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ABSTRACT 
 

In networks with transmitting users having separate un-
coordinated receivers, waveform adaptation by greedy 
interference avoidance (IA) algorithms ([1], [2] and [3]) might 
not lead to fair network resource allocations. A game 
theoretic framework for this scenario, based on Potential 
game theory is presented in this paper. This model provides 
insight into development of algorithms  that are fairer than 
the greedy IA algorithms and are amenable to distributed 
implementations. 
 

1. INTRODUCTION 
 
Given the profusion of offered service types, transmission 
protocols and software radio capabilities available today, 
networks are becoming less structured and increasingly 
involve distributed decision making. Nodes need to 
independently and periodically adapt themselves to changes 
in the interference environment that result from changes in 
network configuration (nodes entering or leaving the 
network), mobility and the nature of the wireless channel. 
The application of game theory to distributed waveform 
adaptation/selection techniques aimed at reducing the 
interference in a network is the focus of this paper. * 
 

In general, transmitting nodes have little or no 
information about the interference seen at the receiver. One 
approach to avoid interference is to develop distributed 
waveform-adaptation algorithms where a minimal amount of 
feedback is required between receivers and transmitters. A 
distributed algorithm is proposed in [1] that sequentially 
updates the signature sequences associated with a particular 
receiver in a synchronous CDMA system. The sequences 
are found to decrease the total sum correlation (TSC) of the 
set. The minimization of the TSC is shown to be equivalent 
to maximization of the sum capacity [2], which forms a 
convenient information theoretic social welfare measure. 
This iterative algorithm (wherein users greedily increase their 
SINR) converges to a set of orthogonal sequences when the 
number of users is less than or equal to the processing gain 

                                                 
* This material is based on work sponsored by Office of Naval 
Research (ONR) grant no: N000140310629 

and to a set of Welch Bound Equality sequences otherwise. 
Reference [2] generalizes this approach to the situation 
where nodes can adapt their modulation/demodulation 
methods using a general signal space approach. In [3], game 
theory is used to model and analyze this interaction of nodes 
communicating with a common receiver. It is shown in the 
paper that for two-player games, any combination of metric 
and receiver types results in a best response potential game 
that minimizes the total sum correlation function.  
 

In the presence of multiple uncoordinated receivers and 
asymmetric power constraints for the users, waveform 
adaptation becomes more difficult as compared to the 
systems analyzed in [1], [2] and [3], where all nodes transmit 
to a single common receiver. Greedy IA algorithms based on 
maximization of sum-capacity might not lead to a fair 
allocation of the resources in the network. Hence waveform 
update decisions that improve some system welfare function 
in addition to reducing the interference at the receiver 
associated with a particular transmitting node are required. A 
game theoretic approach to analyzing these systems and 
constructing solutions that can lead to a fair utilization of 
network resources is presented in this paper. This framework 
is based on potential game theory, which makes it easily 
amenable to a distributed implementation. 

 
The system model for the network scenario under 

consideration is described in Section 2. Section 3 gives a 
brief overview of game-theory and potential games. Section 
4 presents the game-theoretic framework for fair waveform 
adaptation in a decentralized network. Section 5 presents an 
example formulation of a fair waveform adaptation game. 
Section 6 summarizes the paper and presents directions for 
future research. 

 
2. SYSTEM MODEL 

 
The network being analyzed is made up of a cluster of 
nodes. Each transmitting node has a separate node of 
interest, i.e., a separate receiving node. This leads to the 
existence of multiple un-coordinated receivers in the 
network. Figure 1 shows the system model with arrows 
connecting the transmitting node to its intended receiver 
node. 
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The transmitting nodes are allowed to have different 
transmit power constraints and the power constraints are 
assumed to be fixed by a process independent of waveform 
adaptation. Interference is caused at the receiver nodes by 
transmissions from user nodes different from the one 
associated with the particular receiver node. The interference 
caused is influenced by the power constraints and 
associated channel characteristics of the user nodes. 
 

