsStiO—
LOS-4).

The first test was to maximize the data rate fer uker
at the base station (experiment Data-5), whichteslawith
the radio set to its lowest data rate and ran tf&GW to
find the maximum data rate with minimum power. The
second test (experiment Int-6) used a bounce pttla o
building between the test base station unit (BSWi a
subscriber unit (SU), where we used a second Proxi

TsunamiBSU as an interferer on an overlapping channel a

shown in Fig. 2. During the tests, we forced thdioa

always to use the same channels so that the irgade

avoidance could not be accomplished by simply it

channels (the easy solution). The radio configaratibefore

the WSGA are summarized in Table 3 and all experime
used the test network RF channel in Fig. 2.

5740.4( 5754.2
5743.8! 5750.78

Fig. 2. Spectrum of test network (light gray) amdeifering
radio (dark gray). Frequency is in MHz.

I
5730.0: 5764.6:

Table 3. Experimental Configurations

Radio Experiment

Settings LOS-1 LOS-2 LOS-3 LOS-4 Data-5 Int-6
Modulation QAM16 QAM8 QPSK QPSK QPSK QAM16
Power (dBm) 6 6 6 6 17 17
Coding 3/4 2/3 3/4 1/2 1/2 3/4
TDD (%) 50 50 50 50 50 50

applicable to experiment Data-5 where the WSGA juas
optimizing the data rate and power because the same
channel conditions and radio placements as in @rpets
LOS-1 through LOS-4. During experiment Data-5, we
initialized the radio to the slowest bit rate, whis 10 Mbps
for both up and down links, and the power was sethe
maximum level, 17 dBm. When running the WSGA, both
minimizing power and maximizing data rate were \uésg|
with equal weights of 255, the maximum. The WSGA's
solution to this problem is to set the modulatiorQAM16
with a coding of 3/4 (there is no other choiceg DD to
1%, and the power to 6 dBm. The WSGA successfully
ound the minimum possible power and the maximum
possible data rate of the radios, 55 Mbps for therdink
and 5 Mbps for the uplink.
For experiment Int-6 with the interferer, we initiyaset

the BER minimization fitness weight to 200, the pow
minimization function weight to 210, and the datater
maximization rate to 0. The results of the WSGA was
configuration of 7 dBm transmit power, QPSK witl2 Tate
coding, and a TDD scheme of 75%. Table 4 summatires
data collected for experiment Int-6 along nextte tesults
of experiments LOS-1 through LOS-4. As this talilevss,
the results after we ran the WSGA are better tledarb, but
are still not that great. We then reset the radmghe
previous configuration and re-ran the WSGA withfetiént
weights. This time, the BER minimization was set2t&b
while the other fitness functions were set to Oe WISGA
produced a radio configuration of QPSK with codiate %,
17 dBm of power, and 50% TDD. Table 4 shows greatly

I%'II"nproved PER performance.

s These experiments show that the WSGA works with
real hardware to accomplish real goals. Howeveis dlso
obvious from these experiments and results that the
hardware platform of the Proxifisunamisdoes not allow
the WSGA's power to really show through becausehef
limited adaptability of the radios.

4.2. Simulation of an SDR PHY Layer

To test the full power of the WSGA in cognitive i@dwe
developed a simulation in MatLab. In this softwaaglio
testing bed, we can adjust the power, center fragye
modulation (type and order), pulse shape filtering
characteristics (PSF roll-off factor and filter eryl and
symbol rate. These adjustable parameters and rhleges
are shown in Table 5. WSGA uses them as the primary
PHY-layer parameters from which a set of secondady -
layer parameters can be directly derived, suchhasirel
bandwidth, bit rate and bit energy. We set themmigh-range
values for illustration, but as an SDR platform mlpdhese
parameters can be set to any values accordinggcifisp

The PER tests for experiments LOS-1 through LOS—A{adiO environments.

and Int-6 are shown in Table 4. The PER tests wete
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Table 4. Experimental Results

Radio Experiment
Settings LOS-1 LOS-2 LOS-3 LOS-4 Int-6: Pre GA _ Int-6: Post BA 1 Int-6: Post GA 2
Packets 19991 10000 10000 20000 9999 10000 10000
BSU-SU Lost Packets 14 0 18 8 209 2 10
PER 7x10* 0 1.8x10° 8x10* 2.09x10 2x10* 1x10°
Packets 10000 10000 10000 20000 5526 7278 10000
SU-BSU Lost Packets 17 0 98 0 4754 3459 1
PER 1.7x16 0 9.8x10° 0 0.8603 0.4752 1x10