Receiver Node

Transmitter Node

 

Figure 1: Network with multiple un-coordinated receivers 

 
Let K be the number of transmitting nodes in the 

network. Let 1N
is ×∈£  be the signature sequence1 

associated with transmitting node i. The number of available 
signal dimensions is N. The signature sequences are allowed 
to have real values (as opposed to bi-polar sequences). 
Without loss of generality, the signature sequences are 
assumed to have unit norm ( )1is = . The power received at 

the jth receiver node from the ith transmitting node is denoted 
by pij. This term takes into consideration both the transmit 
power constraint and the influence of the channel between 
the transmitting and receiving nodes. The data bit to be 
transmitted from the ith transmit node is denoted by bi. The 
received signal at the receive node is given by  

1

N

j ij i i
i

r p b s z
=

= +∑  
 
(1)  

The vector, 1Nz ×∈£ , models additive white Gaussian 
noise with zero mean and unit variance. The channel is 
assumed to be constant over the time required for waveform 
adaptation. 
 

3. GAME THEORY AND POTENTIAL GAMES 
 

Consider a normal form game represented [4] as 

{ } { }∈ ∈
Γ = , ,i ii M i M

M A u , where Γ  is a game and 

                                                 
1The waveforms used by transmitting nodes are assumed to be 
fully specified by the signature sequence in different signal 
dimensions [2]. Hence the waveform of a node is analogous to the 
signature sequence of a node. 

{ }= …1,2, ,M M , is the set of players of the game. The 

set of actions available for player i is denoted by Ai and the 
utility function associated with each player i by ui. If the set 
of all available actions for all players is represented by 

∈
= × i

i M
A A , then → ¡:iu A . The utility function for each 

player is thus a function of the actions in the game. Players 
select actions that maximize their utility functions. A Nash 
Equilibrium (NE) for a game is an action profile from which 
no player can increase his utility by unilateral deviations. An 
action profile ∈a A  is a NE if and only if 

( ) ( ), , ,i i i i i i i jj i
j N

u a u b a i M b A a A− − ≠
∈

≥ ∀ ∈ ∈ ∈ ×  (2)  

Nash equilibria form the steady states of the game.  
 

Suppose that a normal form game is played repeatedly. 
At each stage of the game, players choose actions that 
improve their utility functions. The criteria for a particular 
choice of action gives rise to the best and better response 
dynamics defined below. 
 
Best Response Dynamic: At each stage, a player i is 
permitted to deviate from ∈i ia A  to some action ∈i ib A  iff 

( ) ( )− −≥ ∀ ∈ ≠ ∈, ,i i i i i i i i i i iu b a u c a c A andc b A and 
( ) ( )− >,i i i iu b a u a . 

Better Response Dynamic: At each stage, a player i is 
permitted to deviate from ∈i ia A  to some action ∈i ib A  iff 

( ) ( )− >,i i i iu b a u a . 

 
A potential game ([5], [6]) is a normal form game such 

that any changes in the utility function of any player in the 
game due to a unilateral deviation by the player is also 
correspondingly reflected in a potential function.  
 

A function → ¡:P A , is called an exact potential 
function if ( ) ( ) ( ) ( ), , , ,i i i i i i i i i iu a a u a a P a a P a a− − − −− = −) )

, 

i∀  and ,i i ia a A∈) . A game that has an exact potential 

function is called an exact potential game. A function 
→ ¡:P A , is called an ordinal potential function, if 

( ) ( ) ( ) ( ), , , , ,i i i i i i i i i iu a a u a a P a a P a a i− − − −≥ ⇔ ≥ ∀) )
and 

,i i ia a A∈) . A game that has an ordinal potential function is 

called an ordinal potential game. 
 
 NE of potential games are maximizers of their potential 

functions. All potential games following a best response 
dynamic converge to a NE. Potential games with finite action 
spaces have been established to follow a better response 
dynamic to converge to a NE as well. 
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4. FORMULATION AS A POTENTIAL GAME 
 
Total sum capacity, defined as the sum of the rates 
achievable by users in the network, is used as a metric to 
evaluate the performance of the network in the centralized 
receiver scenario. All the IA algorithms introduced for the 
centralized network scenario that greedily improve their own 
utilities (rate or SINR), are designed to maximize the sum 
capacity of the network. However, when multiple un-
coordinated receivers exist in the network, and when users 
could have asymmetrical power constraints, the total sum 
capacity might not be an appropriate metric. Maximization of 
this metric could lead to allocation of network resources that 
are biased towards stronger user-receiver pairs, resulting in 
very poor performance of the weaker user-receiver pairs.  
 

A game-theoretic model based on potential game theory 
for the fair allocation of resources in decentralized networks 
is suggested here. Potential games are chosen as these are 
easy to analyze and give a framework where users can serve 
the greater good by following their own best interest, i.e., 
can maximize a global utility by only trying to maximize their 
own utilities. Hence it can lead to simple game formulations 
where maximizations of utility of users can lead to improving 
a global network fairness measure as well.  

 
To incorporate the notion of fairness, the utility 

function of each user is modified such that in addition to 
improving the benefit associated with the user’s 
performance at its intended receiver, the function also 
contributes to the fairness in the network. The utility 
function is of the form given in Equation 3.  

( ) ( ) ( )( )

( )( )γ

≠ =

≠ =

= −

−

∑

∑

1 2 ,
, 1

3 ,
, 1

, , , ,

, ,

N

i i i i i j i j i
j i j

N

ij i j i j
j i j

u s p f s p f I s s p p

f I s s p p
 

 
 
 
(3)  

Function f1 quantifies the benefit associated with a particular 
choice of signature sequence and power. Functions f2 is the 
interference measure for user i perceived at its associated 
receiver due to the other users present in the system. 
Function I is some function of two signature sequences si 
and sj. Function f3 is the interference caused by a particular 
user at the receivers associated with other users. Coefficient 
γ ij  is a weighting factor.  

 
The first two terms of the utility function are intended to 

reduce the interference at the receiver associated with a 
particular user. The third term attaches some benefit to being 
nice to other users (reducing network interference) and is 
intended to contribute to the fairness in the network.  
 

A possible simple formulation of the potential function 
for this network is given by Equation 4.  

( )
( ) ( )( )

( )( )

α

β γ

≠ =

=

≠ =

 − 
 =  

−   

∑
∑

∑

1 2 ,
, 1

1
3 ,

, 1

, , ,
,

, ,

N

i i j i j i
N

j i j

N
i

ij i j i j
j i j

f s p f I s s p p
Pot S P

f I s s p p

 

 
 
 
(4)  

This function consists of the sum of the utilities of all users. 
Coefficients α  and β  are weighting factors, vector 

[ ]= …1 2, , , NS s s s  and vector [ ]= …1 2, , , NP p p p . 

Separating all the terms involving the ith user, 

( ) ( ) ( )( )

( )( )

( )( )

( )( )

( )

( )( )

( )( )

1 2 ,
, 1

3 ,
, 1

2 ,
, 1

3 ,
, 1

1

2 ,
, , 1

3 ,
, , 1

, , , , , ,

, ,

, ,

, ,

,

, ,

, ,

K

i i i i i i j i j i
j i j

K

ij i j i j
j i j

K

i j i j
j i j

K

ji j i j i
j i j

k k

K

j k j k
j k j i j

K

kj k j k j
j k j i j

Pot s S p P f s p f I s s p p

f I s s p p

f I s s p p

f I s s p p

f s p

f I s s p p

f I s s p p

α
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α
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α
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K
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≠ =

−


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 
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 
 
 
 
 
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∑

1444444442444444443
 

 
 
 
 
 
 
 
 
 
 
(5)  

Formulation of the utility function and the potential game as 
an exact potential game requires the following condition 
(Equation 6) to be satisfied. 

( ) ( )
( ) ( )− − − −

− =

−

'

'

, ,

, , , , , ,
i i i i i i

i i i i i i i i

u s p u s p

Pot s S p P Pot s S p P
 

 
(6
)  

This is possible if α β= =
1
2

 and under the two scenarios 

listed below 
 
Case1:  

( )( ) ( )( )=2 , 2 ,, , , ,j i j i i j i jf I s s p p f I s s p p , 

( )( ) ( )( )=3 , 3 ,, , , ,j i j i i j i jf I s s p p f I s s p p , 

γ γ= ∀, ,ij ji i j  

 
 (7)  

Case2: 
( ) ( )=i i2 3f f  

γ = ∀1, ,ij i j  

   
(8)  
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In the second case, another formulation of an exact potential 
function could be as follows (Equation 9).  