Table 5. Simulation Adaptable Parameters

Parameter Range
Power (dBm) 0-30
Frequency (MHz) 2400 - 2480
Modulation M-PSK, M-QAM
Modulation, M 2-64
PSF roll-off factor 0.01-1
PSF order 5-50
Symbol Rate (Msps) 1-20

The simulation’s enhanced function flexibility etedb a
much larger set of applicable fithess evaluati@aling to
more creative solutions so that the radio can &ehiaore
complicated objectives such as minimize BER, minéni
bandwidth, maximize spectral efficiency, minimizewer,
maximize data rate, and minimize interference (takad
given), individually or collectively.

We ran three experiments to test the effectiveaess
power of the WSGA in SDR: minimize spectral occupan
for applications like text messaging and email, iméze
throughput for broadband video, and avoid intertelia a
situation such as the ISM band where WiFi devices i
channel 1, 6, and 11 are used as interferers. ithes$
function weighting is shown in Table 6, which
representative of weightings that represent fastigndard
requirements from a radio.

The configuration results from the WSGA for each
scenario are shown in Table 7. Fig. 3 shows thgusacy
domain representation of the signals for each saena

Table 6. Simulation Test Conditions

is

Functions Weights
Minimize spectral Maximize Interference
occupancy throughput  avoidance
BER 255 100 200
BW 255 10 255
Spectral Efficiency 100 200 200
Power 225 10 200
Data Rate 100 255 100
Interferenc 0 0 25¢E

As Fig. 3 and Table 7 show, the WSGA successfully

created solutions of radio parameter sets by baigrihe
combinatorial objectives. The most interesting Itsswere
from the interference experiment, where the resofitivo
runs are shown in Figs. 3c and d. The Pareto feoattight

balance of the weightings associated with different

objectives, which is typically not stabile betwedifferent
GA processes because it can be dominated by anyimone
more highly weighted objectives. Avoiding interfece
does dominate, but not always completely succdgsas in

the case of Fig. 3d, which found a good centerueegy,

but too large of a bandwidth. These results shaat the

WSGA can now adjust a radio, but it might seem that
have just displaced the control burden from théor&dobs

to the WSGA weights; however, this is desirabletlzes

weights directly affect the radio performance, \hian

intelligent and learning machine can easily mamimiin the

place of a human user. The learning machine carsttle

weights and learn about the success of those viegght
through feedback from the radio as well as fromhaig
layers, and even positive or negative stimuli friva user as
corrective measures.

Table 7. Simulation Test Results

Radio Parameter Weights
Minimize spectral Maximize Interference
occupancy throughput  avoidance
(@) (b) © @
Power (dBm) 18 28 29 23
Frequency (MHz) 2440 2430 2436 2436
Symbol Rate (Msps) 1 18 3 8
PSF roll-off 0.05 0.33 0.04 0.04
PSF order 46 20 18 13
Modulation, type PSK QAM PSK QAM
Modulation, M 2 16 4 8
BER 0 0 0 0.12
Data Rate (Mbp: 1 72 6 24

Magnitude (dB)
Magnitude (dB)
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5. CONCLUSIONS

While the results of the WSGA prove its success andP!

usefulness in controlling radio parameters to ewa user
with different QoS’s, much work remains. The cutr&@A

itself works, but many other techniques could dyeat

improve its effectiveness and convergence speel asc
adaptive GAs [15], migration and niching techniqaésng

the Pareto fronf5] [6] [8], and analyzing the tournament [7]

selection proposed by [14].
Another benefit of the GA is the ability to distiie the
work across many processors [12]. We wish to tiste the

WSGA among many different radios within the same

network so each can parallel process to find abstilution
faster.

With the cognitive radio, we plan to incorporate agj

learning machine to automatically adjust the weigahd
determine the fithess functions that the WSGA sthaise to
optimize the radio given feedback from all layefstie
system and the user. As we then tie this work g&nsing
techniques, we will have a fully-realized cognitheglio.
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