( ) ( ) ( )( )
= ≠ =

= −∑ ∑1 3 ,
1 , 1

, , , ,
K K

i i i j i j
i j i j

Pot S P f s p f I s s p p  
 
(9)  

 
4.1. Ordinal Potential Function 
 
The utility function and the potential function could be 
formulated as an ordinal potential game if the following 
condition (Equation 10) is satisfied. 

( ) ( )
( ) ( )

'

'

, ,

, , , , , ,
i i i i i i

i i i i i i i i

u s p u s p

Pot s S p P Pot s S p P− − − −

≥ ⇔

≥
 

 
 
(10)  

 
This is possible when ( ) ( ) ( )= =i i i2 3i i uif f f , where 

( )iuif  is an ordinal transformation of ( )ipotf  or when 

( ) ( ) ( )i i i2 3, ,i i potf f f are all ordinal functions where the 

utility function associated with each user is given by,  

( ) ( ) ( )( )

( )( )
≠ =

≠ =

= −

−

∑

∑

1 2 ,
, 1

3 ,
, 1

, , , ,

, ,

K

i i i i i i j i j i
j i j

K

i i j i j
j i j

u s p f s p f I s s p p

f I s s p p
 

 
 
 
(11) 

and the potential function is given by, 

( ) ( ) ( )( )
= ≠ =

= −∑ ∑1 ,
1 , 1

, , , ,
K K

i i pot i j i j
i j i j

Pot S P f s p f I s s p p  
 
(12)  

 
This formulation allows each user to have a different 

utility function, the only restriction being that the utility 
functions are ordinal transformations of each other. 
 
5. EXAMPLE FORMULATION OF A POTENTIAL GAME  

 
A possible formulation of a fair waveform adaptation game, 
based on the game-theoretic framework described in the 
previous section, is presented here.  
 

Consider the utility function for the ith user defined in 
Equation 13, modeled on the formulation in Equation 3.  

( ),
≠ ≠

= − −∑ ∑
H H H H
i j j i ji i j j i ij

i i i
j i j iii j j

s s s s p s s s s p
u s p

p p
 

 
(13)  

Here, function f2 (from Equation 3) is the interference caused 
by other users in the network at the receiver associated with 
user i weighted by the receive power of user i. Function f3  is 
the interference caused by user i at receivers associated with 
other users, weighted by the receive power of the other 
users. As functions f2 and f3 are similar in structure 
( ( ) ( )=i i2 3f f ), Equation 9 can be used to form the 

following exact potential function for this utility. 

( )
1 1

,
= =

≠

 
 = −    

∑ ∑
HN N

j j j iH
i i

i j ii
j i

s s p
V S P s s

p
 

 
(14)  

 
The utility function can be rewritten as, 

( ), −

≠

= − − ∑
H HH
i j j i i ji ii i

i i i
j iii jj

s s s s ps R s
u s p

p p
 

 
(15)  

where, 

1

K
H H

ii i i i ii j j j i
j
j i

R R s s p I s s p−
=
≠

= − − = ∑  
 
(16)  

and Ri is the cross correlation matrix of the received signal at 
receiver i associated with user i,  

1 1

K K
H H H H

i i i j j ji j j ji
j j

R E r r s s p E zz s s p I
= =

   = = + = +   ∑ ∑  
 
(17)  

The first term in the utility function can be identified as is the 
inverse Signal to Interference Ratio (SIR) at the receiver 
associated with user i. The second term is a weighted sum of 
interference caused by the user at other receivers in the 
system and hence contributes to network fairness. User i, 
thus tries to maximize its SIR and in addition, also tries to 
reduce the interference it causes at receivers corresponding 
to other users. 
 

A similar utility, which increases a social measure, is 
presented in ([7], [8]). However this is specific to a system 
where each user talks to multiple receivers and does not take 
into account fairness in the network. 
 

5.1. Convergence Characteristics 
 
Maximizers of the potential function, V, form the steady 
states of the network. Exact potential games exhibit best and 
better response convergence to these steady states. Best 
response can be implemented by having each user change 
its signature sequence such that the user derives the best 
utility for the current state of the network. The utility 
function of the ith user can be re-written as (Equation 18) 

( ),
≠ ≠

 
= − +  

 
∑ ∑

H H
j j ji j j ijH

i i i i i
j i j iii j j

s s p s s p
u s p s s

p p
 

 
(18)  

Let, 

≠ ≠

 
= +  

 
∑ ∑

H H
j j ji j j ij

j i j iii jj

s s p s s p
R

p p
 

 
(19)  

Then the best response of the ith user is the eigenvector 
corresponding to the minimum eigenvalue of R. To allow the 
implementation of this best response iteration at the user 
end, the users are assumed to know the signature sequences 
of all the other users in the network and the value i jp for all 

{ }∈ …, 1, ,i j K .  
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Alternately, better response iterations can also be 
implemented at the user end.  In this approach, the user 
randomly alters its signature sequence. All the receivers in 
the network that can hear a particular user send back the 
change in SINR caused by this signature alteration. If the 
sum of the inverses of the changes in SINR is negative, the 
user sticks to its update, else it reverses its signature 
alteration.  

 
The convergence characteristic for a best response 

implementation of the algorithm is shown in Figure 2. The 
simulated network has six users and three signal space 
dimensions. The users are numbered according to 
decreasing received powers at their corresponding receiver 
nodes. It is seen that the game converges in about fifteen 
iterations. Best response is implemented by allowing each 
user to update sequentially in a round robin fashion. As 
each user utility update leads to an increase in the potential 
function, the algorithm converges even with non-sequential 
updates. 

 

Figure 2: Best-response convergence for a network with multiple 
un-coordinated receivers (Solid Lines – Fair IA Algorithm, Dashed 
Lines-Greedy IA Algorithm). 

Figure 2 also shows the convergence of a greedy 
interference algorithm (similar to the algorithms discussed in 
[1], [2] and [3] for the centralized receiver) extended to the 
multiple un-coordinated network scenario. In the greedy 
interference avoidance algorithm, users are concerned only 
with the maximization of their own SINR. Theil’s entropy 
measure ([9]) an inequality index (defined below), is used to 
investigate and compare the fairness of the two approaches. 
 
Theil's entropy measure – Inequality Index: 
This is a measure of inequality proposed by Theil that 
derives from the notion of entropy in information theory. 
The entropy measure, T, is given by:  
 

1

1
log log

L

i i
i

T q q
L=

  = −  
  

∑  
 
(20)  

where qi is the share of the ith group, and L is the total 
number of groups. The index has a potential range from zero 
to infinity (for very large values of L), with higher values 
indicating more unequal distribution of resources. 
 

Let ri be defined as follows. 

2

1

log 1 i i
i K

H
j j ji

j
j i

p
r

s s p I
=
≠

 
 
 

≤ + 
 +
   

∑
 

 
 
 
(21)  

and  

=

=

∑
1

i
i K

j
j

rq
r

 
 
(22)  

The proposed algorithm leads to a fairness measure of 
0.0195 as opposed to 0.2495 for the greedy algorithm. 
Hence the game formulation for waveform adaptation 
presented in this paper indeed results in fairer allocation of 
resources than the greedy IA algorithms for waveform 
adaptation. 

In addition to the example exact potential game 
formulation presented in this paper, several ordinal 
transformations indicated in [3] could also be used to form 
fair games for waveform adaptation. 

 
6. SUMMARY 

 
A game theoretic framework based on Potential games, 

to model waveform adaptation in networks with multiple 
uncoordinated transmit-receive pairs is presented. This 
formulation leads to solutions that are fairer than the greedy 
IA algorithms. An example waveform adaptation algorithm 
based on this model that leads to a fairer allocation of 
resources than a greedy IA algorithm is also presented. 

However, the implementation of the described fair 
algorithms requires considerable feedback from the receiver 
nodes in the network. Hence more efficient feedback 
mechanisms need to be investigated. Alternately, an 
investigation of more efficient better response schemes 
might be of significance, as potential games exhibit better 
response convergence.  
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